Révisions : Analyse

Exercice 1 (2013, ENSAM) Soit f de classe C^1 sur \mathbb{R} telle que $f \circ f(x) = \frac{x}{2} + 1$. Soit $(u_n)_n$ et $(v_n)_n$ les suites définies par :

$$u_0 \in \mathbb{R}, \ \forall n, \ u_{n+1} = \frac{u_n}{2} + 1 \ \text{et} \ v_n = u_n - 2$$

- 1) Montrer que v est géométrique, et en déduire la limite de u.
- 2) Écrire $f \circ f \circ f$ de deux manières différentes, et en déduire que $f'\left(\frac{x}{2}+1\right)=f'(x)$ pour tout x.
- 3) Montrer que f'(x) ne dépend pas de x. En déduire f.

Exercice 2 (2013, ENSAM)

Pour $n \ge 1$, on note : $I_n = \int_0^{+\infty} \frac{1}{\cosh^n(t)} dt$

- 1) Étudier la convergence de I_n .
- 2) Calculer I_1 . Rappeler la forme de la dérivée de tanh(t). Calculer I_2 .
- 3) Établir une relation de récurrence entre les termes I_n et I_{n+2} .

Exercice 3 (2013, 2015, ENSAM)

Pour tout n > 0 entier naturel, on considère l'équation : $x^n + x^{n-1} + \cdots + x = 1$

- 1) Montrer qu'il existe sur $[0, +\infty[$ une unique solution, notée a_n .
- **2)** Montrer que $(a_n)_n$ est décroissante.
- 3) Montrer que $(a_n)_n$ converge vers une limite ℓ . Estimer $a_n^{n+1}-1$ et déterminer ℓ .
- 4) On note $u_n = a_n \ell$. Calculer u_1 et u_2 . Déterminer un équivalent de u_n (montrer que $nu_n = o(1)$)

Exercice 4 (2013, ENSAM) Soit $n \in \mathbb{N}^*$. On pose, pour tout $t \in D$, $f(t) = \frac{\sin^2(nt)}{\sin(t)}$.

- 1) Déterminer l'ensemble de définition D de f.
- 2) Montrer que $\forall t \in D, \ f(t) = \sum_{k=1}^{n} \sin((2k-1)t).$
- 3) Montrer que $\int_0^{\frac{\pi}{2}} f(t)dt \sim_{+\infty} \frac{\ln(n)}{2}$.

Exercice 5 (2014, CCP TSI $\frac{1}{n}$ O₁T) Étudier la convergence de $S_n = \sum_{k=1}^{n} \frac{1}{k2^k}$.

Déterminer sa limite ℓ , et montrer que $R_n = \ell - S_n \leqslant \frac{1}{(n+1)2^n}$

Exercise 6 On pose $a_n = \int_0^1 t^n \sqrt{1-t} \, dt$.

- 1) Soit $N \geqslant 1$, établir que $\sum_{n=0}^{\infty} (-1)^n a_n = \int_0^1 \frac{\sqrt{1-t}}{1+t} dt + r_N$, où $r_N \xrightarrow[N \to +\infty]{} 0$.
- 2) Déterminer la somme de la série du 1.

Exercice 7 (2012, Mines — élève 5)

1) Monter que $f(x) = \int_0^1 \frac{e^{-\arctan(xt)}}{2+t^2} dt$ est définie pour tout $x \ge 0$, et que $\forall x \in \mathbb{R}_+, 0 \le f(x) \le \frac{\pi}{4}$.

1

- 2) Montrer que f est de classe \mathscr{C}^1 et décroissante sur \mathbb{R}_+ .
- 3) Montrer que l'équation f(x) = x a une unique solution positive.

Exercice 8 (2013, Cachan PT — Lyon)

Pour $x \in \mathbb{R}$, on note :

$$f(x) = \int_0^{+\infty} \frac{\cos(tx)}{1 + t^2} dt$$

- 1) Montrer que f est bien définie et continue.
- **2)** Montrer que : $xf(x) = 2 \int_0^{+\infty} \frac{t \sin(tx)}{(1+t^2)^2} dt$
- 3) Montrer que f est \mathcal{C}^1 sur \mathbb{R}^* et que : $xf'(x) = f(x) 2\int_0^{+\infty} \frac{\cos(tx)}{(1+t^2)^2} dt$
- 4) Montrer que f est \mathcal{C}^2 sur \mathbb{R}^* , déterminer un équation différentielle satisfaite par f, et en déduire f.

- Exercice 9 (OT 2007 ENSAM PSI, 170) $(-1)^n$ 1) Calculer le rayon de convergence de $\sum_{n\geqslant 0} \frac{(-1)^n}{(2n-1)(2n+1)} x^{2n+1}$.
 - 2) Exprimer sa somme f à l'aide de fonctions usuelles.

Exercice 10 (2013, ENSAM)

Soit
$$f: x \mapsto \ln\left(x + \sqrt{1 + x^2}\right)$$
.

- 1) Montrer que f est solution d'une équation différentielle linéaire du deuxième ordre et donner cette équation.
- 2) Chercher un développement en série entière de f.

Exercice 11 (2013, ENSAM)
Étudier la convergence de l'intégrale
$$\int_0^{+\infty} \frac{\sin\left(x + \frac{1}{x}\right)}{\sqrt{x}} dx$$

Exercice 12 (OT 2006 — Petites mines, 429)

Calculer
$$\sum_{n=0}^{+\infty} \frac{(-\pi)^n}{(2n+1)!}$$
. Existence et calcul de $\int_0^{+\infty} \frac{e^t}{\operatorname{ch}^2(t)} dt$.

Exercice 13

Résoudre
$$y'' + y' + y = t^2 + e^t$$
.

Exercice 14 (2013/2015, ENSAM — élève)
Soit
$$f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$$
 et $F(x,y) = \int_{-x}^{y} f(2x+t)e^{x+t} dt$ pour $(x,y) \in \mathbb{R}^2$.

- 1) Montrer que F est bien définie et \mathscr{C}^2 sur \mathbb{R}^2 (on pourra effectuer un changement de variable).
- 2) Trouver une CNS sur f pour que F soit solution de l'EDP :

$$\frac{\partial^2 F}{\partial x^2} + 2\frac{\partial F}{\partial x} - 4\frac{\partial^2 F}{\partial y^2} + F = 1$$

3) En déduire f.

2