Devoir de Mathématiques numéro 4

Exercice 1

- 1) Cas des hyperplans : soit u un vecteur non nul de E et H l'hyperplan $(\text{Vect}\{u\})^{\perp}$. Exprimer pour $x \in E$, la distance d(x, H) en fonction de < x, u > et de ||u||.
- 2) On note H l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont la trace est nulle.
 - a) Justifier que H est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ et déterminer H^{\perp} .
 - b) Si M est une matrice de $\mathcal{M}_n(\mathbb{R})$, déterminer la distance d(M, H).

Exercice 2

Pour $\theta \in \mathbb{R}$, on pose $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

- 1) Montrer par un calcul que l'on a $\forall k \in \mathbb{N}, A_{\theta}^k = A_{k\theta}$. Interpréter géométriquement ce résultat.
- **2)** Soit $B \in \mathcal{M}_n(\mathbb{R})$, avec $n \in \mathbb{N}^*$. Montrer que pour tout $k \in \mathbb{N}$, $({}^tB)^k = {}^t(B^k)$.
- **3)** En déduire que $\forall k \in \mathbb{Z}, A_{\theta}^k = A_{k\theta}$.
- **4)** Soit $p \in \mathbb{N}^*$. Déterminer une matrice $M \in \mathscr{M}_2(\mathbb{R})$ telle que $M^p = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Exercice 3

Exercice 3
Déterminer la nature de l'endomorphisme u de \mathbb{R}^3 canoniquement associé à la matrice $M = \frac{1}{3} \begin{pmatrix} 2 & -2 & -1 \\ 1 & 2 & -2 \\ 2 & 1 & 2 \end{pmatrix}$

Exercice 4

Soit E un espace euclidien de dimension n et $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormale de E. Le produit scalaire est noté $\langle .,. \rangle$, et la norme $\|.\|$.

- 1) Soit X et Y les vecteurs colonnes des coordonnées de x et y de E dans la base \mathscr{B} . Rappeler l'expression de < x, y >à l'aide de X et Y.
- 2) Soit $f \in \mathcal{L}(E)$, de matrice A dans la base \mathcal{B} . On note f^* l'endomorphisme dont la matrice dans la base \mathscr{B} est tA .
 - a) Vérifier que l'on a $\forall (x,y) \in E^2, \langle f(x), y \rangle = \langle x, f^*(y) \rangle.$
 - b) Établir que f^* est l'unique endomorphisme de E vérifiant $\forall (x,y) \in E^2, \langle f(x), y \rangle = \langle x, f^*(y) \rangle$.
- 3) Soit p un projecteur orthogonal de E.
 - a) Montrer que, pour tout $(x,y) \in E^2$, $\langle p(x), y \rangle = \langle p(x), p(y) \rangle$.
 - **b)** En déduire que $p = p^*$.
- **4)** Soit *p* un projecteur.
 - a) Montrer que Im $p^* \subset (\operatorname{Ker} p)^{\perp}$.
 - b) Soit $y \in (\text{Ker } p)^{\perp}$. Montrer que, pour tout $x \in E, \langle x p(x), y \rangle = 0$. En déduire que $y = p^*(y)$ puis que $(\operatorname{Ker} p)^{\perp} \subset \operatorname{Im} p^*$.
 - c) Montrer que si $p = p^*$, alors p est un projecteur orthogonal.
- 5) Soit $f \in \mathcal{L}(E)$. Montrer que Ker $f^* = (\operatorname{Im} f)^{\perp}$. En déduire que f et f^* ont même rang.
- 6) On suppose désormais que $f \in \mathcal{L}(E)$ possède au moins une valeur propre λ réelle, et on se propose de démontrer qu'il existe un hyperplan E stable par f.
 - a) Montrer que λ est valeur propre de f^* .
 - b) On considère un vecteur propre u de f^* associé à la valeur propre λ . Montrer que (Vect u) $^{\perp}$ est un hyperplan de E et qu'il est stable par f.