Programme de colle 5

Classe de PT

Semaine du lundi 3 au vendredi 7 octobre

Liste des questions de cours

- Les dix DL usuels : famille exponentielle (exp, cos, sin), géométrique $(\frac{1}{1-x}, \frac{1}{1-x}, \ln(1+x), \ln(1-x), \arctan(x)), (1+x)^{\alpha}$ avec $\alpha \in \mathbb{R}$ à l'ordre n; $\tan(x)$ à l'ordre 3.
- Limite en 0^+ de $x \mapsto \frac{x^{(x^x)} \ln x}{x^x 1}$.
- Variations, limite et équivalent de la suite $u_n = \int_0^{\frac{\pi}{4}} \tan^n t \, dt$.
- Nature des intégrales (preuve) : $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$, où $\alpha \in \mathbb{R}$; $\int_{0}^{+\infty} e^{-\beta t} \, \mathrm{d}t$ où $\beta \in \mathbb{R}$; $\int_{0}^{1} \frac{\mathrm{d}t}{t^{\alpha}}$, où $\alpha \in \mathbb{R}$; $\int_{0}^{1} \ln t \, \mathrm{d}t$

Toute défaillance sur un DL usuel au cours de la colle entraînera une note en dessous de 5.

1 Fonctions d'une variable réelle

1.1 Relations de comparaisons, Taylor, Développements limités

Révisions de PTSI : Taylor reste intégral, Taylor Young. Grand O, petit o, équivalents.

Calculs de DL; utilisation de la parité; intégration d'un DL; exemple de fonction admettant un DL à un ordre supérieur à 1, sans être plus que dérivable;

Les DL des fonctions hyperboliques sh, ch, et de Arcsin doivent pouvoir être retrouvés rapidement.

2 Intégration

2.1 Intégration sur un segment

Chasles, linéarité, croissance, inégalité triangulaire, inégalité de la moyenne.

Si
$$f:[a,b]\to\mathbb{R}$$
 est continue, alors $\int_{[a,b]}|f|=0\Longrightarrow f=0.$

2.2 Calculs des primitives

2.2.1 Définition et propriétés

Primitive d'une fonction continue.

Intégration par parties, changement de variables, fonctions de la forme $x \mapsto \int_{u(x)}^{v(x)} f(t) dt$.

1

2.2.2 Calculs

Primitives des fonctions usuelles. Méthodes pour affronter différents cas :

- Fractions rationnelles $\frac{1}{ax^2 + bx + c}$.
- Polynôme fois exponentielle et assimilés.

2.3 Intégrales sur un intervalle quelconque

2.3.1 Intégrale convergente

Définition d'une intégrale convergente, d'une intégrale divergente.

Cas d'une fonction prolongeable par continuité.

Théorèmes de changement de variable, IPP.

2.3.2 Le cas des fonctions positives

2.3.3 Fonctions usuelles

Au voisinage de $+\infty$ (Riemann et exponentielles), au voisinage de 0 (Riemann, $\ln(x)$).

Ces fonctions doivent être parfaitement connues

2.3.4 Relations de comparaison

Majoration, grand O, petit o, équivalents.

Comparaison séries / intégrales. Calcul approché, majoration et recherche d'équivalents des sommes partielles d'une série divergente ou des restes d'une série convergente.

2.3.5 Intégrabilité et fonctions intégrables

Définition de l'intégrabilité et des fonctions intégrables. L'intégrabilité entraıne la convergence.

Si
$$f: I \to \mathbb{R}$$
 est continue , alors $\int_I |f| = 0 \Longrightarrow f = 0$.