Exercices: Séries Numériques

Exercice 1 (cours)

Il faut connaître parfaitement la nature des séries de terme général u_n suivants :

1)
$$u_n = \frac{1}{n^{\alpha}}$$
 selon les valeurs de $\alpha \in \mathbb{R}$

2)
$$u_n = q^n$$
 selon les valeurs de $q \in \mathbb{C}$.

Exercice 2

Déterminer la nature des séries de terme général u_n suivants.

1)
$$u_n = \frac{5^n + 2}{11^n + 3}$$
,

2)
$$u_n = n^3 \sin(\frac{1}{2^n})$$

2)
$$u_n = n^3 \sin(\frac{1}{2^n}),$$
 3) $u_n = \left(\frac{n}{n+1}\right)^{n^2},$ **4)** $u_n = \frac{n!}{n^n}$

4)
$$u_n = \frac{n!}{n^n}$$

5)
$$u_n = \frac{(-1)^n}{(\ln n)^{\ln n}},$$

6)
$$u_n = e^{-\sqrt{n}},$$

5)
$$u_n = \frac{(-1)^n}{(\ln n)^{\ln n}},$$
 6) $u_n = e^{-\sqrt{n}},$ **7)** $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ avec $(\alpha, \beta) \in \mathbb{R}^2, \ \alpha \neq 1$

8)
$$u_n = (-1)^n \sqrt{n} \ln \left(1 + \frac{1}{n}\right)$$
, 9) $u_n = \frac{(-1)^{n+1}}{n^{\alpha} + (-1)^n}$ avec $\alpha > 0$.

Exercice 3

Soit f, une fonction positive, décroissante et continue sur $[1, +\infty[$. On note :

$$\forall n \in \mathbb{N}^*$$
 $F(n) = \sum_{k=1}^n f(k) - \int_1^n f(t)dt$

1) Montrer que la suite $(F(n))_{n\in\mathbb{N}^*}$ est décroissante. En déduire que la suite $(F(n))_{n\in\mathbb{N}^*}$ converge.

2) Application: pour tout $n \in \mathbb{N}^*$, on pose $v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$. Montrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ converge.

En déduire un développement asymptotique de la série harmonique $\sum_{k=0}^{\infty} \frac{1}{k}$.

Remarque. La limite de la suite $(v_n)_{n\in\mathbb{N}^*}$ est la constante d'Euler $\gamma\approx 0.57721566$.

Exercice 4 1) Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Montrer que si la série de terme général u_n est convergente et $u_n \geq 0$, alors la série de terme général u_n^2 est convergente.

2) Ce résultat demeure-t-il vrai si les réels u_n ne sont plus supposés positifs? <u>Indication</u>: On pourra rechercher un contre-exemple sous la forme d'une série alternée.

3) On suppose que $u_n > -1$ et que les séries de terme général u_n et u_n^2 convergent. Étudier la série de terme général $\ln(1+u_n)$.

Exercice 5

Montrer que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n 8^n}{(2n)!}$$

est un réel négatif.