Exercices : Fonctions d'une variable réelle

Exercice 1

Soit $f:[0,1]\to[0,1]$ continue. Montrer que f admet un point fixe.

Exercice 2

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue telle que $\forall x \in I, f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Exercice 3 (Petites mines)

Soit $f:[0,1] \to \mathbb{R}$ continue telle que f(0) = f(1).

- 1) Montrer que l'équation $f(x+\frac{1}{2})=f(x)$ possède au moins une solution.
- 2) Montrer que $\forall n \ge 2$, $f(x+\frac{1}{n})=f(x)$ possède au moins une solution.

Exercice 4 1) Montrer que, pour tout $x \in]-1,1[$, Arctan $(x) = \frac{1}{2} \operatorname{Arctan} \left(\frac{2x}{1-x^2}\right)$.

- **2)** Montrer que, pour tout $x \in \mathbb{R} \setminus [-1, 1]$, Arctan $(x) = \frac{\pi}{2} \operatorname{signe}(x) + \frac{1}{2} \operatorname{Arctan}\left(\frac{2x}{1 x^2}\right)$.
- 3) En déduire que, pour tout $x \in \mathbb{R}$ fixé, il existe des suites (A_n) , (B_n) et (θ_n) telles que

$$\operatorname{Arctan}(x) = A_n + B_n \operatorname{Arctan}(\theta_n)$$
 avec $|B_n| \leqslant \frac{1}{2^n}$

4) En déduire un algorithme de calcul de Arctan (x) à ε près.

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = x + 2x^3 \sin\left(\frac{1}{x^2}\right)$ pour $x \neq 0$.

Étudier la dérivabilité de f, la continuité de f'.

Exercice 6

Domaine de définition et dérivée des fonctions suivantes :

1)
$$f(t) = \operatorname{Arctan}\left(\sqrt{\frac{1-t}{1+t}}\right)$$
 2) $f(t) = \operatorname{Arcsin}\left(2t\sqrt{1-t^2}\right)$ 3) $f(t) = \operatorname{Arctan}\left(\frac{1}{2t^2}\right)$

Exercice 7

Soit a > 0 et $n \in \mathbb{N}$. Soit $f:]-a, a[\to \mathbb{R}$ une fonction paire de classe \mathscr{C}^n . Montrer que, pour tout $k \in \{0, \dots n\}$, $f^{(k)}$ a la parité de k.

Exercice 8

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \exp\left(-\frac{1}{x^2}\right)$ si x > 0 et f(x) = 0 si $x \le 0$.

- 1) Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R}^* . Calculer f' sur \mathbb{R}^* , en déduire que f est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2) On se place sur $]0,+\infty[$. Montrer par récurrence que, pour tout $n \in \mathbb{N}, f^{(n)}$, la dérivée n-ième de f, est de la forme $P_n(1/x) \exp\left(-\frac{1}{x^2}\right)$, où P_n est un polynôme. (sans hypothèse sur $\deg P_n$).
- 3) En déduire que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- 4) Des fonctions \mathscr{C}^{∞} à support dans un segment.
 - a) Soit [a, b] un segment. Montrer qu'il existe une fonction g de classe \mathscr{C}^{∞} sur \mathbb{R} telle que g est nulle hors de [a, b[, g > 0 sur]a, b[.
 - b) Soit $\varepsilon > 0$. Montrer que l'on peut trouver g vérifiant les hypothèses précédentes et de plus g = 1 sur $[a + \varepsilon, b \varepsilon]$. Indication : Penser aux primitives.
- 5) Le but de cette question est de trouver des fonctions qui admettent un DL mais ne sont pas \mathscr{C}^1 .
 - a) Montrer que $f(x) = o(x^n)$ en x = 0 pour tout $n \in \mathbb{N}$.
 - b) Construire une fonction g qui admet un DL en 0 à l'ordre n pour tout n et qui n'est pas \mathscr{C}^1 . <u>Indication</u>: On pourra s'inspirer de la fonction de l'exercice 5.

1

Exercice 9 (Développements limités)

Donner le DL à l'ordre 4 au voisinage de 0 des fonctions suivantes :

1)
$$\ln\left(\frac{\sin x}{x}\right)$$

2)
$$(1+2x)^{\frac{1}{1+x}}$$

3)
$$\sqrt{1+\sqrt{1+x^2}}$$

3)
$$\sqrt{1+\sqrt{1+x^2}}$$
 4) $e^{\sin x} - \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$

Donner le DL à l'ordre indiqué et au point indiqué des fonctions suivantes :

5)
$$(x^3 + x)^{1/3} - (x^3 - x)^{1/3}$$
 ordre 4 en $+\infty$ **6)** $\ln(2\sin x)$ ordre 3 en $\frac{\pi}{6}$

6)
$$\ln(2\sin x)$$
 ordre 3 en $\frac{\pi}{6}$

Exercice 10 (Limites)

Donner la limite en
$$0^+$$
 de $\frac{x^{(x^x)} \ln x}{x^x - 1}$