Épreuve de Mathématiques 7

Correction

Exercice 1 (E3A_{2n}MP B 2013) 1) a) Soit $u_n = \frac{x^2}{2n+1}$.

$$\forall x \neq 0,$$
 $\left| \frac{u_{n+1}}{u_n} \right| = \frac{x^2(2n+1)}{2n+3} \xrightarrow[n \to +\infty]{} x^2$

Donc, d'après le critère de D'Alembert,

• si $x^2 < 1$, la série $\sum u_n$ est absolument convergente donc convergente, • si $x^2 > 1$, la série $\sum |u_n|$ diverge grossièrement donc $\sum u_n$ diverge. Ainsi Le rayon de convergence de la série entière : $\sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}$ est R=1

b) Comme R = 1, a priori I =]-1, 1[.

De plus, pour $x \in \{-1,1\}$, $u_n = \frac{1}{2n+1} \sim \frac{1}{2n}$, qui est le terme général d'une série divergente d'après Riemann $(\alpha = 1) : S$ n'est définie ni en 1 ni en -1.

Donc |I| =]-1,1[

2)

a) Une série entière est \mathscr{C}^{∞} et dérivable terme à terme à l'intérieur de son disque de convergence. Donc la série entière $x \mapsto xS(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$ est dérivable sur I et

$$\forall x \in]-1,1[, \qquad \frac{\mathrm{d}}{\mathrm{d}x}(xS(x)) = \frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}\right) = \sum_{n=0}^{+\infty} x^{2n} = \sum_{n=0}^{+\infty} (x^2)^n = \boxed{\frac{1}{1-x^2}}$$

b) On décompose en éléments simples :

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \qquad \frac{1}{1 - x^2} = \frac{1}{(1 - x)(1 + x)} = \frac{1}{2} \left(\frac{1}{1 - x} + \frac{1}{1 + x} \right)$$

Donc $a = b = \frac{1}{2}$

Or d'après 2)a), $\forall x \in]-1,1[, \frac{d}{dx}(xS(x)) = \frac{1}{1-x^2}$

Donc, comme 1 - x > 0 et 1 + x > 0, et que xS(x) s'annule en 0,

$$xS(x) = \int_0^x \frac{1}{1-t^2} dt = \frac{1}{2} \int_0^x \frac{1}{1-t} + \frac{1}{1+t} dt = \frac{1}{2} \left(-\ln(1-x) + \ln(1+x) \right)$$

Conclusion:

$$\forall x \in I, \quad xS(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

3) a) Une série entière est continue à l'intérieur de son disque de convergence donc primitivable, de plus on peut intégrer terme à terme une série entière à l'intérieur de son disque de convergence. Si on note F la primitive de S s'annulant en 0,

$$\forall x \in]-1,1[\qquad F(x) = \int_0^x S(t) \, dt = \sum_{n=0}^{+\infty} \int_0^x \frac{t^{2n}}{2n+1} \, dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)^2}$$

De plus, en $x=1, \frac{1}{(2n+1)^2} \sim \frac{1}{4n^2}$, qui est le terme général d'une série convergente d'après Riemann ($\alpha=2>1$).

Donc la fonction F se prolonge par continuité en x=1 par $F(1)=\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\lim_{x\to 1}F(x)$. Ainsi,

$$\lim_{x \to 1} F(x) = \int_0^1 \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \sum_{n=0}^{+\infty} \int_0^1 \frac{x^{2n}}{2n+1} \, \mathrm{d}x$$

Théorème : si le rayon de convergence de $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ est un nombre réel R > 0, et si de plus la série $\sum a_n x^n$ converge pour x = R, la fonction S est prolongeable par continuité en x = R par $\lim_{R} S = S(R) = \sum a_n R^n$.

b) D'après la question précédente,

$$\int_0^1 S(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} \int_0^1 \frac{x^{2n}}{2n+1} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$$

De plus, d'après 2)b), pour tout $x \in]-1,1[, xS(x) = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)]$. Donc

$$\forall x \in]0,1[\qquad S(x) = \frac{1}{2x} \ln \left(\frac{1+x}{1-x} \right)$$

En remplaçant S par son expression dans l'intégrale sur]0,1[(impropre a priori) :

$$\int_0^1 \frac{1}{2x} \ln \left(\frac{1+x}{1-x} \right) dx = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$$

On a déjà montré la convergence de cette intégrale au 3)a), lorsque l'on dit que $\lim_{x\to 1} F(x)$ existe.

Exercice 2 (Centrale 1 TSI 2010)

1) a) À l'intérieur de son disque de convergence]-R,R[, la série entière y est \mathscr{C}^{∞} et dérivable terme à terme. On dérive puis on remplace dans (E_a) : pour tout $x \in]-R,R[$,

$$(x-a)y'' + 2y' = (x-a)\sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} + 2\sum_{n=1}^{+\infty} na_n x^{n-1}$$

$$= \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1} - \sum_{n=2}^{+\infty} an(n-1)a_n x^{n-2} + \sum_{n=1}^{+\infty} 2na_n x^{n-1}$$

$$= \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1} - \sum_{n=1}^{+\infty} a(n+1)na_{n+1} x^{n-1} + \sum_{n=1}^{+\infty} 2na_n x^{n-1}$$

$$= -2aa_2 + 2a_1 + \sum_{n=2}^{+\infty} \left[n(n-1)a_n - a(n+1)na_{n+1} + 2na_n \right] x^{n-1}$$

Par unicité du développement en série entière, il vient donc

$$\begin{cases}
-2aa_2 + 2a_1 &= 0 \\
\forall n \geqslant 2 & n(n-1)a_n - a(n+1)na_{n+1} + 2na_n &= 0
\end{cases}$$

pour tout
$$x \in]-R, R[, y(x) = a_0 + a_1 \sum_{n=1}^{+\infty} \frac{x^n}{a^{n-1}} = a_0 - a_1 a + a_1 a \sum_{n=0}^{+\infty} \left(\frac{x}{a}\right)^n.$$

On reconnaît la somme de la série géométrique :

$$\forall x \in]-R, R[$$
 $y(x) = a_0 - a_1 a + \frac{a_1 a}{1 - x/a}$

On a donc nécessairement |x/a| < 1, donc $R \le a$.

- b) Les fonction $y(x) = a_0 a_1 a + \frac{a_1 a}{1 x/a}$ sont développables en série entière sur] a, a[(car |x/a| < 1), et solutions de (E_a) d'après la question précédentes.
- c) L'ensemble de ces fonctions peut s'écrire $\mathscr{S}_{]-a,a[}=\mathrm{Vect}\,(f_1,f_2)$ avec, pour tout $x\in]-a,a[,f_1(x)=1$ et $f_2(x)=-a+\frac{a}{1-x/a}$.

C'est donc un sous-espace vectoriel de l'ensemble des fonctions définies sur]-a,a[. De plus la famille (f_1,f_2) est libre $(f_2$ n'est pas constante, donc pas colinéaire à f_1).

En conclusion, $\mathscr{S}_{]-a,a[}$ est un espace vectoriel de dimension 2 de base (f_1,f_2) .

De plus, (E_a) est une équation différentielle linéaire d'ordre 2 dont les coefficients sont des fonctions continues, donc l'ensemble des solutions est un espace vectoriel de dimension 2 sur chacun des intervalles $]-\infty,a[$ et $]a,+\infty[$ où le coefficient devant y'' est non nul. Ainsi,

L'ensemble des solutions de (E_a) sur]-a,a[est $\mathscr{S}_{]-a,a[}.$

2) Les fonctions f(x) = 1 et $g(x) = \frac{1}{x-a}$ sont solutions de (E_a) (calcul de vérification), donc, de même qu'au a)iii) sur chacun des intervalles, $\mathscr{S}_{]-\infty,a[} = \mathrm{Vect}\,(f_{]]-\infty,a[},g_{]]-\infty,a[})$ et $\mathscr{S}_{]a,+\infty[} = \mathrm{Vect}\,(f_{]]a,+\infty[},g_{]]a,+\infty[})$. Pour obtenir les solutions sur \mathbb{R} , il reste à recoller ces solutions. Or g n'a pas de limite en a, donc les solutions seront forcément de la forme $\lambda_1 f$ sur $]-\infty,a[$ et $\lambda_2 f$ sur $]a,+\infty[$. Pour que la fonction obtenue soit continue, il faut que $\lambda_1 = \lambda_2$, et dans ce cas on trouve une fonction constante, qui est bien \mathscr{C}^2 .

Finalement, Les solutions de (E_a) sur \mathbb{R} sont les fonctions constantes.

Exercice 3 (TPC 2013)

Partie 1 (Préliminaires et cas où $\alpha > 1$)

- 1) D'après le critère de Riemann, La série $\sum_{n\geqslant 1}\frac{1}{n^{\beta}}$ converge si et seulement si $\beta>1$.
- 2) La série $\sum u_n$ converge absolument si et seulement si la série $\sum |u_n|$ converge.
- 3) Soit $n \in \mathbb{N}$. Par décalage des indices, il vient

$$\sum_{k=0}^{n} a_{k+1} - a_k = \sum_{k=1}^{n+1} a_k - \sum_{k=0}^{n} a_k = a_{n+1} - a_0$$

Donc $\lim_{n\to+\infty}\sum_{k=0}^n a_{k+1}-a_k$ existe et est finie si et seulement si il en est de même pour $\lim_{n\to+\infty}a_{n+1}-a_0$.

Conclusion : La série $\sum (a_{n+1} - a_n)$ converge, si et seulement si la suite $(a_n)_{n \in \mathbb{N}}$ converge.

4) Pour tout $n \ge 1$, comme $|\sin| \le 1$,

$$\left| \frac{\sin(\pi \sqrt{n})}{n^{\alpha}} \right| \leqslant \frac{1}{n^{\alpha}}$$

7

Or $\alpha > 1$ donc $\sum \frac{1}{n^{\alpha}}$ converge (Critère de Riemann, question 1).

Donc par majoration, $\sum \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ est absolument convergente donc convergente.

Ainsi : La série $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ est convergente.

Partie 2 (Cas où $\frac{1}{2} < \alpha \leqslant 1$)

1) a) φ est continue par morceaux sur $[1, +\infty[$, donc on peut l'intégrer sur [1, x] pour tout $x \ge 1$. Sur $[1, x] \subset]0, +\infty[$, on peut effectuer le changement de variable proposé, qui est un \mathscr{C}^1 -difféomorphisme. $y = \sqrt{t}$ donc $\mathrm{d}y = \frac{1}{2\sqrt{t}}\,\mathrm{d}t$, et $\begin{cases} t = 1 \\ t = x \end{cases}$ correspond à $\begin{cases} y = 1 \\ y = \sqrt{x} \end{cases}$. Donc

$$\int_{1}^{x} \varphi(t) dt = \int_{1}^{x} \frac{2\sin(\pi\sqrt{t})}{2\sqrt{t}(\sqrt{t})^{2\alpha - 1}} dt = 2\int_{1}^{\sqrt{x}} \frac{\sin(\pi y)}{y^{2\alpha - 1}} dy$$

b) En effectuant une intégration par partie,

$$\int_{1}^{\sqrt{x}} \frac{\sin(\pi y)}{y^{2\alpha - 1}} \, \mathrm{d}y = \left[\frac{-\cos(\pi y)}{\pi y^{2\alpha - 1}} \right]_{1}^{\sqrt{x}} - \int_{1}^{\sqrt{x}} \frac{2\alpha - 1}{\pi} \frac{\cos(\pi y)}{y^{2\alpha}} \, \mathrm{d}y$$

Conclusion:

$$\int_{1}^{x} \varphi(t) dt = 2\left(-\frac{\cos(\pi\sqrt{x})}{\pi\sqrt{x}^{2\alpha-1}} - \frac{1}{\pi}\right) - \frac{2(2\alpha - 1)}{\pi} \int_{1}^{\sqrt{x}} \frac{\cos(\pi y)}{y^{2\alpha}} dy$$

c) (On procède comme au 4) de la partie 1)

Pour tout $n \ge 1$, comme $|\cos| \le 1$,

$$\left| \frac{\cos(\pi y)}{y^{2\alpha}} \right| \leqslant \frac{1}{y^{2\alpha}}$$

Or $\alpha > 1/2$ donc $2\alpha > 1$, par conséquent (Riemann), $\int_1^{+\infty} \frac{1}{y^{2\alpha}} \, \mathrm{d}y$ converge.

Donc, par majoration, $\int_1^{+\infty} \frac{\cos(\pi y)}{y^{2\alpha}} dy$ est absolument convergente donc convergente.

d) D'après ci-dessus, $\lim_{x \to +\infty} \int_1^{\sqrt{x}} \frac{\cos(\pi y)}{y^{2\alpha}} dy = \lim_{t \to +\infty} \int_1^t \frac{\cos(\pi y)}{y^{2\alpha}} dy$ existe (et vaut $\int_1^{+\infty} \frac{\cos(\pi y)}{y^{2\alpha}} dy$). De plus, pour tout $x \ge 1$,

$$\left| -\frac{\cos(\pi\sqrt{x})}{\pi\sqrt{x}^{2\alpha - 1}} \right| = \frac{|\cos(\pi\sqrt{x})|}{\pi x^{\alpha - 1/2}} \leqslant \frac{1}{\pi x^{\alpha - 1/2}} \xrightarrow[x \to +\infty]{} 0$$

Donc en conclusion:

$$\int_{1}^{x} \varphi(t) dt = 2\left(\underbrace{-\frac{\cos(\pi\sqrt{x})}{\pi\sqrt{x}^{2\alpha-1}}}_{x \to +\infty} - \frac{1}{\pi}\right) - \frac{2(2\alpha - 1)}{\pi} \underbrace{\int_{1}^{\sqrt{x}} \frac{\cos(\pi y)}{y^{2\alpha}} dy}_{\text{converge}}$$

L'intégrale
$$\int_1^{+\infty} \varphi(t) \, \mathrm{d}t$$
 est convergente.

- 2) Étude de la dérivée de la fonction φ .
 - a) La fonction $t \mapsto t^{\alpha}$ est \mathscr{C}^1 et ne s'annule pas sur \mathbb{R}^* , et la fonction $t \mapsto \sqrt{t}$ de même. Donc comme composée de fonctions \mathscr{C}^1 , La fonction φ est de classe C^1 sur $[1, +\infty[$.

$$\forall t \in [1, +\infty[\qquad \varphi'(t) = \frac{\frac{\pi}{2\sqrt{t}}\cos(\pi\sqrt{t})}{t^{\alpha}} - \frac{\alpha\sin(\pi\sqrt{t})}{t^{\alpha+1}} = \boxed{\frac{\frac{\pi}{2}\cos(\pi\sqrt{t}) - \alpha\frac{\sin(\pi\sqrt{t})}{\sqrt{t}}}{t^{\alpha+\frac{1}{2}}}}$$

7

- **b)** i) Comme, pour $u \ge 1$, $\left| \frac{\sin(\pi u)}{u} \right| \le \frac{1}{u} \le 1$, il vient $\left[\lim_{u \to +\infty} \frac{\sin(\pi u)}{u} = 0 \right]$ et La fonction $u \mapsto \frac{\sin(\pi u)}{u}$ est bornée (par 1) sur $[1, +\infty[$.
 - ii) D'après 2(b)i ci-dessus, pour $u = \sqrt{t}$, $\left| \frac{\sin(\pi \sqrt{t})}{\sqrt{t}} \right| \le 1$. De plus $|\cos| \le 1$. Donc

$$\forall t \in [1, +\infty[, \qquad |\varphi'(t)| \leqslant \frac{\frac{\pi}{2} + \alpha}{t^{\alpha + \frac{1}{2}}}]$$

c) La fonction φ est \mathscr{C}^1 sur $[1, +\infty[$ donc \mathscr{C}^1 sur [a, b]. Le théorème des accroissements finis s'écrit :

$$\exists c \in]a, b[\qquad |\varphi(a) - \varphi(b)| \leq |\varphi'(c)|(b - a)$$

Or d'après ci-dessus $|\varphi'(c)| \leq \frac{K}{c^{\alpha + \frac{1}{2}}}$. Comme $u \mapsto \frac{1}{u^{\beta}}$ est décroissante pour $\beta = \alpha + \frac{1}{2} > 0$,

$$|\varphi'(c)| \leqslant \frac{K}{c^{\alpha + \frac{1}{2}}} \leqslant \frac{K}{a^{\alpha + \frac{1}{2}}}$$

Finalement:

$$|\varphi(a) - \varphi(b)| \leqslant \frac{K}{a^{\alpha + \frac{1}{2}}} |a - b|$$

- 3) Nature de la série $\sum v_n$.
 - a) D'après la relation de Chasles, pour tout $n \in \mathbb{N}^*$,

$$V_N = \sum_{n=1}^N v_n = \int_1^{N+1} \varphi(t) \, \mathrm{d}t$$

- b) D'après 1)d), l'intégrale $\int_1^{+\infty} \varphi(t) dt$ converge. Donc $\lim_{N \to +\infty} \int_1^{N+1} \varphi(t) dt$ existe. Ainsi, La série $\sum_{n \geqslant 1} v_n$ converge
- **4)** Nature de la série $\sum (u_n v_n)$.
 - a) Soit $n \in \mathbb{N}^*$. Comme $\varphi(n) = \int_n^{n+1} \varphi(n) dt$,

$$u_n - v_n = \int_n^{n+1} (\varphi(n) - \varphi(t)) dt$$

b) Soit
$$n \in \mathbb{N}^*$$
. D'après 4a, $|u_n - v_n| \leqslant \int_n^{n+1} |\varphi(n) - \varphi(t)| \, \mathrm{d}t$. De plus, d'après 2c, pour tout $t > n$, $|\varphi(n) - \varphi(t)| \leqslant \frac{K}{n^{\alpha + \frac{1}{2}}}$. Donc en majorant dans l'intégrale,

$$|u_n - v_n| \leqslant \int_n^{n+1} |\varphi(n) - \varphi(t)| \, \mathrm{d}t \leqslant \int_n^{n+1} \frac{K}{n^{\alpha + \frac{1}{2}}} \, \mathrm{d}t = \frac{K}{n^{\alpha + \frac{1}{2}}}$$

Conclusion:
$$|u_n - v_n| \leqslant \frac{K}{n^{\alpha + \frac{1}{2}}}$$

c) Comme $\alpha > \frac{1}{2}$, $\alpha + \frac{1}{2} > 1$ donc d'après Riemann $\sum \frac{1}{n^{\alpha + \frac{1}{2}}}$ converge.

Donc par majoration, d'après 4)b), $\sum (u_n - v_n)$ converge absolument.

Ainsi,
$$\sum_{n\geqslant 1} (u_n - v_n)$$
 converge

5) D'après 4)c) $\sum (u_n - v_n)$ converge, et d'après 3)b) $\sum v_n$ converge. Donc, comme somme de série convergente, $\sum u_n$ converge

Partie 3 (Cas
$$\alpha = \frac{1}{2}$$
)

1) a) • $\sqrt{1+u} = (1+u)^{1/2} = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + o(u^2)$.

• $e^u = 1 + u + \frac{u^2}{2} + o(u^2)$

b) En factorisant partout :
$$\delta_n = e^{i\pi\sqrt{n+1}} - e^{i\pi\sqrt{n}} = e^{i\pi\sqrt{n}} \left(e^{i\pi\sqrt{n}\left(\sqrt{1+\frac{1}{n}}-1\right)} - 1 \right)$$

Or $\sqrt{1+\frac{1}{n}}-1 = \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$, donc

$$\begin{split} \delta_n &= e^{i\pi\sqrt{n}} \left(e^{i\pi \left(\frac{1}{2\sqrt{n}} - \frac{1}{8n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)\right)} - 1 \right) \\ &= e^{i\pi\sqrt{n}} \left(i\pi \left(\frac{1}{2\sqrt{n}} - \frac{1}{8n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)\right) - \frac{\pi^2}{2} \left(\frac{1}{2\sqrt{n}} - \frac{1}{8n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)\right)^2 - \frac{i\pi^3}{3} \left(\frac{1}{2\sqrt{n}}\right)^3 \right) \\ &= e^{i\pi\sqrt{n}} \left(\frac{i\pi}{2\sqrt{n}} - \frac{i\pi}{8n^{3/2}} - \frac{\pi^2}{8n} - \frac{i\pi^{3/3}}{8n^{3/2}} \right) + o\left(\frac{1}{n^{3/2}}\right) \qquad (\operatorname{car} \left| e^{i\pi\sqrt{n}} \right| = 1) \\ &= e^{i\pi\sqrt{n}} \left(\frac{i\pi}{2\sqrt{n}} - \frac{\pi^2}{8n} - \frac{i(\pi + \pi^3/3)}{8n^{3/2}} \right) + o\left(\frac{1}{n^{3/2}}\right) \\ &= \frac{i\pi e^{i\pi\sqrt{n}}}{2\sqrt{n}} - \frac{\pi^2 e^{i\pi\sqrt{n}}}{8n} - \frac{i\left(\pi + \frac{\pi^3}{3}\right) e^{i\pi\sqrt{n}}}{8n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right) \end{split}$$

ouf! On remarque qu'il y avait une erreur d'énoncé (telle qu'elle dans le sujet).

c) Comme $ie^{i\theta} = i\cos(\theta) - \sin(\theta)$, en passant aux parties réelles il vient

$$\cos(\pi\sqrt{n+1}) - \cos(\pi\sqrt{n}) = \frac{-\pi\sin(\pi\sqrt{n})}{2\sqrt{n}} - \frac{\pi^2\cos(\pi\sqrt{n})}{8n} + \frac{\left(\pi + \frac{\pi^3}{3}\right)\sin(\pi\sqrt{n})}{8n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$$

En conclusion (là aussi l'erreur d'énoncé se répercutait) :

$$\frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = -\frac{2}{\pi} \left(\cos(\pi\sqrt{n+1}) - \cos(\pi\sqrt{n}) \right) - \frac{\pi}{4n} \cos(\pi\sqrt{n}) + \left(1 + \frac{\pi^2}{3} \right) \frac{\sin(\pi\sqrt{n})}{4n^{3/2}} + o\left(\frac{1}{n^{3/2}} \right) \right)$$

2) a) $\forall n \in \mathbb{N}^*, \frac{|\sin(\pi\sqrt{n})|}{n^{3/2}} \leqslant \frac{1}{n^{3/2}}$ qui est le terme général d'une série convergente (Riemann, 3/2 > 1), donc, par majoration, La série $\sum \frac{\sin(\pi\sqrt{n})}{n^{3/2}}$ converge absolument donc converge.

Par définition du petit o, $\lim_{n\to 0} n^{3/2} w_n = 0$ donc par définition de la limite, (pour $\varepsilon = 1$)

$$\exists n_0 \in \mathbb{N}^* \quad \forall n \geqslant n_0 \qquad |n^{3/2} w_n| \leqslant 1$$

Ainsi, à partir d'un certain rang n_0 , $|w_n| \leq \frac{1}{n^{3/2}}$.

Donc, par majoration, La série $\sum w_n$ converge absolument donc converge.

b) Pour tout $n \in \mathbb{N}^*$, $\beta_n = \cos(2n\pi) = 1$ et $\gamma_n = \cos((2n+1)\pi) = 1$ Donc $\lim_{n \to +\infty} \beta_n = 1$ et $\lim_{n \to +\infty} \gamma_n = -1$.

Or si (α_n) converge vers une limite ℓ , toutes les suites extraites de (α_n) convergent vers ℓ .

Conclusion: La suite $(\alpha_n)_{n\in\mathbb{N}^*} = (\cos(\pi\sqrt{n}))_{n\in\mathbb{N}^*}$ est divergente

c) Si $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$ convergeait, alors $(\cos(\pi\sqrt{n+1}) - \cos(\pi\sqrt{n}))_n$ serait une combinaison linéaire de séries convergentes, et donc une série convergente.

Donc en particulier $\lim_{n\to +\infty} (\cos(\pi\sqrt{n+1}) - \cos(\pi\sqrt{n})) = 0$. Or

 (α_n) ci-dessus Or $\sum \alpha_n$ diverge.

Donc, par l'absurde, $\sum_{n\geq 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$ est une série divergente.

Partie 4 (Cas
$$\alpha < \frac{1}{2}$$
)
1) Pour tout $n \in \mathbb{N}^*$, $S_n - S_{n-1} = \sum_{p=1}^n \frac{\sin(\pi \sqrt{p})}{p^{\alpha}} - \sum_{p=1}^{n-1} \frac{\sin(\pi \sqrt{p})}{p^{\alpha}} = \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$

Donc

$$\forall n \in \mathbb{N}^*, \qquad n^{\alpha - 1/2} (S_n - S_{n-1}) = \frac{\sin(\pi \sqrt{n})}{\sqrt{n}}$$

En sommant cette égalité pour $1 \le n \le N$, on obtient presque une série télescopique :

$$\sum_{n=1}^{N} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = \sum_{n=1}^{N} n^{\alpha-1/2} (S_n - S_{n-1})$$

$$= \sum_{n=1}^{N} n^{\alpha-1/2} S_n - \sum_{n=1}^{N-1} (n+1)^{\alpha-1/2} S_n \qquad (Car S_0 = 0, somme vide)$$

$$= N^{\alpha-1/2} S_N + \sum_{n=1}^{N-1} \left(n^{\alpha-1/2} - (n+1)^{\alpha-1/2} \right) S_n$$

$$\sum_{n=1}^{N} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = \left[\sum_{n=1}^{N} S_n \left(n^{\alpha-1/2} - (n+1)^{\alpha-1/2} \right) + S_N (N+1)^{\alpha-1/2} \right]$$

a) Par hypothèse, la série $\sum \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ converge, donc la suite (S_n) de ses sommes partielle est bornée, en tant que suite convergente.

Conclusion: Il existe M > 0, tel que pour tout $n \in \mathbb{N}^*$, $|S_n| \leq M$.

b) Remarquons, au préalable, que $n^{\alpha-1/2} > (n+1)^{\alpha-1/2}$ (car $\alpha < \frac{1}{2}$ dans cette partie). Ainsi, d'après ci-dessus, $\left|S_n\left(n^{\alpha-1/2}-(n+1)^{\alpha-1/2}\right)\right| \le M\left(n^{\alpha-1/2}-(n+1)^{\alpha-1/2}\right)$ Or $\sum_{n=1}^N n^{\alpha-1/2}-(n+1)^{\alpha-1/2}=1-(N+1)^{\alpha-1/2}$ (série télescopique) converge $(\alpha-1/2<0)$. Donc, par majoration, La série $\sum S_n\left(n^{\alpha-1/2}-(n+1)^{\alpha-1/2}\right)$ converge absolument donc converge.

7

- c) (S_N) est convergente par hypothèse et $\lim_{n\to+\infty} (N+1)^{\alpha-1/2} = 0$ (car $\alpha-1/2<0$), donc le produit converge vers 0:

 La suite $\left(S_N(N+1)^{\alpha-1/2}\right)_{N\in\mathbb{N}^*}$ converge vers 0
- 3) D'après 1), la suite $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$ des sommes partielle est la somme d'une série convergente (2)b)) et d'une suite convergente (2)c)), donc converge.

 Ainsi, La série $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$ est convergente.
- 4) D'après le résultat de la question 2)c) de la partie 3, la série $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$ est divergente. Donc c'est absurde : l'hypothèse faite en début de partie 4 est fausse. Conclusion : La série $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ diverge

FIN DE L'ÉPREUVE