Devoir de Mathématiques numéro 1

Exercice 1

Le but de cet exercice est de calculer la valeur de l'intégrale de Gauss :

$$I = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x$$

- 1) a) Montrer que : $\forall t \in]-1, +\infty[$, $\ln(1+t) \leq t$.
 - **b)** Soit $n \in \mathbb{N}^*$. En déduire que, pour tout réel $x \in [0, \sqrt{n}]$,

$$\left(1 - \frac{x^2}{n}\right)^n \leqslant e^{-x^2} \leqslant \left(1 + \frac{x^2}{n}\right)^{-n}$$

L'inégalité de droite est-elle encore vraie sur \mathbb{R}_+ ?

c) Dans cette question, on suppose x fixé dans \mathbb{R}_+ . Déterminer :

$$\lim_{n \to +\infty} \left(1 - \frac{x^2}{n}\right)^n \qquad \text{et} \qquad \lim_{n \to +\infty} \left(1 + \frac{x^2}{n}\right)^{-n}$$

d) Montrer que pour tout réel positif x:

$$\left(1 + \frac{x^2}{n}\right)^{-n} \leqslant \frac{1}{1 + x^2}$$

- 2) a) Montrer la convergence de $\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2}$ et calculer sa valeur.
 - **b)** En déduire la convergence de $I = \int_0^{+\infty} e^{-x^2} dx$ ainsi que la majoration

$$I \leqslant \frac{\pi}{2}$$

3) Pour tout $n \in \mathbb{N}^*$, on pose désormais

$$u_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n} \right)^n dx, \qquad I_n = \int_0^{\sqrt{n}} e^{-x^2} dx, \qquad v_n = \int_0^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-n} dx$$

- a) Montrer la convergence des intégrales généralisées v_n pour tout $n \in \mathbb{N}^*$.
- **b)** Montrer que, pour tout $n \in \mathbb{N}^*$,

$$u_n \leqslant I_n \leqslant v_n$$

- 4) On pose pour tout $n \in \mathbb{N}^*$, $W_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$. On admet le résultat $W_n \sim \sqrt{\frac{\pi}{2n}}$. Vous êtes vivement encouragé à revoir l'étude des intégrales de Wallis faite en PCSI.
 - a) Soit $n \in \mathbb{N}^*$. À l'aide du changement de variable $x = \sqrt{n} \sin t$, exprimer u_n en fonction de W_{2n+1} .
 - b) Soit $n \in \mathbb{N}^*$. À l'aide du changement de variable $x = \sqrt{n} \tan t$, exprimer v_n en fonction de W_{2n-2} .

 Indication: On rappelle la relation $\cos^2 t = \frac{1}{1 + \tan^2 t}$.

5) En déduire la valeur de $I = \int_0^{+\infty} e^{-x^2} dx$.

Exercice 2 (D'après Mines-Ponts)

Partie 1 (Exponentielle tronquée)

Pour tout x réel strictement positif et n entier naturel, on pose

$$T_n(x) = \sum_{k=0}^n \frac{n^k x^k}{k!}$$
 et $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{n^k x^k}{k!}$

On admet que, pour tout $u \in \mathbb{R}$, $e^u = \sum_{k=0}^{+\infty} \frac{u^k}{k!}$.

- 1) Démontrer que $\int_0^{+\infty} t^n e^{-t} dt$ converge, puis la relation $n! = \int_0^{+\infty} t^n e^{-t} dt$ pour tout $n \in \mathbb{N}$.
- 2) Justifier l'existence de $R_n(x)$. Que vaut la somme $T_n(x) + R_n(x)$?
- 3) Pour une fonction f de classe \mathscr{C}^{n+1} définie sur un intervalle I contenant 0, la formule de Taylor avec reste intégral en 0 s'écrit :

$$\forall x \in I \qquad f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0) + \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

- a) Montrer par récurrence cette formule.
- b) En appliquant cette formule à la fonction $x \mapsto e^{nx}$, prouver à l'aide d'un changement de variable la relation

$$\forall x \in \mathbb{R}_+^*, \quad \forall n \in \mathbb{N}, \qquad R_n(x) = e^{nx} \frac{n^{n+1}}{n!} \int_0^x (ue^{-u})^n du$$

- **4)** a) Soit M > 0. On pose $a_n = \frac{n^{n+1}}{n!} M^n$. Calculer $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$.
 - **b)** (5/2 pour les 3/2, admettre le résultat) Montrer que, si $0 < M < e^{-1}, \text{ alors}$

$$\lim_{n \to +\infty} a_n = 0$$

- c) On suppose dans cette question que $x \in]0,1[$. Montrer que la fonction $u \mapsto ue^{-u}$ admet, sur [0,x], un maximum M tel que $M < e^{-1}$.
- d) En déduire que lorsque $n \to +\infty$,

$$R_n(x) = o(e^{nx})$$
 puis $T_n(x) \sim e^{nx}$

5) Pour tout entier $n \ge 1$, montrer l'identité suivante à l'aide du résultat de la question 1 :

$$T_n(x) = e^{nx} \frac{n^{n+1}}{n!} \int_x^{+\infty} (ue^{-u})^n du$$

6) Montrer que, pour x > 1 et pour tout $u \ge x$,

$$(ue^{-u})^n \le (xe^{-x})^{n-1}ue^{-u}$$

7) En déduire que, si x > 1, alors $T_n(x) = o(e^{nx})$ lorsque n tend vers $+\infty$.

Partie 2 (Méthode de Laplace)

Soit $f:[-1,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 sur laquelle on fait les hypothèses suivantes :

 $\mathbf{H1}: f(0) = 1$

H2: f''(0) = -1

H3: Pour tout $x \in]-1,1[\setminus \{0\} \ 0 < f(x) < 1]$

H4: les nombres f(-1) et f(1) appartiennent à l'intervalle [0,1].

Pour $x \in]-1,1[\setminus\{0\}]$, on pose

$$\varphi(x) = -\frac{1}{x^2} \ln (f(x)).$$

DL 1

1) Par une étude de fonction, montrer que f'(0) = 0. Puis, à l'aide d'un développement limité, déterminer $k = \lim_{x \to 0} \varphi(x)$.

On prolonge φ en posant $\varphi(0) = k$.

2) Montrer que la fonction φ , sur]-1,1[, est minorée par un réel strictement positif. En déduire l'existence d'un réel a strictement positif tel que pour tout $x \in [-1,1]$, on ait

$$f(x) \leqslant e^{-ax^2}$$
.

Indication : on pourra distinguer les cas où f(1) et f(-1) sont non nuls des cas où l'un des deux au moins est nul.

Pour tout n entier naturel non nul, on définit une fonction $g_n : \mathbb{R} \to \mathbb{R}$ par

$$g_n(u) = \begin{cases} \left(f\left(\frac{u}{\sqrt{n}}\right) \right)^n & \text{si } u \in [-\sqrt{n}, \sqrt{n}] \\ 0 & \text{sinon} \end{cases}$$

3) Montrer que chaque fonction g_n est continue par morceaux sur \mathbb{R} , et que la suite de fonctions $(g_n, n \ge 1)$ converge simplement sur \mathbb{R} vers la fonction g telle que pour tout $u \in \mathbb{R}$,

$$g(u) = e^{-u^2/2}.$$

4) À l'aide de l'exercice 1, montrer que

$$\int_{-\infty}^{+\infty} e^{-t^2/2} \, \mathrm{d}t = \sqrt{2\pi}.$$

5) En déduire que

$$\int_{-1}^{1} (f(x))^n dx \underset{n \to +\infty}{\sim} \sqrt{\frac{2\pi}{n}}.$$

On en déduit de la même manière que

$$\int_0^1 (f(x))^n dx \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$$
 (1)

Partie 3 (Formule de Stirling)

Avertissement : même si elle fait partie du programme, on (re)démontre dans cette partie la formule de Stirling.

1) Pour tout entier $n \ge 1$, déduire de la question 5 que

$$n! = n^{n+1}e^{-n}(I_n + J_n),$$

avec

$$I_n = \int_{-1}^{1} (x+1)^n e^{-nx} dx \text{ et } J_n = \int_{1}^{+\infty} (x+1)^n e^{-nx} dx.$$

- 2) Montrer que pour tout $x \ge 1$, $x + 1 \le 2^x$. En déduire une majoration de J_n .
- 3) En appliquant la méthode de Laplace, donner un équivalent de I_n .
- 4) En déduire que

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.