Devoir de Mathématiques numéro 1

Exercice 1

A. Intégrales de Wallis

Pour tout entier naturel n, on pose $W_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

1) a) Montrer que, pour tout $n \ge 0$,

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t$$

(cette question est indépendante des suivantes).

- b) Calculer W_0 et W_1 et justifier que $W_n > 0$ pour tout $n \in \mathbb{N}$.
- c) A l'aide d'une intégration par parties, montrer que, pour tout entier $n \ge 2$,

$$nW_n = (n-1)W_{n-2}$$

- d) En déduire que la suite $(nW_nW_{n-1})_{n\geqslant 1}$ est constante de valeur $\frac{\pi}{2}$.
- 2) a) Montrer que la suite (W_n) est décroissante et que pour tout $n \ge 1$,

$$\frac{n-1}{n} \leqslant \frac{W_n}{W_{n-1}} \leqslant 1$$

b) En déduire un équivalent de W_n .

B. Formule de Stirling

On considère la suite $(u_n)_n$ définie, pour $n \ge 1$, par

$$u_n = \frac{n!e^n}{n^n \sqrt{n}}$$

et la suite auxiliaire $(v_n)_n$ définie, pour $n \ge 2$, par $v_n = \ln(u_n) - \ln(u_{n-1})$.

- 1) a) Simplifier $\frac{u_{n+1}}{u_n}$.
 - b) Exprimer simplement v_n en fonction de n.
 - c) Donner un développement limité à l'ordre 2 en $\frac{1}{n}$ de la suite $(v_n)_n$.
 - d) En déduire que la série $\sum v_n$ est convergente.
 - e) En déduire que les suites $(\ln u_n)_n$ et $(u_n)_n$ convergent et donc qu'il existe un réel K>0 tel que

$$n! \sim K \left(\frac{n}{e}\right)^n \sqrt{n}$$

- 2) a) En utilisant la question A1)c), montrer que $W_{2p} = \frac{(2p)!}{(2^p p!)^2} \frac{\pi}{2}$. En déduire W_{2p+1} en fonction de p.
 - b) Déterminer un équivalent simple de la suite $(W_{2p})_p$ à l'aide de l'équivalent de n! trouvé précédemment.
 - c) En déduire la valeur de K, et, par suite, un équivalent de n!.

DL 1

Exercice 2

Soit n un entier naturel non nul.

1) Soit $\theta \in [0, 2\pi[$. Déterminer, s'ils existent, module et argument du nombre complexe $u = 1 + e^{i\theta}$.

2) On note P_n le polynôme de $\mathbb{C}[X]$ défini par

$$P_n(X) = \frac{1}{2i} \left((X+i)^{2n+1} - (X-i)^{2n+1} \right)$$

a) Etude des cas n=1 et n=2

i) Déterminer les polynômes P_1 et P_2 .

ii) Vérifier que $P_1 \in \mathbb{R}_2[X]$ et que $P_2 \in \mathbb{R}_4[X]$. Sont-il irréductibles dans $\mathbb{R}[X]$?

b) Cas général

i) Montrer que $P_n \in \mathbb{C}_{2n}[X]$. Donner son degré et son coefficient dominant.

ii) Soit $N \in \mathbb{N}^*$. Donner l'expression des racines N-ièmes de l'unité.

iii) Calculer $P_n(i)$.

iv) Prouver par un argument géométrique que les racines de P_n sont réelles.

v) Soit $a \in \mathbb{C}$. prouver l'équivalence

$$a$$
 est racine de $P_n \iff \exists k \in [1, 2n], \ a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1)$

vi) Déterminer les racines du polynôme P_n . Vérifier alors le résultat de 2.b.iv.

vii) En développant P_n , déterminer un polynôme Q_n de degré n et à coefficients réels tel que

$$P_n(X) = Q_n(X^2)$$

On admettra l'unicité du polynôme Q_n ainsi obtenu.

viii) Expliciter Q_1 et Q_2 et déterminer leurs racines respectives.

ix) Déterminer les racines de Q_n en fonction de celles de P_n .

3) On pose $S_n = \sum_{k=1}^n \frac{1}{\tan^2\left(\frac{k\pi}{2n+1}\right)}$. En utilisant des résultats obtenus à la question précédente, montrer que $S_n = \frac{n(2n-1)}{3}$.

4) Illustrer graphiquement les inégalités suivantes que l'on admettra

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \ 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x)\right]$$

En déduire que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \ \frac{1}{\tan^2(x)} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2(x)}$$

5) Justifier la convergence de la série de terme général $\frac{1}{k^2}$ et calculer la somme $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

Exercice 3

Soit $(a_n)_{n\in\mathbb{N}}$ la suite réelle définie par : $a_n = \frac{1}{n} - \int_n^{n+1} \frac{\mathrm{d}t}{t}$.

On cherche à étudier la limite γ , appelée constante d'Euler, de la suite :

$$S_n = \sum_{p=1}^n a_p = \sum_{p=1}^n \frac{1}{p} - \int_1^{n+1} \frac{\mathrm{d}t}{t} = \sum_{p=1}^n \frac{1}{p} - \ln(n+1)$$

On s'intéresse également à la suite $(H_n)_{n\in\mathbb{N}^*}$ définie par $H_0=0$ et pour tout entier $n\geqslant 1,$ $H_n=\sum_{p=1}^n\frac{1}{p}.$

- 1) Soit $p \in \mathbb{N}^*$. Montrer que $0 \leqslant a_p \leqslant \frac{1}{p} \frac{1}{p+1}$.
- 2) En déduire que la suite (S_n) est majorée, puis qu'elle est convergente et que sa limite γ appartient à l'intervalle [0,1].
- 3) Vérifier que pour tout $p \in \mathbb{N}^*$ on a $a_p = \frac{1}{p} \int_0^1 \frac{t}{t+p} \, dt$, puis montrer que pour tout entier $p \geqslant 2$ on a :

$$\frac{1}{2}\left(\frac{1}{p} - \frac{1}{p+1}\right) \leqslant a_p \leqslant \frac{1}{2}\left(\frac{1}{p-1} - \frac{1}{p}\right)$$

4) En déduire un encadrement de $S_m - S_n$ pour m et n des entiers vérifiant $m > n \ge 1$. Puis montrer que pour tout entier $n \ge 1$ on a :

$$\frac{1}{2n+2} \leqslant \gamma - S_n \leqslant \frac{1}{2n}$$

5) Conclure qu'on a le développement asymptotique suivant pour la suite (H_n) :

$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

6) Pour tout $n \in \mathbb{N}^*$ on pose $T_n = S_n + \frac{1}{2n+2}$. Montrer que

$$0 \leqslant \gamma - T_n \leqslant \frac{1}{2n(n+1)}$$

7) Déterminer un entier $n \in \mathbb{N}^*$ pour lequel T_n est une valeur approchée de γ à 10^{-2} près. Donner un encadrement de γ à 10^{-2} près.