Exercices: Compléments sur les series numériques

Exercice 1

Déterminer la nature des séries de terme général :

1)
$$u_n = \frac{1 + \ln(n)}{n^2}$$
, 2) $u_n = n^2 \sin\left(\frac{1}{2^n}\right)$, 3) $u_n = \frac{\sin n}{n^2}$ 4) $u_n = \frac{(3n)!}{\alpha^{3n}(n!)^3}$, où $\alpha > 0$.

Exercice 2

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, on pose

$$w_n = \frac{1}{2^n} \sum_{k=0}^n 2^k u_k$$

- 1) On suppose dans cette question la série $\sum u_n$ absolument convergente. Montrer que la série $\sum w_n$ converge et exprimer sa somme en fonction de celle de $\sum u_n$.
- 2) On suppose dans cette question que la suite (u_n) tend vers 0. Déterminer la limite de (w_n)
- 3) On suppose dans cette dernière question la série $\sum u_n$ convergente. Montrer la convergence de $\sum w_n$ et déterminer sa somme en fonction de celle de $\sum u_n$.