Devoir de Mathématiques numéro 6

Exercice 1

On donne dans le plan deux droites \mathscr{D} et \mathscr{D}' et une constante a > 0. Construire l'ensemble des points M du plan tels que $d(M, \mathscr{D}) + d(M, \mathscr{D}') = a$.

Exercice 2

Déterminer le lieu des centres des cercles tangents à (Oy) et coupant (Ox) en A et B tels que AB = 2a. a > 0 donné.

Exercice 3

Un point M décrit le cercle de centre O et de rayon 1. Il se projette en P sur (Ox), en Q sur (Oy) et en N sur (PQ). Lieu de N.

Exercice 4

Dans l'espace euclidien rapporté au repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$, on considère les points A(0,0,1) et B(1,1,2). On désigne par Δ_1 la droite (AB) et

$$\Delta_2: y = z = 0$$
 $\Delta_3: \left\{ \begin{array}{l} x + y = 0 \\ y + z = -1 \end{array} \right.$ $\Delta_4: \left\{ \begin{array}{l} x - z = 2 \\ y - 2z = 1 \end{array} \right.$ $\Delta_5: x = y = z$

- 1) Donner une représentation paramétrique de Δ_1 .
- 2) On considère le point M_1 de Δ_1 d'abscisse a et le point M_2 de Δ_2 d'abscisse b. Donner une représentation paramétrique de la droite (M_1M_2) .
- 3) À quelle condition nécessaire et suffisante portant sur a et b la droite (M_1M_2) a-t-elle une intersection non vide avec Δ_3 ?
- 4) On suppose dans cette question que la droite (M_1M_2) a une intersection non vide avec Δ_3 . Donner une représentation paramétrique de (M_1M_2) , on veillera à ce que le paramètre a n'apparaisse plus.
- 5) Soit une droite Δ' qui rencontre les droites Δ_1 , Δ_2 et Δ_3 ; montrer qu'elle est incluse dans la surface \mathcal{Q} d'équation xz = y(y+1).
- 6) Vérifier que les droites Δ_4 et Δ_5 ne sont pas coplanaires.
- 7) Donner un système d'équations cartésiennes de la perpendiculaire commune aux droites Δ_4 et Δ_5 .
- 8) On désigne par S la surface de révolution engendrée par la rotation de la droite Δ_4 autour de la droite Δ_5 .
 - a) Donner une équation de la surface S. On écrira cette équation sous la forme $\varphi(x,y,z)=0$.
 - b) Les coordonnées $(x_{\Omega}, y_{\Omega}, z_{\Omega})$ du centre Ω de cette surface sont les solutions du système :

$$\begin{cases} \frac{\partial d}{\partial x}(x, y, z) = 0\\ \frac{\partial d}{\partial y}(x, y, z) = 0\\ \frac{\partial d}{\partial z}(x, y, z) = 0 \end{cases}$$

Déterminer les coordonnées de Ω .

c) Donner une équation réduite de la surface S dans le repère $(\Omega, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$.

DL 6

Exercice 5

Dans l'espace euclidien rapporté au repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on condidère la surface S_1 d'équation cartésienne

$$xy^2 + yz^2 + zx^2 + 2xyz + 5 = 0$$

la surface S_2 d'équation cartésienne 2x-3y+z=7 et le point M_0 de coordonnées (1,-1,2). On note Λ l'intersection de S_1 et S_2 .

- 1) Vérifier que $M_0 \in \Lambda$.
- 2) Déterminer une équation du plan tangent à S_1 en M_0 .
- 3) En déduire une représentation cartésienne, puis un vecteur directeur de la tangente à Λ en M_0 .
- 4) Déterminer des symétries de S_1 .