Exercices : Algèbre Linéaire

Exercice 1

Soit $E = \mathscr{C}^0([0,1],\mathbb{R})$ et $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction continue. Pour tout $f \in E$, on pose

$$\forall x \in [0,1]$$
 $T(f)(x) = \int_0^1 \varphi(x-t)f(t) dt$

Montrer que T est un endomorphisme de E.

Exercice 2

Soit $E = \mathscr{C}^{\infty}(I, \mathbb{R})$, où I est un intervalle de \mathbb{R} .

- 1) Montrer que la dérivation est un endomorphisme de E.
- 2) Soit $(a_0,\ldots,a_n)\in E^n$ des fonctions fixées. Montrer que l'application suivante est un endomorphisme

$$\forall y \in E$$
 $\varphi(y) = a_n y^{(n)} + \dots + a_1 y' + a_0 y$

3) En déduire que les solutions d'une équation différentielle linéaire $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$ forment un sous-espace vectoriel.

Exercice 3

Soit $E = \mathbb{R}[X]$. Montrer que u défini par u(P) = P' est un endomorphisme de E. Déterminer son noyau et son image. Mêmes questions avec $E = \mathbb{R}_n[X]$.

Exercice 4

Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Pour tout $\lambda \in \mathbb{K}$, on note $E_{\lambda}(f) = \operatorname{Ker}(\lambda \operatorname{id}_{E} - f)$. Montrer que

a)
$$g(\operatorname{Ker} f) \subset \operatorname{Ker} f$$

b)
$$\forall \lambda \in \mathbb{K}, \quad g(E_{\lambda}(f)) \subset E_{\lambda}(f)$$
 c) $g(\operatorname{Im} f) \subset \operatorname{Im} f$

c)
$$q(\operatorname{Im} f) \subset \operatorname{Im} f$$

Montrer aussi que $f(\text{Ker } g) \subset \text{Ker } g$, $f(E_{\lambda}(g)) \subset E_{\lambda}(g)$ et $f(\text{Im } g) \subset \text{Im } g$.

Remarque : Si F est un sous-espace vectoriel de E, on que F est stable par f lorsque $f(F) \subset F$. Nous venons de montrer la propriété classique suivante :

Si f et g commutent, alors les noyau, sous-espaces propres (E_{λ}) et image de l'un sont stables par l'autre.

Exercice 5

Soit E un K-espace vectoriel, et $(u, v) \in \mathcal{L}(E)^2$.

- 1) Montrer que Ker $u \subset \text{Ker } v \circ u$ puis que Ker $(v \circ u) = \text{Ker } u \iff \text{Ker } v \cap \text{Im } u = \{0\}$
- 2) Montrer que $\operatorname{Im}(v \circ u) \subset \operatorname{Im} v$ puis que $\operatorname{Im}(v \circ u) = \operatorname{Im} v \iff \operatorname{Ker} v + \operatorname{Im} u = E$
- 3) On suppose E de dimension finie. Montrer que les propositions suivantes sont équivalentes :

a) Ker
$$u = \text{Ker } u^2$$

b)
$$E = \operatorname{Ker} u \oplus \operatorname{Im} u$$

c) Im
$$u = \text{Im } u^2$$

On pourra procéder par double implications et doubles inclusions.

Exercice 6

Soit \mathscr{P} l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} , et \mathscr{I} l'ensemble des fonctions impaires.

1) Montrer que ce sont des sous-espaces vectoriels de $\mathscr{F}(\mathbb{R},\mathbb{R})$, et que

$$\mathscr{F}(\mathbb{R},\mathbb{R})=\mathscr{P}\oplus\mathscr{I}$$

2) Soit \mathscr{P}_0 l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} s'annulant en 0 et K l'ensemble des fonctions constantes. Montrer que \mathscr{P}_0 et K sont des sous-espaces vectoriels et que $\mathscr{F}(\mathbb{R},\mathbb{R})=K\oplus\mathscr{P}_0\oplus\mathscr{I}$

1

Exercice 7

Montrer que $E_1 = \{(a, a, a) | a \in \mathbb{R}\}$ et $E_2 = \{(x, y, z) | x + y + z = 0\}$ sont supplémentaires dans \mathbb{R}^3 .

Soit $P \in \mathbb{R}[X]$ non nul. Soit $n \in \mathbb{N}^*$ et, pour $k \in [0, n]$, $F_k = \text{Vect}(X^k P)$. Montrer que les F_k sont en somme directe dans $\mathbb{R}[X]$.

Exercices Algèbre Linéaire

Exercice 9

Montrer que les familles suivantes sont libres :

1)
$$((1,1,1,1),(0,1,2,0),(0,0,1,1))$$
 dans \mathbb{R}^4 .

2)
$$(A^k)_{0 \le k \le 2}$$
 où $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$
4) $\left(x \mapsto \frac{1}{x^2 + a} \right)_{a \in \mathbb{R}_+^*}$

3)
$$(f_a)_{a\in\mathbb{R}}$$
 où $\forall x\in\mathbb{R}, f_a(x)=e^{ax}$.

4)
$$\left(x \mapsto \frac{1}{x^2 + a}\right)_{a \in \mathbb{R}^*_{\perp}}$$

5) Soit
$$f \in \mathcal{L}(E)$$
, $x \in E$ et $n \ge 2/f^{n-1}(x) \ne 0$ et $f^n(x) = 0$. Montrer que $(x, f(x), \dots, f^{n-1}(x))$ libre.

Exercice 10

Résoudre les systèmes suivants :

1)
$$\begin{cases} 3x_1 - 2x_2 + x_3 - x_4 = 0 \\ 3x_1 - x_2 + 3x_3 = 0 \\ 2x_2 + 4x_3 + 3x_4 = 0 \end{cases}$$
2) $2x + 3y + z - t = 0$
3)
$$\begin{cases} x + y = 0 \\ z + t = 0 \end{cases}$$
4)
$$\begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = 3 \\ 6x_1 + 8x_2 + 2x_3 + 5x_4 = 7 \\ 9x_1 + 12x_2 + 3x_3 + 10x_4 = 13 \end{cases}$$

Exercice 11 (D'après Centrale-Supélec PC)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1) Soit f un endomorphisme de E vérifiant Ker f = Im f.
 - a) Montrer que n est pair et déterminer le rang de f en fonction de n.
 - **b)** Montrer que $f \circ f = 0$.
- 2) Soit f un endomorphisme de E vérifiant $f \circ f = 0$ et $n = 2 \operatorname{rg} f$.
 - a) Montrer que Im $f \subset \text{Ker } f$. En déduire que Ker f = Im f.
 - **b)** Montrer qu'il existe une base \mathscr{B} de E telle que $\operatorname{Mat}(f,\mathscr{B}) = \begin{pmatrix} 0 & 0 \\ I_p & 0 \end{pmatrix}$.

Exercice 12

Soit p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q + q \circ p = 0$. Donner un exemple.

Exercice 13 (centre de $\mathcal{L}(E)$ — PT 2009, A partie B)

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ qui commute avec tous les endomorphismes de E, c'est-à-dire

$$\forall g \in \mathscr{L}(E) \qquad f \circ g = g \circ f$$

- 1) Montrer qu'il existe un scalaire λ_u tel que $f(u) = \lambda_u u$. (<u>Indication</u>: utiliser le projecteur p_u sur Vect (u)parallèlement à H_u).
- 2) Soit $v \in E$, non nul et colinéaire au vecteur u. On note λ_v le scalaire tel que $f(v) = \lambda_v v$. Montrer que $\lambda_u = \lambda_v$.
- 3) Soit $v \in E$ non colinéaire au vecteur u. Montrer que $\lambda_u = \lambda_v$.
- 4) En déduire quels sont les endomorphismes de E qui commutent avec tous les endomorphismes de E.

Exercice 14 (Dual)

Soit E un \mathbb{K} -espace vectoriel.

- 1) Soit $\varphi \in \mathcal{L}(E,\mathbb{K})$ une forme linéaire non nulle. Montrer qu'il existe F, sous-espace vectoriel de dimension 1 de E, tel que $E = F \oplus \operatorname{Ker} \varphi$. (Ker φ est donc un hyperplan).
- 2) Soit $\varphi \in \mathcal{L}(E, \mathbb{K})$ et $\psi \in \mathcal{L}(E, \mathbb{K})$ tels que Ker $\varphi \subset \text{Ker } \psi$. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $\psi = \lambda \varphi$.

Exercices Algèbre Linéaire

Exercice 15 (interpolation de Lagrange)

Soit $n \ge 0$ et $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ deux à deux distincts.

- 1) Montrer que l'application $\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ définie par $\varphi(P) = (P(a_0), \dots, P(a_n))$ est linéaire. Déterminer son noyau et son image.
- **2)** En déduire que, pour tout $(b_0, \ldots, b_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme P tel que $P(a_i) = b_i \ \forall i$.
- 3) Déterminer explicitement les polynômes $L_i \in \mathbb{R}_n[X]$ tels que $L_i(a_j) = \delta_{i,j}$ pour tout $i, j \in [0, n]$.
- 4) Montrer que $(L_i)_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$. Déterminer les coordonnées d'un polynôme Q quelconque dans cette base.

Exercice 16

Soit $f \in \mathcal{L}(E, E')$ et H un supplémentaire de Ker f dans E.

- 1) Montrer que l'application $\tilde{f}: H \to f(E)$ définie par $\tilde{f}(x) = f(x)$ est un isomorphisme (<u>Indication</u>: on pourra commencer par montrer la linéarité, puis l'injectivité, et la surjectivité).
- 2) On suppose désormais E et E' de dimensions finies respectives p et n. Trouver des bases \mathscr{B} et \mathscr{B}' de E et E' pour que la matrice de f dans ces bases soit la plus simple possible.
- 3) (Chapitre suivant) Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang r. Indication: Utiliser les questions 1 et 2.
 - a) Montrer que $M = PJ_rQ$ avec P et Q des matrices inversibles et $J_r = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$.
 - b) Montrer que $M = P'I_rQ'$ avec $P' \in \mathcal{M}_{n,r}$ et $Q' \in \mathcal{M}_{r,n}$ deux matrices de rang maximal possible (que l'on précisera).

Exercice 17 (factorisation)

Soient E, F et G trois espaces vectoriels de dimension finie, $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(E,G)$. Le but de l'exercice est de montrer que

$$\operatorname{Ker}(u) \subset \operatorname{Ker}(v) \iff \exists w \in \mathcal{L}(F,G) \quad v = w \circ u$$

- 1) On suppose qu'il existe $w \in \mathcal{L}(F,G)$ telle que $v = w \circ u$. Montrer que $\mathrm{Ker}(u) \subset \mathrm{Ker}(v)$.
- **2)** On suppose $\operatorname{Ker}(u) \subset \operatorname{Ker}(v)$.

On s'appuie sur les résultats de l'exercice 16 : On note H un supplémentaire de Ker u dans E, et $\widetilde{u}: H \to \operatorname{Im} u$ l'isomorphisme obtenu en restreignant u. Notons $p_H \in \mathscr{L}(E)$ la projection sur H parallèlement à Ker u et $p_{\operatorname{Im} u} \in \mathscr{L}(F)$ une projection sur $\operatorname{Im} u$.

Construire w qui vérifie $v = w \circ u$.