Épreuve de Mathématiques 5

Correction

Exercice 1

Montrer que l'application $\varphi: E^2 \to \mathbb{R}$ suivante est un produit scalaire sur $E = \mathbb{R}[X]$.

$$\forall (P,Q) \in E^2, \qquad \varphi(P,Q) = \int_{-1}^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt$$

Exercice 2 (PT 2015 B)

Dans le plan euclidien rapporté au repère orthonormé direct $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, on considère la courbe Γ de représentation paramétrique

$$\begin{cases} x(t) = t^2 + \frac{2}{t} \\ y(t) = \frac{1}{t^2} + 2t \end{cases} \quad t \in \mathbb{R}_{-}^*$$

Pour tout t < 0, on désigne par M_t le point de Γ de paramètre t.

1) a) Justifier qu'une représentation paramétrique de la normale à Γ au point M_t , $t \in \mathbb{R}_+^*$ est

$$\begin{cases} x_t(u) &= t^2 + \frac{2}{t} + u \\ y_t(u) &= \frac{1}{t^2} + 2t - tu \end{cases} u \in \mathbb{R}$$

- b) En déduire une représentation paramétrique de la développée de Γ .
- c) Utiliser ce résultat pour donner le centre et le rayon du cercle de courbure de Γ au point M_{-1} de paramètre t=-1.
- 2) Soit Σ le cercle de centre Ω de coordonnées $(a,b) \in \mathbb{R}^2$ et de rayon r > 0. On dit que Σ et Γ sont tangents en un point A si
 - $A \in \Sigma \cap \Gamma$;
 - la tangente à Σ en A et la tangente à Γ en A sont confondues.
 - a) Exprimer b et r en fonction de a pour que Σ et Γ soient tangents en M_{-1} .
 - b) Dans ces conditions, donner une équation de Σ sous la forme $f_a(x,y)=0$ ne dépendant que du paramètre a.
 - c) Effectuer les développements limités de x(t) et y(t) à l'ordre 3 en t=-1. On donne

$$f_a(x(t), y(t)) = (28 - 4a)(t+1)^2 + (28 - 4a)(t+1)^3 + o((t+1)^3)$$

d) Déterminer a pour qu'au voisinage de t = -1, $f_a(x(t), y(t)) = o((t+1)^3)$. Quelle(s) remarque(s) peut-on faire concernant Ω et r?

Exercice 3 (PT 2015 B)

Dans le plan euclidien \mathbb{R}^2 , le produit scalaire des vecteurs \overrightarrow{u} et \overrightarrow{v} sera noté $\overrightarrow{u} \cdot \overrightarrow{v}$ et la norme du vecteur \overrightarrow{u} sera notée $\|\overrightarrow{u}\|$.

C'est de la « géométrie élémentaire », pour quasiment toutes les questions le chapitre algèbre bilinéaire en cours est inutile. Faites, au moins au brouillon, des dessins (évidemment).

1) Soit $\mathscr C$ un cercle de centre O et de rayon R>0 et I un point du plan. Une droite $\mathscr D$ passant par I et sécante à $\mathscr C$ coupe $\mathscr C$ en A et B. On note A' le symétrique de A par rapport à O.

a) Démontrer que $\overrightarrow{IA}.\overrightarrow{IB} = \overrightarrow{IA}.\overrightarrow{IA'} = IO^2 - R^2$.

On remarque que la valeur de $\overrightarrow{IA}.\overrightarrow{IB}$ est indépendante de la droite \mathscr{D} sécante à \mathscr{C} choisie. On note $\sigma_{\mathscr{C}}(I)$ ce nombre.

- b) Quelle information le signe de $\sigma_{\mathscr{C}}(I)$ donne-t-il sur la position du point I?
- c) Soit I un point du plan tel que $\sigma_{\mathscr{C}}(I) \geqslant 0$, Λ l'ensemble des points M du plan vérifiant $\overrightarrow{IM}.\overrightarrow{OM} = 0$ et T un point de $\Lambda \cap \mathscr{C}$.
 - i) Quelle est la nature de Λ ? Préciser ses éléments caractéristiques.
 - ii) Démontrer que $\sigma_{\mathscr{C}}(I) = IT^2$.
- 2) Soient $\mathscr C$ et $\mathscr C'$ deux cercles de centres respectifs O et O', distincts, de rayons respectifs R>0 et R'>0. On désigne par Ω le milieu du segment [OO'] et par Δ l'ensemble des points I du plan vérifiant $\sigma_{\mathscr C}(I)=\sigma_{\mathscr C'}(I)$.
 - a) Démontrer que

$$\sigma_{\mathscr{C}}(I) = \sigma_{\mathscr{C}'}(I) \Longleftrightarrow 2\overrightarrow{OO'}.\overrightarrow{\Omega I} = R^2 - R'^2$$

- b) i) Soit I_1 et I_2 deux points distincts de Δ . Démontrer que les droites (I_1I_2) et (OO') sont orthogonales.
 - ii) Déterminer un point I_0 appartenant à Δ et (OO').
 - iii) En déduire la nature de Δ .
- c) Que dire de plus sur Δ lorsque $\mathscr C$ et $\mathscr C'$ sont sécants ou tangents? Ou lorsque les deux cercles ont le même rayon?
- d) Dans cette question, l'unité de longueur est le centimètre. On prend $OO'=10,\,R=5,\,R'=3.$ Tracer $\Delta.$
- 3) a) Soit A, B et C trois points non alignés du plan, et $\mathscr C$ le cercle circonscrit au triangle ABC. Soit I un point de la droite (AB) distinct de A et B, et D un point de la droite (IC) vérifiant $\overrightarrow{IC}.\overrightarrow{ID} = \overrightarrow{IA}.\overrightarrow{IB}$.

Démontrer que D appartient au cercle \mathscr{C} .

- b) On se place désormais dans le plan complexe. Le vecteur \overrightarrow{u} a pour affixe $z \in \mathbb{C}$, et le vecteur \overrightarrow{v} a pour affixe $z' \in \mathbb{C}$.
 - i) Rappeler en la justifiant la relation entre $\|\overrightarrow{u} + \overrightarrow{v}\|$, $\|\overrightarrow{u}\|$, $\|\overrightarrow{v}\|$ et $\overrightarrow{u} \cdot \overrightarrow{v}$.
 - ii) En déduire que $\overrightarrow{u}.\overrightarrow{v}=\Re(z\overline{z'})$. (\Re désigne la partie réelle)
 - iii) Soit A, B, C, D et I les points d'affixes complexes respectives

$$z_A = -3 - i$$
, $z_B = 5i$, $z_C = -1 - 7i$, $z_D = 14 - 2i$, $z_I = -7 - 9i$

Démontrer que A, B, C et D sont cocycliques (c'est-à-dire : sur un même cercle).

 $\sigma_{\mathscr{C}}(I)$ est la puissance du point I par rapport au cercle \mathscr{C} et Δ est l'axe radical des deux cercles \mathscr{C} et \mathscr{C}' . Ces deux objets, avec entre autre la notion de division harmonique, conduiront au XIX^e siècle à la géométrie projective.

Exercice 4 (PT 2014 B)

- 1) Étude de Γ_A dans le cas où a=b=9.
 - a) Pour tout $t \in \mathbb{R}$, $\begin{cases} x(-t) = -t^3 + 3t^2 + 9t = -\left(t^3 3t^2 9t\right) = -y(t) \\ y(-t) = -t^3 3t^2 + 9t = -\left(t^3 + 3t^2 9t\right) = -x(t) \end{cases}$

Conclusion : Γ_A est symétrique par rapport à la droite d'équation y=-x

b) x et y sont des polynômes donc dérivables sur \mathbb{R} . Pour $t \in \mathbb{R}$,

$$\begin{cases} x'(t) = 3t^2 + 6t - 9 = 3(t - 1)(t + 3) \\ y'(t) = 3t^2 - 6t - 9 = 3(t + 1)(t - 3) \end{cases}$$

Non, la recherche des racines d'un trinôme puis du signe de celui-ci n'est pas la question centrale de l'épreuve : faites vite (et juste).

t	0		1		3		$+\infty$
x'(t)		_	0	+		+	
x	0		-5 —		-27		$+\infty$
y'(t)		_		_	0	+	
y	0		-11	—	-27		$+\infty$

Donc la courbe (pour $t \ge 0$) admet une tangente verticale en M(1) de coordonnées (-5, -11) et une tangente horizontale en M(3) de coordonnées (27, -27).

En M(0) = O la tangente a pour vecteur directeur $\begin{pmatrix} -9 \\ -9 \end{pmatrix}$ et passe par O, c'est donc la première bissectrice d'équation y = x.

c) $M\left(t_{1}\right)$ est un point double s'il existe $t_{2}\neq t_{1}$ tel que $M\left(t_{1}\right)=M\left(t_{2}\right)$

$$M(t_{1}) = M(t_{2}) \iff \begin{cases} x(t_{1}) = x(t_{2}) \\ y(t_{1}) = y(t_{2}) \end{cases}$$

$$\iff \begin{cases} t_{1}^{3} + 3t_{1}^{2} - 9t_{1} = t_{2}^{3} + 3t_{2}^{2} - 9t_{2} \\ t_{1}^{3} - 3t_{1}^{2} - 9t_{1} = t_{2}^{3} - 3t_{2}^{2} - 9t_{2} \end{cases} \quad \text{puis } L_{2} \leftarrow L_{2} - L_{1}$$

$$\iff \begin{cases} t_{1}^{3} + 3t_{1}^{2} - 9t_{1} = t_{2}^{3} + 3t_{2}^{2} - 9t_{2} \\ -6t_{1}^{2} = -6t_{2}^{2} \end{cases} \quad \text{or } L_{2} \iff t_{1} = -t_{2} \text{ car } t_{1} \neq t_{2}$$

$$\iff \begin{cases} 2t_{1}^{3} - 18t_{1} = 0 \\ t_{2} = -t_{1} \end{cases} \quad \text{et } L_{1} \iff 2t_{1} \left(t_{1}^{2} - 9\right) = 0$$

Or si $\underline{t_1} = 0$, on a $t_2 = -t_1 = t_1$ ce qui est impossible : $t_1 \neq 0$.

Donc le seul point double est M(3) = M(-3) de coordonnées (27, -27)

La tangente est horizontale pour t = 3 et, par symétrie, est verticale pour t = -3.

Ainsi, L'angle entre les deux tangentes de $\frac{\pi}{2}$

d) Γ_A admet une branche infinie lorsque $t \to +\infty$.

$$\frac{y}{x} \sim \frac{t^3}{t^3} = 1$$

Donc a = 1. De plus, $y - x = -6t^2 \xrightarrow[t \to +\infty]{} -\infty$.

Conclusion : La courbe Γ_A admet une branche parabolique de direction y = x.

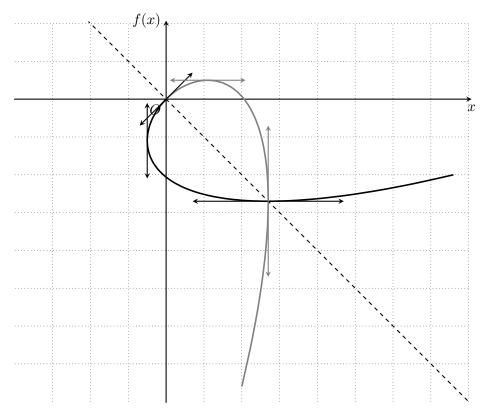
e) Tracé:

Indication : On place les points où l'une des deux dérivées s'annule (i.e. tangente verticale ou horizontale) et la tangente associée, le point double (mais c'est déjà fait), le point O = M(0) (et

DST 5

plus généralement tous les points où l'on nous a demandé explicitement la tangente). Puis on trace en suivant le tableau de variation (en partant par exemple des points (-5, -11) et (27, -27)).

On complète ensuite Γ_A par symétrie.



2) Un point stationnaire (ou singulier) est un point en lequel la vitesse s'annule :

$$\begin{cases} x'(t) = 0 \\ y'(t) = 0 \end{cases}$$

$$\iff \begin{cases} 3t^2 + 6t - a = 0 \\ 3t^2 - 6t - b = 0 \end{cases}$$

$$\iff \begin{cases} 3t^2 + 6t - a = 0 \\ -12t - b + a = 0 \end{cases} \qquad (L_2 \leftarrow L_2 - L_1)$$

$$\iff \begin{cases} 3\left(\frac{a-b}{12}\right)^2 + 6\left(\frac{a-b}{12}\right) - a = 0 \\ t = \frac{a-b}{12} \end{cases} \qquad \text{(en remplaçant } t \text{ par sa valeur)}$$

Donc t existe \iff $3(a-b)^2 + 6 \times 12(a-b) - 144a = 0 \iff (a-b)^2 - 24(a+b) = 0 : \mathcal{P}$

FIN DE L'ÉPREUVE