Devoir de Mathématiques numéro 3

Correction

<u>Une remarque de rédaction</u>: prenez l'habitude de ne pas écrire d'équations sans préciser comment vous avez choisi les variables : n'oubliez pas les quantificateurs. Au lieu d'écrire

$$|f(t)| \leqslant Ct^n$$

écrivez,

$$\forall t \geqslant A, \qquad |f(t)| \leqslant Ct^n$$

Ce qui, au passage, vous évite des erreurs dans les questions 1)3)c), 2)1)a) et 2)2)a).

Exercice 1 (E3A PC 2010)

Les fonctions f de E vérifient :

$$\exists A > 0 \quad \exists C > 0 \quad \exists n \in \mathbb{N} / \qquad \forall t \geqslant A, \qquad |f(t)| \leqslant Ct^n$$

En particulier : elles ne sont pas forcément bornée $(t \mapsto t^2 \in E)$ et la majoration n'est valable que si $t \ge A$. Lorsqu'on veut montrer qu'une fonction f appartient à E, il faut **expliciter** A, C et n, expliquer lesquels on choisit (question 1.2).

On pouvait aussi remarquer que les fonctions f de E vérifient exactement

$$\exists n \in \mathbb{N} / f(t) = O_{+\infty}(t^n)$$

Partie 1 (la transformation de Laplace)

1) a) Soit x > 0 fixé. La fonction $t \mapsto e^{-xt}$ est continue donc continue par morceaux sur \mathbb{R}_+ et pour tout A > 0,

$$\int_0^A e^{-xt} \, dt = \left[\frac{e^{-xt}}{-x} \right]_0^A = \frac{1}{x} - \frac{e^{-xA}}{-x}$$

Donc l'intégrale $I_0(x)$ est convergente et $I_0(x) = \frac{1}{x}$.

b) Soit x > 0 fixé. Soit $n \in \mathbb{N}$ fixé, $t \mapsto t^n e^{-xt}$ est continue par morceaux sur \mathbb{R}_+ car composée de fonctions continues sur \mathbb{R}_+ . De plus $\lim_{t \to +\infty} t^2 t^n e^{-xt} = 0$ par croissance comparée donc,

$$t^n e^{-xt} = o\left(\frac{1}{t^2}\right)$$

Or $\frac{1}{t^2}$ est intégrable au voisinage de $+\infty$ (Riemann $\alpha=2$), donc $I_n(x)$ converge. Montrons que la propriété :

$$\mathcal{H}(n): \quad I_n(x) = \frac{n!}{x^{n+1}}$$

est vraie pour tout $n \ge 0$.

• \mathcal{H}_0 : est vraie d'après la question 1)a).

• $\underline{\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}}$: Supposons $\mathcal{H}(n)$ vraie. L'intégrale $I_{n+1}(x)$ converge d'après ci-dessus.

Intégrons par parties : par croissance comparée $\lim_{t\to+\infty}t^{n+1}\times\frac{e^{-xt}}{-x}=0$. Donc, d'après le théorème d'intégration par partie,

$$I_{n+1}(x) = \int_0^{+\infty} t^{n+1} e^{-xt} dt$$

$$= \left[t^{n+1} \times \frac{e^{-xt}}{-x} \right]_0^{+\infty} - \int_0^{+\infty} (n+1) t^n \frac{e^{-xt}}{-x} dt$$

$$= \frac{n+1}{x} I_n(x)$$

De plus, d'après $\mathcal{H}(n)$, $I_n(x) = \frac{n!}{x^{n+1}}$. Par conséquent

$$I_{n+1}(x) = \frac{n+1}{x} \times \frac{n!}{x^{n+1}} = \frac{(n+1)!}{x^{n+2}}$$

- Conclusion: Pour tout $n \ge 0$, $I_n(x) = \frac{n!}{x^{n+1}}$.
- 2) a) Montrons que E est un sous-espace vectoriel de $\mathscr{C}^0([0,+\infty[,\mathbb{R}):$
 - Pour tout $t \ge 1$, $|0| \le 1$ donc $0 \in E$ avec A = 1, C = 1 et n = 0. Ainsi $E \ne \emptyset$. (Important!)
 - Soit $\lambda \in \mathbb{R}$. Soit $f_1, f_2 \in E^2$, avec A_1, A_2, C_1, C_2, n_1 et n_2 les constantes associées.

Posons
$$\Rightarrow$$
 $A = \max(A_1, A_2, 1) > 0$
 \Rightarrow $C = |\lambda|C_1 + C_2 > 0$
 \Rightarrow $n = \max(n_1, n_2)$

Pour tout $t \geqslant A = \max(A_1, A_2, 1)$,

$$|\lambda f_1(t) + f_2(t)| \le |\lambda| |f_1(t)| + |f_2(t)| \le |\lambda| C_1 t^{n_1} + C_2 t^{n_2} \le |\lambda| C_1 t^n + C_2 t^n \le C t^n$$

De plus $\lambda f_1 + f_2$ est continue. Ainsi $\lambda f_1 + f_2 \in E$.

Par conséquent E est un sous-espace vectoriel de $\mathscr{C}^0([0,+\infty[,\mathbb{R}).$

b) Soit f une fonction continue et bornée sur $[0, +\infty[$. Notons $M = \sup_{[1, +\infty[} |f| \text{ et } C = M+1 > 0.$

Alors, pour tout $t \ge 1$, $|f(t)| \le Ct^0$. Donc $f \in E$. (C = M + 1, A = 1 et n = 0)

c) Soit f une fonction polynomiale de degré n.

La fonction $g: t \mapsto f(t)/t^n$ est continue sur $[1, +\infty[$ et a une limite finie en $+\infty$ donc est bornée sur $[1, +\infty[$. Notons $C = \sup_{[1, +\infty[} |g| + 1 > 0]$. Par définition, pour tout $t \ge 1$, $|g(t)| \le C$.

Alors, pour tout
$$t \ge 1$$
, $|f(t)| \le Ct^n$. Donc $f \in E$. $(C = \sup_{[1,+\infty[} |g| + 1, A = 1 \text{ et } n = \deg f))$

Autre preuve : Pour tout $n \in \mathbb{N}$, $t \mapsto t^n$ appartient à E (A = 1, C = 1, n = n). De plus, E est un \mathbb{R} -espace vectoriel (1)2)a), donc $\mathrm{Vect}\,(1,t,\ldots,t^n,\ldots) \subset E$, c'est-à-dire

L'ensemble des fonctions polynomiales appartient E.

3) a) Soit x un réel strictement positif.

La fonction $t \mapsto f(t)e^{-xt}$ est continue donc continue par morceaux sur $[0, +\infty[$. Soit A > 0, C > 0 et $n \in \mathbb{N}$ tels que $\forall t \geqslant A$, $|f(t) \leqslant Ct^n$. Ainsi,

$$\forall t \geqslant A \qquad |t^2 f(t) e^{-xt}| \leqslant C t^{n+2} e^{-xt} \xrightarrow[x \to +\infty]{} 0 \qquad \text{(croissance comparée, } x > 0\text{)}$$

Donc, $|f(t)e^{-xt}|=o\left(\frac{1}{t^2}\right)$. Or $\frac{1}{t^2}$ est intégrable au voisinage de $+\infty$ d'après Riemann. En conclusion, par comparaison,

La fonction
$$t \mapsto f(t)e^{-xt}$$
 est intégrable sur $[0, +\infty[$.

- **b)** (cours)
- c) On fixe un réel $x_0 > 0$. Appliquons le théorème de continuité des intégrales dépendant d'un paramètre sur l'intervalle $[x_0, +\infty[$.
 - Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto f(t)e^{-xt}$ est continue sur $[x_0, +\infty[$ car exponentielle l'est
 - Pour tout $x \in [x_0, +\infty[$, la fonction $t \mapsto f(t)e^{-xt}$ est continue par morceaux sur $[0, +\infty[$.
 - La fonction $\varphi(t) = |f(t)|e^{-x_0t}$ est intégrable sur $[0, +\infty[$ d'après 3)a) et

$$\forall (x,t) \in [x_0, +\infty[\times[0, +\infty[$$
 $|f(t)e^{-xt}| \le \varphi(t)$

(La majoration doit être vraie « pour tout t dans le domaine d'intégration », et pas — par exemple — juste pour $t \geqslant A$)

Donc, d'après le théorème de continuité sous le signe somme,

la fonction
$$\mathcal{L}(f)$$
 est définie et continue sur $[x_0, +\infty[$.

Soit $x \in]0, +\infty[$ fixé. Posons $x_0 = x/2$, alors $\mathcal{L}(f)$ est continue sur $[x_0, +\infty[= [x/2, +\infty[$ qui contient x, donc $\mathcal{L}(f)$ est continue en x. Ainsi $\mathcal{L}(f)$ est continue en x pour tout x > 0, c'est-à-dire

$$\mathcal{L}(f)$$
 est continue sur $]0, +\infty[$.

4) D'après 3)c), pour tout $f \in E$, $\mathcal{L}(f)$ existe et est une fonction définie définies et continues sur $]0, +\infty[$ à valeurs réelles. De plus, par linéarité de l'intégrale,

$$\forall (f,g) \in E^2 \ \forall \lambda \in \mathbb{R}$$
 $\mathcal{L}(f+\lambda g) = \mathcal{L}(f) + \lambda \mathcal{L}(g)$

En conclusion, La transformée de Laplace est une application linéaire de E dans $\mathscr{C}^0(]0, +\infty[, \mathbb{R})$.

Partie 2 (Quelques propriétés des transformées de Laplace)

- 1) On considère des réels A > 0, C > 0 et un entier n tels que $|f(t)| \leq Ct^n$ pour tout réel $t \geq A$.
 - a) Soit x > 0. D'après 1)1)b), la fonction $t \mapsto Ct^n e^{-xt}$ est intégrable sur $[A, +\infty[$. En intégrant l'inégalité ci-dessus, et en remarquant que $t^n e^{-xt} \geqslant 0$ sur [0, A], il vient

$$\int_A^{+\infty} |f(t)e^{-xt}| \, \mathrm{d}t \leqslant C \int_A^{+\infty} t^n e^{-xt} \, \mathrm{d}t \leqslant C \int_0^{+\infty} t^n e^{-xt} \, \mathrm{d}t = CI_n(x) = C \frac{n!}{x^{n+1}}$$

$$\text{Or } |\mathcal{L}(f)(x)| \leqslant \int_0^{+\infty} |f(t)e^{-xt}| \, \mathrm{d}t = \int_0^A |f(t)e^{-xt}| \, \mathrm{d}t + \int_A^{+\infty} |f(t)e^{-xt}| \, \mathrm{d}t.$$

$$\text{En conclusion, } |\mathcal{L}(f)(x)| \leqslant \int_0^A |f(t)e^{-xt}| \, \mathrm{d}t + C \frac{n!}{x^{n+1}} \text{ pour tout r\'eel } x > 0.$$

b) La fonction $t \mapsto |f(t)|$ est continue sur le segment [0, A] donc elle est bornée et atteint ses bornes. Soit $M = \sup_{[0,A]} |f|$.

$$\forall x > 0 \qquad \int_0^A |f(t)e^{-xt}| \, \mathrm{d}t \leqslant \int_0^A Me^{-xt} \, \mathrm{d}t = -M\left(\frac{e^{-xA}-1}{x}\right) \leqslant \frac{2M}{x}$$
 Or $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc
$$\int_0^A |f(t)e^{-xt}| \, \mathrm{d}t \xrightarrow[x \to +\infty]{} 0.$$

Attention! Warning! Ce n'est pas parce que la fonction (de t) dépendant d'un paramètre (x ou n) tend vers 0 (lorsque ce paramètre bouge) que son intégrale tend vers 0. Ne JAMAIS intervertir une limite et une intégrale sans théorème.

c) D'après 1)a), pour tout
$$x > 0$$
, $|\mathcal{L}(f)(x)| \le \int_0^A |f(t)e^{-xt}| dt + C \frac{n!}{x^{n+1}}$.

Or $\int_0^A |f(t)e^{-xt}| dt \xrightarrow[x \to +\infty]{} 0$ d'après 1)b), et $C \frac{n!}{x^{n+1}} \xrightarrow[x \to +\infty]{} 0$

Donc $C = C(f)(x) \to 0$ lorsque $x \to +\infty$.

- 2) a) On fixe un réel $x_0 > 0$. Appliquons le théorème de Leibniz de dérivation sous le signe somme sur l'intervalle $[x_0, +\infty[$. Posons $h(x,t) = f(t)e^{-xt}$ pour $(x,t) \in [x_0, +\infty[\times \mathbb{R}_+ .$
 - Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto h(x,t) = f(t)e^{-xt}$ est \mathscr{C}^1 sur $[x_0, +\infty[$
 - Pour tout $x \in [x_0, +\infty[$, la fonction $t \mapsto f(t)e^{-xt}$ est **intégrable** sur \mathbb{R}_+ d'après 3)a), la fonction $t \mapsto \frac{\partial h}{\partial x}(x,t) = -tf(t)e^{-xt}$ est continue par morceaux sur \mathbb{R}_+ .
 - La fonction $\varphi: t \mapsto t|f(t)|e^{-x_0t}$ est intégrable sur \mathbb{R}_+ (de même qu'en 1)3)a) = $o(1/t^2)$) et

$$\forall (x,t) \in [x_0, +\infty[\times \mathbb{R}_+ \quad \left| \frac{\partial h}{\partial x}(x,t) \right| = |tf(t)e^{-xt}| \leqslant \varphi(t)$$

(Les remarques de la question 1)3)c) restent valables. De plus, l'hypothèse $t \mapsto h(x,t)$ intégrable doit être présente!)

Donc, d'après le théorème de Leibniz de dérivation sous le signe somme,

la fonction
$$\mathcal{L}(f)$$
 est C^1 sur $[x_0, +\infty[$ et $(\mathcal{L}(f))'(x) = -\int_0^{+\infty} tf(t)e^{-xt} dt.$

b) $\mathcal{L}(f)$ est donc C^1 sur $[x_0, +\infty[$ pour tout $x_0 > 0$, donc elle est C^1 sur la réunion de ces intervalles, c'est-à-dire sur $]0, +\infty[$.

De plus, on a toujours, pour tout $x \in]0, +\infty[$,

$$(\mathcal{L}(f))'(x) = -\int_0^{+\infty} t f(t) e^{-xt} dt$$

3) a) Effectuons une intégration par parties. Soit $x \in]0, +\infty[$ fixé. Pour tout T > 0,

$$\int_0^T f'(t)e^{-xt} dt = \left[f(t)e^{-xt} \right]_0^T - \int_0^T f(t)(-xe^{-xt}) dt = f(T)e^{-xT} - f(0) + x \int_0^T f(t)e^{-xt} dt$$

Or $\lim_{T\to +\infty} f(T)e^{-xT}=0$. Ainsi, en prenant la limite lorsque $T\to +\infty$,

$$\mathcal{L}(f')(x) = x\mathcal{L}(f)(x) - f(0)$$

On peut aussi appliquer le théorème d'intégration par partie, évidemment.

b) Soit A>0, C>0 et $n\in\mathbb{N}$ qui conviennent pour f' ($f'\in E$ par hypothèse). Alors

$$\forall t \geqslant A \qquad |tf'(t)| \leqslant Ct^{n+1}$$

Donc $A_h = A$, $C_h = C$ et $n_h = n + 1$ conviennent, et $h \in E$

(Attention! Dériver une inégalité est une **abomination**. exemple : $|\sin t| \le 1$ et pourtant $\cos t \ne 0$. Voir pire : $|\sin(e^t)| \le 1$ (donc dans E) et sa dérivée $(t \mapsto e^t \cos(e^t))$ n'est pas dans E)

Montrons l'égalité : effectuons une intégration par parties. Soit $x \in]0, +\infty[$ fixé. Pour tout T > 0,

$$\int_{0}^{T} t f'(t) e^{-xt} dt = \left[f(t) t e^{-xt} \right]_{0}^{T} - \int_{0}^{T} f(t) (e^{-xt} - xt e^{-xt}) dt$$

$$= f(T) T e^{-xT} - \int_{0}^{T} f(t) e^{-xt} dt + x \int_{0}^{T} t f(t) e^{-xt} dt$$

$$= \int_{0}^{T} f(t) e^{-xt} dt + x \int_{0}^{T} f(t) e^{-xt} dt$$

Or $\lim_{T\to +\infty} f(T)Te^{-xT}=0$, et on reconnaît $\int_0^{+\infty} tf(t)e^{-xt}\,\mathrm{d}t=-(\mathcal{L}(f))'(x)$. Ainsi, en prenant la limite lorsque $T\to +\infty$,

$$\forall x \in]0, +\infty[, \mathcal{L}(h)(x) = -\mathcal{L}(f)(x) - x(\mathcal{L}(f))'(x)]$$

Autre méthode pour l'égalité : Plus d'abstraction et moins de calculs. Soit g(t) = tf(t). Avec $A_g = A_f$, $C_g = C_f$ et $n_g = n_f + 1$, on a $g \in E$. De plus, g est de classe \mathscr{C}^1 (comme produit de \mathscr{C}^1), et

$$g'(t) = f(t) + tf'(t) = f(t) + h(t)$$

Or $f \in E$ et $h \in E$ donc, comme E est un espace vectoriel, $g' \in E$. Nous sommes donc dans les hypothèse de la question 3)b) ci-dessus :

$$\forall x \in]0, +\infty[$$
 $\mathcal{L}(g')(x) = x\mathcal{L}(g)(x) - g(0)$

Par linéarité de \mathcal{L} (question 1)4)), $\mathcal{L}(g') = \mathcal{L}(f+h) = \mathcal{L}(f) + \mathcal{L}(h)$. De plus $\mathcal{L}(g) = -(\mathcal{L}(f))'$ d'après 2)b), et g(0) = 0. Donc finalement, en remplaçant,

$$\forall x \in]0, +\infty[, \quad \mathcal{L}(h)(x) = -\mathcal{L}(f)(x) - x(\mathcal{L}(f))'(x)$$

c) On se contente d'appliquer 2)3)a) deux fois (d'abord à f'):

$$\mathcal{L}(f'') = x\mathcal{L}(f') - f'(0) = x^2\mathcal{L}(f) - xf(0) - f'(0)$$

Partie 3 (une application de la transformation de Laplace)

- 1) L'équation différentielle linéaire d'ordre 2y'' ty + 2py = 0 est à coefficients continus sur $I = \mathbb{R}$, le coefficient devant y'' est bien égal à 1. Ainsi, d'après le théorème de Cauchy-Lipschitz, il y a existence et unicité de la solution Y sur $I = \mathbb{R}$ du problème de Cauchy (\mathcal{P}) .
 - Nous verrons le théorème de Cauchy-Lipschitz au moment du chapitre sur les équations différentielles.
- 2) Partons de ce que l'on sait :

$$f'' - tf' + 2pf = 0$$

Les fonctions f, f' et f'' appartiennent à E, donc $h: t \mapsto tf'(t) \in E$ (d'après 2)3)b)) et l'application \mathcal{L} est linéaire, donc on trouve

$$\mathcal{L}(f'' - tf' + 2pf) = \mathcal{L}(f'') - \mathcal{L}(tf') + 2p\mathcal{L}(f) = \mathcal{L}(0) = 0$$

Or, d'après 2)3)b) et c) on sait que

$$\mathcal{L}(f'') = x^2 \mathcal{L}(f) - xf(0) - f'(0) = x^2 \mathcal{L}(f) - x \qquad \text{et} \qquad \mathcal{L}(tf') = \mathcal{L}(h) = -\mathcal{L}(f) - x(\mathcal{L}(f))'$$

avec f(0) = 1 et f'(0) = 0. On a posé $U = \mathcal{L}(f)$, donc il vient

$$\forall x > 0$$
 $x^2U(x) - x - (-U(x) - xU'(x)) + 2pU(x) = 0$

En divisant par x > 0 et en réarrangeant, il nous reste

$$U'(x) + \left(x + \frac{2p+1}{x}\right)U(x) = 1$$

Ainsi U est une solution de (J) sur $]0, +\infty[$.

3) a) Soit $n \in \mathbb{N}$. On effectue une intégration par parties

$$f_n(x) = \int_0^x t^{2n+1} e^{\frac{t^2}{2}} dt = \left[\frac{t^{2n+2}}{2n+2} e^{\frac{t^2}{2}} \right]_0^x - \int_0^x \frac{t^{2n+2}}{2n+2} t e^{\frac{t^2}{2}} dt$$
$$= \frac{x^{2n+2}}{2n+2} e^{\frac{x^2}{2}} - \frac{1}{2n+2} \int_0^x t^{2n+3} e^{\frac{t^2}{2}} dt = \frac{x^{2n+2}}{2n+2} e^{\frac{x^2}{2}} - \frac{1}{2n+2} f_{n+1}(x)$$

En conclusion :
$$f_n(x) = \frac{x^{2n+2}}{2n+2}e^{\frac{x^2}{2}} - \frac{1}{2n+2}f_{n+1}(x)$$
 pour tout $x \in \mathbb{R}$.

b) Soit $x \in \mathbb{R}$. Montrons par récurrence que la propriété :

$$\mathcal{H}(n): f_n(x) = (-1)^{n+1} 2^n n! + n! e^{\frac{x^2}{2}} \sum_{k=0}^n (-1)^k \frac{2^k}{(n-k)!} x^{2n-2k}$$

est vraie pour tout $n \ge 0$.

- $\underline{\mathcal{H}}_0: f_0(x) = \int_0^x te^{\frac{t^2}{2}} dt = \left[e^{\frac{t^2}{2}}\right]_0^x = e^{\frac{x^2}{2}} 1 = (-1)^1 2^0 0! + 0! e^{\frac{x^2}{2}} (-1)^0 x^0 \text{ Donc } \mathcal{H}(0) \text{ est vraie.}$
- $\underline{\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}}$: Supposons $\mathcal{H}(n)$ vraie, c'est-à-dire

$$f_n(x) = (-1)^{n+1} 2^n n! + n! e^{\frac{x^2}{2}} \sum_{k=0}^n (-1)^k \frac{2^k}{(n-k)!} x^{2n-2k}$$

Calculons $f_{n+1}(x)$ à l'aide de la formule du 2)a):

$$f_{n+1}(x) = x^{2n+2}e^{\frac{x^2}{2}} - (2n+2)f_n(x)$$

$$= x^{2n+2}e^{\frac{x^2}{2}} - 2(n+1)\left((-1)^{n+1}2^n n! + n!e^{\frac{x^2}{2}}\sum_{k=0}^n (-1)^k \frac{2^k}{(n-k)!}x^{2n-2k}\right)$$

$$= x^{2n+2}e^{\frac{x^2}{2}} + (-1)^{n+2}2^{n+1}(n+1)! + (n+1)!e^{\frac{x^2}{2}}\sum_{k=0}^n (-1)^{k+1}\frac{2^{k+1}}{(n-k)!}x^{2n-2k}$$

$$= (-1)^{n+2}2^{n+1}(n+1)! + (n+1)!e^{\frac{x^2}{2}}\frac{(-1)^02^0}{(n+1)!}x^{2n+2-0}$$

$$+ (n+1)!e^{\frac{x^2}{2}}\sum_{k=1}^{n+1} (-1)^k \frac{2^k}{(n-k+1)!}x^{2n-2k+2}$$

$$= (-1)^{n+2}2^{n+1}(n+1)! + (n+1)!e^{\frac{x^2}{2}}\sum_{k=0}^{n+1} (-1)^k \frac{2^k}{((n+1)-k)!}x^{2(n+1)-2k}$$

Donc $\mathcal{H}(n+1)$ est vraie.

• Conclusion:
$$\forall n \ge 0$$
 $f_n(x) = (-1)^{n+1} 2^n n! + n! e^{\frac{x^2}{2}} \sum_{k=0}^n (-1)^k \frac{2^k}{(n-k)!} x^{2n-2k}$

4) a) C'est une équation différentielle de la forme u'=a(x)u, les solutions sont donc de la forme $u(x)=C\exp(A(x))$ avec A une primitive de a et $C\in\mathbb{R}$. Ainsi

$$u(x) = C \exp{-\left(\frac{x^2}{2} + (2p+1)\ln x\right)} = C\frac{e^{-\frac{x^2}{2}}}{x^{2p+1}}$$

Conclusion : Une base de l'espace des solutions de (J') est $\widetilde{u}(x) = \frac{e^{-\frac{x^2}{2}}}{x^{2p+1}}$.

Les solutions sont de la forme Cu, donc l'ensemble des solution est Vect (u).

b) On note U_0 la fonction u correspondant à C=0. On vérifie que U_0 est solution de (J) en injectant l'expression de U_0 dans (J). (preuve laissée au lecteur — dans une copie il faut bien sûr faire le calcul) L'ensemble des solutions de (J) est l'espace affine constitué des fonctions $U_0 + C\tilde{u}$ où U_0 est une solution particulière de l'équation avec second membre et \tilde{u} une base des solutions de l'équation homogène.

Donc l'ensemble des solutions de (J) sur l'intervalle $]0,+\infty[$ est constitué des fonctions de la forme

$$u(x) = C\widetilde{u}(x) + U_0(x) = C\frac{e^{-\frac{x^2}{2}}}{x^{2p+1}} + p! \sum_{k=0}^{p} (-1)^k \frac{2^k}{(p-k)!} \frac{1}{x^{2k+1}}$$

où C est un réel quelconque.

5) a) D'après 1)1)b), si on note M_n la restriction à $[0, +\infty[$ du monôme $t \mapsto t^n$, on a $\mathcal{L}(M_n) = \frac{n!}{x^{n+1}}$. Ainsi, par combinaison linéaire, il vient

$$U_0(x) = p! \sum_{k=0}^{p} (-1)^k \frac{2^k}{(p-k)!} \frac{1}{x^{2k+1}} = p! \sum_{k=0}^{p} \frac{(-1)^k 2^k}{(p-k)!(2k)!} \frac{(2k)!}{x^{2k+1}} = p! \sum_{k=0}^{p} \frac{(-2)^k}{(p-k)!(2k)!} \mathcal{L}(M_{2k})$$

En posant
$$R(X) = p! \sum_{k=0}^{p} \frac{(-2)^k}{(p-k)!(2k)!} X^{2k}$$
, il vient $\mathcal{L}(R_0) = U_0$.

b) On calcule R'' - XR' + 2pR et on trouve 0, de plus R'(0) = 0 et R(0) = 1. Donc, comme on a admis l'unicité de la solution de (\mathcal{P}) ,

$$R$$
 est la solution de (\mathcal{P}) sur \mathbb{R} .