Devoir de Mathématiques numéro 3

Exercice 1 (Endomorphisme cyclique)

Présentation générale

Dans cet exercice, nous allons étudier la notion d'endomorphisme cyclique dont la définition est donnée ci-dessous. Soit f un endomorphisme d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On rappelle que pour tout entier $p \in \mathbb{N}^*$, on note :

$$f^0 = \operatorname{id}_E$$
, $f^1 = f$, $f^2 = f \circ f$, $f^p = \underbrace{f \circ \cdots \circ f}_{p \text{ fois}}$.

On dit que l'endomorphisme f est cyclique s'il existe un vecteur $v \in E$ tel que la famille $(v, f(v), \dots, f^{n-1}(v))$ soit une base de l'espace vectoriel E.

Cet exercice est composé de quatre parties indépendantes. Les trois premières sont consacrées à l'étude de différents exemples. Dans la dernière partie, on détermine une condition nécessaire et suffisante pour qu'un endomorphisme diagonalisable soit cyclique.

Partie I - Étude d'un premier exemple

Dans cette partie, on considère l'endomorphisme $f: \mathbb{R}^2 \to \mathbb{R}^2$ défini par :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = (4x - 2y, x + y)$$

- **Q1.** En considérant $v = (1,0) \in \mathbb{R}^2$, montrer que f est un endomorphisme cyclique de \mathbb{R}^2 .
- ${f Q2.}$ Déterminer les valeurs propres de f et donner une base de chaque sous-espace propre de f.
- **Q3.** Existe-t-il un vecteur $w \in \mathbb{R}^2$ non nul tel que la famille (w, f(w)) ne soit pas une base de \mathbb{R}^2 ?

Partie II - Étude d'un deuxième exemple

Dans cette partie, on considère l'endomorphisme $g:\mathbb{R}^3 \to \mathbb{R}^3$ dont la matrice dans la base canonique est :

$$M = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- **Q4.** Montrer que l'on a la relation $g^2 = g + 2 \operatorname{id}_{\mathbb{R}^3}$.
- ${f Q5.}$ Montrer que la matrice M est diagonalisable et déterminer ses valeurs propres.
- **Q6.** L'endomorphisme g est-il cyclique?

Partie III - Étude d'un troisième exemple

Dans cette partie, on fixe un entier $n \in \mathbb{N} \setminus \{0,1\}$ et on considère l'application Δ définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad \Delta(P) = P(X+1) - P(X)$$

Par exemple, on a $\Delta(X^2) = (X+1)^2 - X^2 = 2X+1$

- **Q7.** Montrer que Δ est un endomorphisme de $\mathbb{R}_n[X]$.
- **Q8.** Soit $k \in [0, n]$. Calculer $\Delta(X^k)$ sous une forme développée.
- **Q9.** En déduire que si $P \in \mathbb{R}_n[X]$ est un polynôme non constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- **Q10.** Montrer que l'endomorphisme Δ est cyclique.

DL 3

Partie IV - Cas d'un endomorphisme diagonalisable

Dans cette partie, on considère un endomorphisme diagonalisable h d'un \mathbb{C} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On souhaite déterminer une condition nécessaire et suffisante sur les valeurs propres de h pour que cet endomorphisme soit cyclique.

Comme l'endomorphisme h est diagonalisable, il existe une base $\mathcal{B} = (v_1, \dots, v_n)$ de l'espace vectoriel E composée de vecteurs propres de h. Pour tout $k \in [\![1,n]\!]$, on note $\lambda_k \in \mathbb{C}$ la valeur propre associée au vecteur propre v_k .

Soit $v \in E$. Comme \mathcal{B} est une base de E, il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ tel que :

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Q11. Montrer que pour tout $p \in \mathbb{N}^*$, on a :

$$h^p(v) = \alpha_1 \lambda_1^p v_1 + \dots + \alpha_n \lambda_n^p v_n$$

Q12. Montrer que le déterminant de la famille $\mathcal{F} = (v, h(v), \dots, h^{n-1}(v))$ dans la base \mathcal{B} est égal à :

$$\det_{\mathcal{B}}(\mathcal{F}) = \alpha_1 \cdots \alpha_n \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)$$

Q13. Conclure que h est cyclique si et seulement si il admet n valeurs propres distinctes.

Exercice 2 (Symétries anticommutant)

Dans tout ce problème, E est un \mathbb{R} -espace vectoriel de dimension finie n. L'application identité de E est notée id . Si f est un endomorphisme de E, pour toute valeur propre λ de f on note $E_{\lambda}(f) = \operatorname{Ker}(f - \lambda \operatorname{id})$ le sous-espace propre de f relatif à λ .

1) Dans cette question seulement, E est un \mathbb{R} -espace vectoriel de dimension n=4. On le munit d'une base $\mathscr{B}=(b_1,b_2,b_3,b_4)$ et on considère les endomorphismes u et v représentés dans la base \mathscr{B} par les matrices

$$U = \begin{pmatrix} 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & -5 & 0 \\ 2 & 0 & 2 & -1 \end{pmatrix} \qquad \text{et} \qquad V = \begin{pmatrix} 3 & 1 & 6 & 3 \\ -2 & 0 & -3 & 0 \\ -2 & -1 & -4 & -2 \\ 2 & 1 & 3 & 1 \end{pmatrix}$$

- a) Montrer que u et v sont des symétries, et vérifier rapidement que $u \circ v = -v \circ u$.
- b) Calculer Tr u et Tr v; montrer que cela permet de déterminer la dimension des sous-espaces propres de u et v (sans avoir à déterminer ces derniers explicitement).
- c) Déterminer une base (e_1, e_2) de $E_1(u)$. Montrer que la famille (e_3, e_4) définie par $e_3 = v(e_1)$ et $e_4 = v(e_2)$ est une base de $E_{-1}(u)$.

Si l'on pose $\mathscr{E} = (e_1, e_2, e_3, e_4)$, justifier que \mathscr{E} est une base de E et déterminer la matrice représentative de u et de v dans la base \mathscr{E} .

On revient au cas général; n est maintenant supposé quelconque. Soient u et v deux endomorphismes de E vérifiant

$$u^2 = v^2 = id$$
 et $u \circ v + v \circ u = 0$.

- **2)** Montrer que $\operatorname{Tr}(u \circ v) = 0$.
- 3) Montrer que Tr u = Tr v = 0.
- 4) Montrer que $E = E_1(u) \oplus E_{-1}(u)$ et expliciter, pour tout vecteur $x \in E$, la décomposition de x dans cette somme directe.
- 5) Montrer que la dimension de E est paire. On notera n=2k, avec k un entier naturel.
- **6)** Montrer que $v(E_1(u)) = E_{-1}(u)$ et que $v(E_{-1}(u)) = E_1(u)$.
- 7) Montrer qu'il existe une base $\mathscr{C} = (e_1, \dots, e_k, e_{k+1}, \dots, e_{2k})$ de E dans laquelle les matrices de u et de v s'écrivent, par blocs :

$$\operatorname{Mat}(u,\mathscr{C}) = \begin{pmatrix} I_k & 0 \\ 0 & -I_k \end{pmatrix} \quad \text{et} \quad \operatorname{Mat}(v,\mathscr{C}) = \begin{pmatrix} 0 & I_k \\ I_k & 0 \end{pmatrix}$$