Épreuve de Mathématiques 7

Correction

Exercice 1 (Centrale TSI 2010 — partiel)

1) À l'intérieur de son disque de convergence]-R,R[, la série entière y est \mathscr{C}^{∞} et dérivable terme à terme. On dérive puis on remplace dans (E_a) : pour tout $x \in]-R,R[$,

$$(x-a)y'' + 2y' = (x-a)\sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} + 2\sum_{n=1}^{+\infty} na_n x^{n-1}$$

$$= \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1} - \sum_{n=2}^{+\infty} an(n-1)a_n x^{n-2} + \sum_{n=1}^{+\infty} 2na_n x^{n-1}$$

$$= \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1} - \sum_{n=1}^{+\infty} a(n+1)na_{n+1} x^{n-1} + \sum_{n=1}^{+\infty} 2na_n x^{n-1}$$

$$= -2aa_2 + 2a_1 + \sum_{n=2}^{+\infty} \left[n(n-1)a_n - a(n+1)na_{n+1} + 2na_n \right] x^{n-1}$$

Par unicité du développement en série entière, il vient donc

$$\begin{cases}
-2aa_2 + 2a_1 &= 0 \\
\forall n \geqslant 2 & n(n-1)a_n - a(n+1)na_{n+1} + 2na_n &= 0
\end{cases}$$

pour tout
$$x \in]-R, R[, y(x) = a_0 + a_1 \sum_{n=1}^{+\infty} \frac{x^n}{a^{n-1}} = a_0 - a_1 a + a_1 a \sum_{n=0}^{+\infty} \left(\frac{x}{a}\right)^n.$$

On reconnaît la somme de la série géométrique :

$$\forall x \in]-R, R[$$
 $y(x) = a_0 - a_1 a + \frac{a_1 a}{1 - x/a}$

On a donc nécessairement |x/a| < 1, donc $R \leq a$.

- 2) Les fonction $y(x) = a_0 a_1 a + \frac{a_1 a}{1 x/a}$ sont développables en série entière sur] a, a[(car |x/a| < 1), et solutions de (E_a) d'après la question précédentes.
- 3) L'ensemble de ces fonctions peut s'écrire $\mathscr{S}_{]-a,a[}=\mathrm{Vect}\,(f_1,f_2)$ avec, pour tout $x\in]-a,a[,f_1(x)=1]$ et $f_2(x)=-a+\frac{a}{1-x/a}$.

C'est donc un sous-espace vectoriel de l'ensemble des fonctions définies sur]-a,a[. De plus la famille (f_1,f_2) est libre $(f_2$ n'est pas constante, donc pas colinéaire à f_1).

En conclusion, $\mathscr{S}_{]-a,a[}$ est un espace vectoriel de dimension 2 de base (f_1,f_2) .

De plus, (E_a) est une équation différentielle linéaire d'ordre 2 dont les coefficients sont des fonctions continues, donc l'ensemble des solutions est un espace vectoriel de dimension 2 sur chacun des intervalles $]-\infty, a[$ et $]a, +\infty[$ où le coefficient devant y'' est non nul.

Ainsi, l'ensemble des solutions de (E_a) sur]-a,a[est $\mathscr{S}_{]-a,a[}.$

Exercice 2 (PT C 2011)

Préliminaires (toute cette partie est une question de cours...)

1) Soit k entier naturel tel que $k \ge n_0+1$. f étant décroissante, $\begin{cases} \forall t \in [k, k+1] & f(k+1) \le f(t) \le f(k) \\ \forall t \in [k-1, k] & f(k) \le f(t) \le f(k-1) \end{cases}$. D'où:

$$\int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant \int_{k}^{k+1} f(k) \, \mathrm{d}t = f(k) = \int_{k-1}^{k} f(k) \, \mathrm{d}t \leqslant \int_{k-1}^{k} f(t) \, \mathrm{d}t$$

2) Soit $n \ge n_0 + 1$.

$$\forall n \geqslant n_0 + 1, \int_{n_0 + 1}^{n + 1} f(t) dt = \sum_{k = n_0 + 1}^{n} \int_{k}^{k + 1} f(t) dt \leqslant \sum_{k = n_0 + 1}^{n} f(k) \leqslant \sum_{k = n_0 + 1}^{n} \int_{k - 1}^{k} f(t) dt = \int_{n_0}^{n} f(t) dt$$

On remarque (et il est nécessaire de le remarquer, pour la question 1.2.c) que l'inégalité de gauche peut être décalée de $1: \forall n \geqslant n_0$ $\int_{n_0}^n f(t) \, \mathrm{d}t \leqslant \sum_{k=n_0}^{n-1} f(k)$

3) Rappelons des résultats du cours :

La série $\sum_{n\geqslant n_0} f(n)$ est une série positive. Elle converge si et seulement si la suite de ses sommes partielles définies par :

$$\forall n \geqslant n_0, \ U_n = \sum_{k=n_0}^n f(k)$$

est majorée et dans ce cas la somme de la série est : $U = \sum_{n=n_0}^{+\infty} f(n) = \lim_{n \to +\infty} U_n$.

L'intégrale généralisée $\int_{n_0}^{+\infty} f(t) dt$ de la fonction positive f est convergente si et seulement si la fonction F définie par :

$$\forall x \geqslant n_0, F(x) = \int_{n_0}^x f(t) dt$$

est majorée et dans ce cas : $\int_{n_0}^{+\infty} f(t) dt = \lim_{x \to +\infty} F(x).$

On va montrer que la série $\sum_{n\geqslant n_0}f(n)$ converge si et seulement si l'intégrale généralisée $\int_{n_0}^{+\infty}f(t)\,\mathrm{d}t$ converge.

• Supposons que l'intégrale généralisée converge. Comme dans ce cas : $\int_{n_0}^{+\infty} f(t) dt = \sup_{x \geqslant n_0} F(x)$, la deuxième inégalité du b donne :

$$\forall n \ge n_0, \, S_n = \sum_{k=n_0}^n f(k) = \sum_{k=n_0+1}^n f(k) + f(n_0) \le \int_{n_0}^{+\infty} f(t) \, dt + f(n_0)$$

La série positive converge puisque la suite de ses sommes partielles est majorée.

• Supposons que la série converge. La première inégalité du b donne alors pour tout $n \ge n_0 + 1$: $\int_{n_0+1}^{n+1} f(t) \, \mathrm{d}t \le \sum_{k=n_0+1}^{+\infty} f(k). \text{ D'où :}$

$$\forall n \geqslant n_0 + 1, \ F(n+1) = \int_{n_0}^{n+1} f(t) \, \mathrm{d}t = \int_{n_0}^{n_0 + 1} f(t) \, \mathrm{d}t + \int_{n_0 + 1}^{n+1} f(t) \, \mathrm{d}t \leqslant \int_{n_0}^{n_0 + 1} f(t) \, \mathrm{d}t + \sum_{k = n_0 + 1}^{+\infty} f(k) \, \mathrm{d}t$$

Quel que soit $x \ge n_0$, soit [x] la partie entière de x définie comme l'entier vérifiant $[x] \le x < [x] + 1$. Alors , comme F est croissante, car f est positive :

$$\forall x \ge n_0, \ F(x) \le F([x] + 1) \le \int_{n_0}^{n_0 + 1} f(t) \, dt + \sum_{k = n_0 + 1}^{+\infty} f(k)$$

Et, comme F est majorée, l'intégrale généralisée $\int_{n_0}^{+\infty} f(t) dt$ converge.

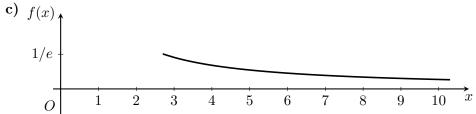
On a bien montré la série $\sum_{n \ge n_0} f(n)$ converge si et seulement si l'intégrale généralisée $\int_{n_0}^{+\infty} f(t) dt$ converge, et en cas de convergence, en passant à la limite pour $n \to +\infty$ dans l'inégalité du 2:

$$\int_{n_0+1}^{+\infty} f(t) \, dt \le \sum_{k=n_0+1}^{+\infty} f(k) \le \int_{n_0}^{+\infty} f(t) \, dt$$

Partie 1

1) a) La fonction f définie sur $[e, +\infty[$ par $f(t) = \frac{1}{t(\ln t)^2}$ est C^{∞} sur $[e, +\infty[$, car quotient de fonctions C^{∞} sur $[e, +\infty[$, le dénominateur ne s'annulant pas.

$$\forall t \geqslant e, \qquad \boxed{f'(t) = -\frac{\ln(t) + 2}{t^2(\ln t)^3}}$$



d) La fonction f est de la forme $u'u^{-2}$ avec $u = \ln$, donc

$$\forall x \geqslant e, \qquad F(t) = -\frac{1}{\ln t}$$

est une primitive de f sur $[e, +\infty[$.

$$\int_{e}^{A} \frac{dt}{t(\ln t)^{2}} = [F(t)]_{e}^{A} = -\frac{1}{\ln A} + \frac{1}{1} \xrightarrow[A \to +\infty]{} 1, \text{ ainsi}$$

L'intégrale
$$\int_e^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^2}$$
 converge.

e) La convergence de $\int_e^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^2}$ entraı̂ne la convergence de $\int_3^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^2}$. La fonction f est continue, positive et décroissante sur $[3,+\infty[$. Ainsi, d'après le 3) des préliminaires, la convergence de l'intégrale $\int_3^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^2}$ entraı̂ne celle de la série $\left(\sum_{n\geqslant 3} \frac{1}{n(\ln n)^2}\right)$, donc celle de la série $\left(\sum_{n\geqslant 2} \frac{1}{n(\ln n)^2}\right)$:

La série
$$\left(\sum_{n\geqslant 2}\frac{1}{n(\ln n)^2}\right)$$
 converge.

2) Posons $f(t) = \frac{\ln t}{t}$ et $F(t) = \frac{1}{2}(\ln t)^2$ une primitive de f, définies sur $[1, +\infty[$. Donc

$$u_n = \sum_{p=1}^{n} f(p) - \int_{1}^{n} f(t) dt$$

(C'est l'exercice 4 de la feuille sur les séries numériques : aviez-vous su le faire en cours?)

a) Soit
$$n \ge 1$$
, $\int_{n}^{n+1} \frac{\ln t}{t} dt = \left[\frac{1}{2} (\ln t)^{2}\right]_{n}^{n+1} = \left[\frac{1}{2} \left(\ln(n+1)^{2} - \ln(n)^{2}\right)\right]_{n}^{n+1}$

b) Soit $n \ge e$. $u_{n+1} - u_n = f(n+1) - \int_n^{n+1} f(t) dt$.

Or f est continue, positive, décroissante sur $[e, +\infty[$, donc d'après la partie droite de l'encadrement obtenue en Préliminaire.1), $u_{n+1} - u_n \leq 0$.

Ainsi, La suite $(u_n)_{n\geqslant 3}$ est décroissante.

c) Soit $n_0 = 3$ et $n \geqslant 3$.

D'après la remarque faite au Préliminaire, question $2, \int_{n_0}^{n+1} f(t) dt \leqslant \sum_{k=1}^{n} f(k)$. Par conséquent,

$$u_n = \sum_{p=1}^n f(p) - \int_1^n f(t) dt = \underbrace{\sum_{p=1}^2 f(p) - \int_1^3 f(t) dt}_{= \frac{\ln 2}{2} - \frac{1}{2}(\ln 3)^2} + \underbrace{\sum_{p=n_0}^n f(p) - \int_{n_0}^{n+1} f(t) dt}_{\geqslant 0} + \underbrace{\int_n^{n+1} \underbrace{f(t)}_{\geqslant 0} dt}_{\geqslant 0}$$

Ainsi, pour $n \ge 3$, $u_n \ge \frac{\ln 2 - (\ln 3)^2}{2}$. La décroissance de (u_n) (question 2.b) nous permet de conclure que Pour tout entier $n \ge 1$, $u_n \ge \frac{\ln 2 - (\ln 3)^2}{2}$

- d) La suite $(u_n)_{n\geqslant 1}$ est décroissante (question 2.b.) et minorée (question 2.c.) donc Convergente
- e) Soit $n \ge 2$. La fonction ln est croissante donc pour tout $p \in [1, n]$, $\ln p \le \ln n$. Comme $\frac{1}{n} \ge 0$,

$$u_n = \sum_{p=1} \frac{\ln p}{p} - \frac{1}{2} (\ln n)^2 \leqslant \sum_{p=1} \frac{\ln n}{p} - \frac{1}{2} (\ln n)^2$$

Pour
$$n \geqslant 2$$
, $\ln n > 0$ d'où $\frac{u_n}{\ln n} + \frac{\ln n}{2} \leqslant \sum_{p=1}^n \frac{1}{p}$

Comme u_n converge, $\lim_{n\to+\infty}\frac{u_n}{\ln n}=0$ et $\lim_{n\to+\infty}\frac{u_n}{\ln n}+\frac{\ln n}{2}=+\infty$. Par minoration,

$$\lim_{n \to +\infty} \sum_{p=1}^{n} \frac{1}{p} = +\infty$$

En conclusion, La série de terme général $\frac{1}{n}$ diverge. On retrouve le critère de Riemann pour $\alpha = 1$.

3) Soit $f(t) = \frac{1}{t}$, définie sur $[1, +\infty[$. La fonction f est positive, continue et décroissante sur $[1, +\infty[$.

a) D'après Préliminaire 2, pour tout $n \ge 2$,

$$\ln(n+1) = \int_{1}^{n+1} f(t) dt \le \sum_{p=1}^{n} f(p) = 1 + \sum_{p=2}^{n} f(p) \le 1 + \int_{2}^{n} f(t) dt = 1 + \ln(n)$$

Pour n=1, l'encadrement s'écrit $\ln 2 \leqslant 1 \leqslant 1$ qui reste vrai. Ainsi, Pour tout entier $n \geqslant 1$

$$\left| \ln(n+1) \leqslant H_n \leqslant 1 + \ln n \right|$$

b) Soit $n \ge 1$. Notons $\gamma_n = H_n - \ln n$.

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} - (\ln(n+1) - \ln(n)) = \frac{1}{n+1} - \int_n^{n+1} \frac{dt}{t}$$

Appliquons de nouveau à f le résultat obtenu en Préliminaire 1), partie droite de l'inégalité pour $k = n + 1 \ge n_0 + 1$,

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{\mathrm{d}t}{t}$$

Donc $\gamma_{n+1} - \gamma_n \leq 0$ et la suite est décroissante.

De plus, d'après 3.a, $\gamma_n = H_n - \ln n \geqslant \ln \left(1 + \frac{1}{n}\right) \geqslant 0$. Ainsi la suite (γ_n) est décroissante minorée, donc convergente.

La suite
$$(H_n - \ln n)$$
 converge

On note généralement γ sa limite, plutôt que ℓ . Cf exercice 4 feuille séries numériques.

c) D'après la question précédente,

$$\gamma_{n+1} - \gamma_n = \frac{1}{n+1} + \ln(1 - \frac{1}{n+1}) = \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right) = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Finalement,
$$(\gamma_{n+1} - \gamma_n) \sim -\frac{1}{2n^2}$$

D'après le critère de Riemann, la série $\sum_{n\geqslant 1}(\gamma_{n+1}-\gamma_n)$ est absolument convergente donc convergente.

De plus, la série $\sum (\gamma_{n+1} - \gamma_n)$ est télescopique :

$$\sum_{k=1}^{n} (\gamma_{k+1} - \gamma_k) = \gamma_{n+1} - \gamma_1$$

Ainsi la suite (γ_n) , qui est égale à la suite des sommes partielles (à γ_1 près), est convergente.

d) Soit $N \geqslant 2$. On reconnaît encore une série télescopique (On vous demande de calculer la limite d'une série : soit c'est usuel, soit c'est télescopique...)

$$\sum_{n=2}^{N} \left(\frac{1}{n} - \ln \frac{n}{n-1} \right) = -1 + H_N - \sum_{n=2}^{N} (\ln(n) - \ln(n-1)) = -1 + H_N - \ln N + \ln 1 = \gamma_N - 1$$

Donc la série converge et, en passant à la limite $N \to +\infty$,

$$\left| \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \ln \frac{n}{n-1} \right) = \ell - 1 \right|$$

7

e) D'après le calcul fait à la question précédente, pour $n \ge 2$,

$$U_n = \sum_{k=2}^n \left(\ln \frac{k}{k-1} - \frac{1}{k} \right) = -\gamma_n + 1$$
Ainsi $U = \sum_{k=2}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} \right) = -\ell + 1 = U_n + R_n = -\gamma_n + 1 + \sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} \right)$ puis
$$\boxed{\gamma_n - \ell = \sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} \right)}$$

Comme $\gamma_1 = 1$, l'égalité reste vraie pour n = 1.

f) Un développement limité de $\ln(1-u)$ en 0 nous donne, pour $k \to +\infty$

$$\ln\left(\frac{k}{k-1}\right) - \frac{1}{k} - \frac{1}{2k(k-1)} = -\ln\left(1 - \frac{1}{k}\right) - \frac{1}{k} - \frac{1}{2k^2}(1 + o(1))$$

$$= \frac{1}{k} + \frac{1}{2k^2} - \frac{1}{k} - \frac{1}{2k^2} + o\left(\frac{1}{k^2}\right)$$

$$= \frac{1}{k^2}o(1)$$

Ainsi, $\lim_{k\to +\infty} k^2 \left(\ln\frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)}\right) = 0$. Soit ε un réel strictement positif. Par définition de la limite, il existe un entier naturel non nul n_0 tel que, pour tout entier $k \geqslant n_0$: $\left|k^2 \left(\ln\frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)}\right)\right| \leqslant \varepsilon$ c'est-à-dire

$$\left| \ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)} \right| \leqslant \frac{\varepsilon}{k^2}$$

g) Comme $\sum \frac{1}{k^2}$ converge (Riemann), par majoration, la série $\sum \left(\ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)}\right)$ est absolument convergente donc convergente. De plus, en sommant les inégalités et en passant à la limite, il vient : Pour tout entier $n \ge n_0$:

$$\left| \sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)} \right) \right| \leqslant \sum_{k=n+1}^{+\infty} \left| \ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)} \right| \leqslant \varepsilon \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

- h) La série $\sum \left(\ln \frac{k}{k-1} \frac{1}{k} \right)$ converge (3.d) et son reste est égal à $H_n \ln n \ell$ (3.e).
 - La série $\sum \frac{1}{2(k(k-1))}$ est convergente $(\frac{1}{2k(k-1)} \sim \frac{1}{2k^2})$ et Riemann et télescopique :

$$\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$$

Donc pour $N \geqslant n \geqslant 1$, $\sum_{k=n+1}^{N} \frac{1}{2k(k-1)} = \frac{1}{2n} - \frac{1}{2N}$ et en passant à la limite le reste est $\frac{1}{2n}$.

Finalement, en sommant les deux résultats,

$$\sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)} \right) = \sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} \right) - \sum_{k=n+1}^{+\infty} \left(\frac{1}{2k(k-1)} \right) = H_n - \ln n - \ell - \frac{1}{2n}$$

En appliquant l'inégalité obtenue en prélim.2, pour $f(t) = \frac{1}{t^2}$, on trouve $\sum_{k=n+1}^N \frac{1}{k^2} \leqslant \int_n^N \frac{1}{t^2} dt$

^{1.} Ou comme combinaison linéaire de séries convergentes, en utilisant 3.g

L'intégrale et la série convergeant (Riemann), on peut passer à la limite pour $N \to +\infty$ et

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \leqslant \int_n^{+\infty} \frac{1}{t^2} \, \mathrm{d}t = \frac{1}{n}$$

Donc 3.g s'écrit,

$$\left| \sum_{k=n+1}^{+\infty} \left(\ln \frac{k}{k-1} - \frac{1}{k} - \frac{1}{2k(k-1)} \right) \right| = \left| H_n - \ln n - \ell - \frac{1}{2n} \right| \leqslant \varepsilon \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \leqslant \frac{\varepsilon}{n}$$

Donc par définition du petit o, $H_n = \ln n + \ell + \frac{1}{2n} + o\left(\frac{1}{n}\right)$

Partie 2

1) $\ln(n+1) = \ln(n) + \ln\left(1 + \frac{1}{n}\right) = \ln(n) + o(1)$ donc $\ln(n+1) \sim \ln(n)$. De même $\ln(n+2) \sim \ln n$. Ainsi,

$$\frac{\left(\ln(n+1)\right)^2}{\ln n \ln(n+2)} \sim \frac{(\ln n)^2}{\ln n \ln n} = 1$$

Donc
$$\frac{\left(\ln(n+1)\right)^2}{\ln n \ln(n+2)} = 1 + o(1)$$
, puis $v_n = 1 - 1 + o(1) = o(1)$ donc

La suite $(v_n)_{n\geq 2}$ est convergente de limite 0.

2) Pour tout entier $n \ge 2$, $\ln(n+1) = \ln(n) + \ln\left(1 + \frac{1}{n}\right)$ et $\ln(n+2) = \ln(n) + \ln\left(1 + \frac{2}{n}\right)$. Par conséquent,

$$v_n = 1 - \frac{\left(\ln(n+1)\right)^2}{\ln n \ln(n+2)} = 1 - \frac{\left(\ln n\right)^2 \left(1 + \frac{\ln(1 + \frac{1}{n})}{\ln n}\right)^2}{\left(\ln n\right)^2 \left(1 + \frac{\ln(1 + \frac{2}{n})}{\ln n}\right)} = \boxed{1 - \frac{\left(1 + \frac{\ln(1 + \frac{1}{n})}{\ln n}\right)^2}{1 + \frac{\ln(1 + \frac{2}{n})}{\ln n}}}$$

3) Effectuons un développement asymptotique de $v_n = 1 - \frac{a_n}{b_n}$:

$$a_n = \left(1 + \frac{1}{n \ln n} + \frac{1}{2n^2 \ln n} + \frac{1}{3n^3 \ln n} + o\left(\frac{1}{n^3 \ln n}\right)\right)^2 = 1 + \frac{2}{n \ln n} + \frac{1}{n^2 \ln n} + \frac{1}{n^2 (\ln n)^2} + o\left(\frac{1}{n^2 (\ln n)^2}\right)$$

$$b_n^{-1} = \left(1 + \frac{2}{n \ln n} + \frac{2}{n^2 \ln n} + \frac{8}{3n^3 \ln n} + o\left(\frac{1}{n^3 \ln n}\right)\right)^{-1} = 1 - \left[\frac{2}{n \ln n} + \frac{2}{n^2 \ln n}\right] + \frac{4}{n^2 (\ln n)^2} + o\left(\frac{1}{n^2 (\ln n)^2}\right)$$

Donc
$$v_n = 1 - a_n b_n^{-1} = \frac{-2^2 + 1 + 4}{n^2 (\ln n)^2} - \frac{1}{n^2 \ln n} + o\left(\frac{1}{n^2 (\ln n)^2}\right) = \left[-\frac{1}{n^2 \ln n} + \frac{1}{n^2 (\ln n)^2} + o\left(\frac{1}{n^2 (\ln n)^2}\right)\right]$$
(Ouf! Le $o\left(\frac{1}{n^3 \ln n}\right)$ est nécessaire pour avoir du $o\left(\frac{1}{n^2 (\ln n)^2}\right)$ ensuite, qui sinon se ferait manger par $o\left(\frac{1}{n^2 (\ln n)}\right)$.)

Ainsi, $\left|v_n + \frac{1}{n^2 \ln n}\right| = \frac{|1 + \varepsilon_n|}{n^2 (\ln n)^2}$ où $(\varepsilon_n) \xrightarrow[n \to +\infty]{} 0$, donc est bornée. Soit $b \in \mathbb{R}_+$ tel que $|1 + \varepsilon_n| \leqslant b$. Avec a = -1, il vient

4) Soit $w_n = \frac{1}{n^2(\ln n)}$. Comme $n^2w_n \xrightarrow[n \to +\infty]{} 0$, par définition de la limite, à partir d'un certain rang $n_0 \in \mathbb{N}$, pour tout $n \geqslant n_0$,

$$w_n = |w_n| \leqslant \frac{1}{n^2}$$

7

Or $\sum \frac{1}{n^2}$ converge d'après Riemann ($\alpha=2>1$) donc $\sum w_n$ converge

D'après 3, $v_n \sim w_n$, donc $\sum v_n$ converge

FIN DE L'ÉPREUVE