Exercices: Espaces vectoriels normés

Exercice 1 (Normes)

Soit $E = \mathbb{K}^n$. On note

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ $||x||_{\infty} = \sup_{1 \le i \le n} |x_i|$

- 1) Montrer que ce sont des normes.
- 2) Montrer que, pour tout $x \in E$,

a)
$$||x||_1 \leqslant \sqrt{n} ||x||_2$$

b)
$$||x||_2 \leqslant \sqrt{n} ||x||_{\infty}$$

c)
$$||x||_{\infty} \le ||x||_{1}$$

Exercice 2 (Normes)

Définir des normes 1, 2 et ∞ sur $E = \mathcal{M}_n(\mathbb{K})$.

Exercice 3 (Espace de fonctions)

Soit $E = \mathscr{C}^0([a, b], \mathbb{R})$, avec a < b deux réels.

- 1) Construire des normes 1 et ∞ . Rappeler une norme 2 sur E.
- 2) Montrer que ce sont des normes. Sur le modèle de l'exercice 1, donner des relations entre elles.

Exercice 4 (Matrices)

Soit
$$E = \mathcal{M}_n(\mathbb{K})$$
. Pour $A = (a_{i,j}) \in E$, on pose $||A|| = \sup_{1 \le i \le n} \sum_{i=1}^n |a_{i,j}|$.

- 1) Montrer que $\|.\|$ définit une norme sur $\mathcal{M}_n(\mathbb{K})$.
- 2) Vérifier

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), ||AB|| \leqslant ||A|| ||B||$$

Exercice 5 (Espace de fonctions)

Soit $E = \mathscr{C}([0,1],\mathbb{R})$ et $f_n \in E$ définie par $f_n(x) = \sqrt{n}x^n$.

Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge pour $\|.\|_1$ et diverge pour $\|.\|_{\infty}$.

Exercice 6 (Quelques résultats généraux)

Soit E muni de $\|.\|$ un espace vectoriel normé de dimension finie.

- 1) Soit F un sous-espace vectoriel de E. Montrer que $\mathring{F} \neq \emptyset \Longrightarrow F = E$.
- 2) Montrer que l'adhérence d'une boule ouverte non vide est la boule fermée de même rayon; et que l'intérieur d'une boule fermée est la boule ouverte de même rayon.

Exercice 7 (Convexité)

Parmi les ensembles suivants, préciser, en justifiant, lesquels sont convexes.

- 1) Les sphères de rayon r > 0 dans un espace vectoriel normé E de dimension finie.
- **2)** $T = \{(x, y) \in \mathbb{R}^2 \mid x + y \ge 0\} \text{ dans } \mathbb{R}^2.$
- 3) L'ensemble des matrices bistochastiques dans $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire les $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall (i,j) \in [1,n]^2, \quad a_{ij} \geqslant 0; \quad \forall i \in [1,n], \quad \sum_{j=1}^n a_{ij} = 1; \quad \forall j \in [1,n], \quad \sum_{i=1}^n a_{ij} = 1$$

Exercice 8 (Matrices)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ tel que $(A^k)_k$ converge vers M. Montrer que M est la matrice d'un projecteur.

Exercice 9 (Ouverts, fermés)

Parmi les ensembles suivants, préciser, en justifiant, lesquels sont des ouverts et lesquels sont des fermés. $(E, \|.\|)$ est un espace vectoriel normé de dimension finie.

1) $\{x \in E \mid ||x - a|| \ge 2\}$

3) F sous-espace vectoriel de E, 5) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - 5z^2 = 1\}$

2) $\{x \in E \mid ||x - a|| > 5/3\}$

4) $]0,1[,[0,1[,[0,1]] \text{ et } [0,+\infty[] \text{ dans } \mathbb{R}]$

6) $\mathbb{R}_{+}^{*} \times] - \pi, \pi[$ et $\mathbb{R}^{2} - (\mathbb{R}_{-} \times \{0\})$ dans \mathbb{R}^{2} .

Précisez lesquels sont bornés.

Exercice 10 (Ouverts, fermés : matrices)

Dans cet exercice, $\mathcal{M}_n(\mathbb{R})$ est muni d'une norme $\|.\|$.

1) Montrer que $GL_n(\mathbb{R})$ est un ouvert de $\mathscr{M}_n(\mathbb{R})$.

2) Montrer que $\mathcal{O}_n(\mathbb{R})$ est un fermé borné de $\mathscr{M}_n(\mathbb{R})$.

3) Montrer que $\mathcal{S}_n(\mathbb{R})$ (l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$) est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Exercice 11 (Ouverts, fermés — CCP PC 2015 Exo 2)

Soit $E = \left\{ (x, y) \in \mathbb{R}^2 \middle| \begin{pmatrix} 1 & x \\ y & 2 \end{pmatrix} \text{ est diagonalisable dans } \mathcal{M}_2(\mathbb{R}) \right\}.$

1) Trouver une condition nécessaire et suffisante simple sur x et y pour que (x,y) appartienne à E.

2) Montrer que E est une partie ouverte de \mathbb{R}^2 .

Exercice 12 (Continuité)

On définit la fonction $f: [0,1] \times [0,1] \rightarrow \mathbb{R}$

$$(x,y)$$
 \mapsto
$$\begin{cases} x(1-y) & \text{si } x \leq y \\ y(1-x) & \text{si } y < x \end{cases}$$

1) Montrer que f est continue sur $[0,1] \times [0,1]$ (Indication: Chercher une expression de f sans « si»).

2) Montrer que f admet un maximum et un minimum sur $[0,1] \times [0,1]$, les déterminer.

Exercice 13 (Suites)

Soit (E, N) un espace vectoriel normé de dimension finie et $f: E \to E$ une application k-lipschitzienne.

1) Montrer que f admet au plus un point fixe si k < 1.

2) On définit $(u_n)_{n\in\mathbb{N}}$ par $u_0\in E$ et $u_{n+1}=f(u_n)$. On suppose que f admet un point fixe $\ell\in E$.

a) Montrer que pour tout $n \in \mathbb{N}$, $N(u_n - \ell) \leq k^n N(u_0 - \ell)$.

b) Si k < 1, que peut-on dire de la suite (u_n) ?

3) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $\|.\|$ sur \mathbb{R}^n telle que $X \to AX$ soit k-lipschitzienne avec k < 1. Soit $B \in \mathbb{R}^n$. Résoudre X = AX + B à l'aide d'une suite $(X_n)_n$.

Exercice 14 (Continuité)

La fonction suivante est-elle continue sur \mathbb{R}^2 : $f:(x,y)\mapsto\begin{cases} \frac{xy}{2x^2+y^2} & \text{si }(x,y)\neq(0,0)\\ 0 & \text{sinon} \end{cases}$

Exercice 15 (Continuité)

Étudier les limites en (0,0) des applications définies pour $(x,y) \neq (0,0)$ de la façon suivante :

$$f:(x,y)\mapsto \frac{(x^2+xy+y^2)^2}{x^2+y^2} \qquad g:(x,y)\mapsto \frac{xy}{x^4+y^4} \qquad \text{et} \qquad h:(x,y)\mapsto \frac{xy}{x^2+y^2}$$

Exercice 16 (Fermés bornés)

Soit $(E, \|.\|)$ un espace vectoriel normé de dimension finie

1) Soit $u \in \mathcal{L}(E)$. Montrer qu'il existe x_0 vecteur unitaire tel que $||u(x_0)|| = \sup_{||x||=1} ||u(x)||$.

2) Soit F un sous-espace vectoriel de E, et $x \in E$.

Montrer que la distance $d(x, F) = \inf_{y \in F} ||x - y||$ existe et est atteinte.

Application : Soit $f:[a,b] \to \mathbb{R}$ continue et $n \in \mathbb{N}$.

Montrer qu'il existe $Q \in \mathbb{R}_n[X]$ tel que $||f - Q||_{\infty} = \inf_{P \in \mathbb{R}_n[X]} ||P - f||_{\infty}$.

3) Soit K fermé borné de $E. f: K \to \mathbb{R}$ continue. On suppose que $\forall x \in \mathbb{K}, f(x) > 0$. Montrer qu'il existe $\alpha > 0$ tel que $\forall x \in \mathbb{K}, f(x) \geqslant \alpha$.