Programme de colle 4

Classe de PT

Semaine du lundi 26 au vendredi 30 septembre

Liste des questions de cours

- Nature de la série de Bertrand $\sum \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ selon $\alpha, \beta \in \mathbb{R}$, pour $\alpha \neq 1$.
- Soit I est un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue telle que $\forall x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.
- Les dix DL usuels : famille exponentielle (exp, cos, sin), géométrique $(\frac{1}{1-x}, \frac{1}{1-x}, \ln(1+x), \ln(1-x), \arctan(x)), (1+x)^{\alpha}$ avec $\alpha \in \mathbb{R}$ à l'ordre n; $\tan(x)$ à l'ordre 3.
- Limite en 0^+ de $x \mapsto \frac{x^{(x^x)} \ln x}{x^x 1}$.
- Variations, limite et équivalent de la suite $u_n = \int_0^{\frac{\pi}{4}} \tan^n t \, dt$.

Toute défaillance sur un DL usuel au cours de la colle entraînera une note en dessous de 5.

1 \mathbb{R} et les suites réelles

1.1 Séries numériques

Révisions de PTSI : définition de la convergence, de la convergence absolue.

Séries de Riemann $\sum \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$. Comparaison de séries à termes positifs : \leq , grand O, petit o, équivalent.

2 Fonctions d'une variable réelle

2.1 Continuité

Définition; propriétés.

« f continue sur un segment [a, b] est bornée et atteint ses bornes ».

Théorème des valeurs intermédiaires; théorème de la bijection.

2.2 Dérivabilité

Définition; propriétés; théorème de Rolle et ses conséquences : égalité et inégalité des accroissements finis. Théorème de la limite de la dérivée.

2.3 Relations de comparaisons, Taylor, Développements limités

Révisions de PTSI: Taylor reste intégral, Taylor Young. Grand O, petit o, équivalents.

Calculs de DL; utilisation de la parité; intégration d'un DL; exemple de fonction admettant un DL à un ordre supérieur à 1, sans être plus que dérivable;

Les DL des fonctions hyperboliques sh, ch, et de Arcsin doivent pouvoir être retrouvés rapidement.

3 Intégration

3.1 Intégration sur un segment

Chasles, linéarité, croissance, inégalité triangulaire, inégalité de la moyenne.

Si
$$f:[a,b]\to\mathbb{R}$$
 est continue, alors $\int_{[a,b]}|f|=0\Longrightarrow f=0.$

3.2 Calculs des primitives

3.2.1 Définition et propriétés

Primitive d'une fonction continue.

Intégration par parties, changement de variables, fonctions de la forme
$$x \mapsto \int_{u(x)}^{v(x)} f(t) dt$$
.

3.2.2 Calculs

Primitives des fonctions usuelles. Méthodes pour affronter différents cas :

- Fractions rationnelles $\frac{1}{ax^2 + bx + c}$.
- Polynôme fois exponentielle et assimilés.