Devoir de Mathématiques numéro 1

Correction

Exercice 1 (D'après TPC 2019)

1) a) Pour tout $t \in]-1, +\infty[$, posons $\varphi(t) = \ln(1+t) - t$.

$$\forall t \in]-1, +\infty[, \qquad \varphi'(t) = \frac{1}{1+t} - 1 = -\frac{t}{1+t}$$

Donc $\varphi'(t)$ est du signe de -t, et le tableau de variations de φ s'écrit

x	-1		0	$+\infty$
$\varphi'(x)$		+	0	_
φ			0	

Ainsi, $\varphi \leq 0$ et en conclusion :

$$\forall t \in]-1, +\infty[, \ln(1+t) \leqslant t]$$

b) Soit $n \in \mathbb{N}^*$.

Première inégalité : Soit $x \in [0, \sqrt{n}]$.

Comme $-\frac{x^2}{n} \in]-1,0] \subset]-1,+\infty[$, l'inégalité de la question 1 s'applique et nous donne

$$\ln\left(1 - \frac{x^2}{n}\right) \leqslant -\frac{x^2}{n}$$

$$\Rightarrow \qquad n \ln\left(1 - \frac{x^2}{n}\right) \leqslant -x^2 \qquad \text{Car } n > 0$$

$$\Rightarrow \qquad e^{n \ln\left(1 - \frac{x^2}{n}\right)} = \left(1 - \frac{x^2}{n}\right)^n \leqslant e^{-x^2} \qquad \text{Car } exp \text{ est croissante}$$

Cette inégalité reste vraie pour $x = \sqrt{n}$: $0 \leqslant e^{-n}$.

Seconde inégalité : Soit $x \in \mathbb{R}_+$. Comme $\frac{x^2}{n} \geqslant 0$, l'inégalité de la question 1 s'applique et nous donne de même

$$\ln\left(1 + \frac{x^2}{n}\right) \leqslant \frac{x^2}{n}$$

$$\Rightarrow \qquad -n\ln\left(1 + \frac{x^2}{n}\right) \geqslant -x^2$$

$$\Rightarrow \qquad e^{-n\ln\left(1 + \frac{x^2}{n}\right)} = \left(1 + \frac{x^2}{n}\right)^{-n} \geqslant e^{-x^2}$$

Finalement,

$$\forall x \in [0, \sqrt{n}], \quad \left(1 - \frac{x^2}{n}\right)^n \leqslant e^{-x^2} \leqslant \left(1 + \frac{x^2}{n}\right)^{-n}$$

L'inégalité de droite est encore vraie sur \mathbb{R}_+ .

c) C'est quasiment une des questions de cours. Nous verrons au chapitre suivant que c'est un résultat de convergence simple.

• Pour *n* assez grand, $1 - \frac{x^2}{n} > 0$, donc on peut écrire

$$\left(1 - \frac{x^2}{n}\right)^n = e^{n\ln\left(1 - \frac{x^2}{n}\right)}$$

$$= e^{n\left(-\frac{x^2}{n} + o\left(\frac{1}{n}\right)\right)}$$

$$= e^{-x^2 + o(1)}$$
Développement limité de $\ln(1 - u)$

Ainsi,

$$\lim_{n \to +\infty} \left(1 - \frac{x^2}{n} \right)^n = e^{-x^2}$$

• De même, comme $1 + \frac{x^2}{n} > 0$,

$$\left(1+\frac{x^2}{n}\right)^{-n}=e^{-n\ln\left(1+\frac{x^2}{n}\right)}$$

$$=e^{-n\left(\frac{x^2}{n}+o\left(\frac{1}{n}\right)\right)}$$
 Développement limité de $\ln(1+u)$
$$=e^{-x^2+o(1)}$$

Ainsi,

$$\lim_{n \to +\infty} \left(1 + \frac{x^2}{n} \right)^{-n} = e^{-x^2}$$

d) Comment commencer? D'abord, les fractions, c'est le Mal : partir du résultat et essayer d'obtenir une expression sans fractions, autant que possible. Ensuite, on peut tout passer d'un côté et se ramener à une étude de signe. Puis on rédige tout ça dans le bon ordre : la conclusion en dernier.

Posons, pour tout $x \ge 0$,

$$\varphi(x) = 1 + x^2 - \left(1 + \frac{x^2}{n}\right)^n$$

La fonction φ est dérivable,

$$\varphi'(x) = 2x - 2x \left(1 + \frac{x^2}{n}\right)^{n-1}$$
$$= 2x \left(1 - \left(1 + \frac{x^2}{n}\right)^{n-1}\right)$$

Pour x > 0, $1 + \frac{x^2}{n} > 1$ donc la parenthèse est négative, et le tableau de variation de φ s'écrit

x	0 +∞
$\varphi'(x)$	0 -
φ	0

Donc pour tout $x \ge 0$, $\varphi(x) \le 0$. Ainsi,

$$0 < 1 + x^2 \leqslant \left(1 + \frac{x^2}{n}\right)^n$$

En passant à l'inverse, il vient,

$$\left(1 + \frac{x^2}{n}\right)^{-n} \leqslant \frac{1}{1 + x^2}$$

On peut aussi utiliser, en étant moins systématique, la formule du binôme,

$$\left(1 + \frac{x^2}{n}\right)^n = 1 + x^2 + \sum_{k=2}^n \underbrace{\binom{n}{k} \left(\frac{x^2}{n}\right)^k}_{\geqslant 0} \geqslant 1 + x^2$$

2) a) Pour tout X > 0, $\int_0^X \frac{\mathrm{d}x}{1+x^2} = \operatorname{Arctan} X \xrightarrow[X \to +\infty]{\pi} \frac{\pi}{2}$, donc

$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} \text{ converge et vaut } \frac{\pi}{2}$$

b) D'après 1)b) et 1)d),

$$\forall x > 0, \qquad 0 < e^{-x^2} \le \left(1 + \frac{x^2}{n}\right)^{-n} \le \frac{1}{1 + x^2}$$

Or d'après a), l'intégrale $\int_0^{+\infty} \frac{1}{1+x^2} dx$ converge. Donc, par majoration,

L'intégrale
$$\int_0^{+\infty} e^{-x^2} dx$$
 converge

De plus, en intégrant l'inégalité précédente et vu le calcul du a),

$$I = \int_0^{+\infty} e^{-x^2} \, dx \leqslant \int_0^{+\infty} \frac{dx}{1 + x^2} = \frac{\pi}{2}$$

3) a) Soit $n \in \mathbb{N}^*$ fixé. La fonction $f: x \mapsto \left(1 + \frac{x^2}{n}\right)^{-n}$ est continue donc continue par morceaux sur $[0, +\infty[$. De plus, $f \geqslant 0$.

 $\underline{\text{\acute{E}tude en } +\infty}: 1+\frac{x^2}{n} \sim \frac{x^2}{n}, \, \text{donc } \textit{(J'insiste : n fix\'e)}$

$$f(x) \sim \frac{(x^2)^{-n}}{n^{-n}} = \frac{n^n}{x^{2n}}$$

Or $\int_1^{+\infty} \frac{1}{x^{2n}} dx$ converge (Riemann, $2n \ge 2 > 1$), Donc, par comparaison,

Les intégrales généralisées
$$v_n = \int_0^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} \, \mathrm{d}x$$
 convergent

b) Soit $n \in \mathbb{N}^*$. En intégrant l'encadrement obtenu en 1)b) entre 0 et \sqrt{n} , il vient

$$\underbrace{\int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx}_{u_n} \le \underbrace{\int_0^{\sqrt{n}} e^{-x^2} dx}_{I_n} \le \int_0^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} dx$$

Or
$$\left(1 + \frac{x^2}{n}\right)^{-n} \ge 0$$
 sur $\left[\sqrt{n}, +\infty\right[$. Donc $\int_{\sqrt{n}}^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} dx \ge 0$, puis
$$\int_0^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} dx \le \int_0^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} dx + \int_{\sqrt{n}}^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} dx = v_n$$

Conclusion:

$$u_n \leqslant I_n \leqslant v_n$$

4) a) Soit $n \in \mathbb{N}^*$. Effectuons le changement de variables $x = \sqrt{n} \sin t$: La fonction $t \mapsto \sqrt{n} \sin t$ est strictement croissante de $[0, \pi/2]$ dans $[0, \sqrt{n}]$, et $dx = \sqrt{n} \cos t \, dt$.

$$u_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n dx$$

$$= \int_0^{\frac{\pi}{2}} \left(1 - \frac{(\sqrt{n}\sin t)^2}{n}\right)^n (\sqrt{n}\cos t) dt$$

$$= \sqrt{n} \int_0^{\frac{\pi}{2}} (1 - \sin^2 t)^n \cos t dt$$

$$= \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n+1} t dt$$

Conclusion:

$$u_n = \sqrt{n}W_{2n+1}$$

b) Soit $n \in \mathbb{N}^*$. Attention, intégrale généralisée : théorème de changement de variables à invoquer. La fonction $\varphi : t \mapsto \sqrt{n} \tan t$ est \mathscr{C}^1 , strictement croissante (donc bijective) de $[0, \pi/2[$ dans $[0, +\infty[$. De plus, $\varphi'(t) = \frac{\sqrt{n}}{\cos^2 t}$.

Donc, d'après le théorème de changement de variable, les intégrales $\int_0^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} dx$ et $\int_0^{\frac{\pi}{2}} \left(1 + \frac{(\sqrt{n}\tan t)^2}{n}\right)^{-n} \frac{\sqrt{n}}{\cos^2 t} dt$ sont de même nature, donc convergentes puisque la première l'est d'après 3)a), et

$$v_n = \int_0^{+\infty} \left(1 + \frac{x^2}{n} \right)^{-n} dx$$

$$= \int_0^{\frac{\pi}{2}} \left(1 + \frac{(\sqrt{n} \tan t)^2}{n} \right)^{-n} \frac{\sqrt{n}}{\cos^2 t} dt$$

$$= \sqrt{n} \int_0^{\frac{\pi}{2}} \left(1 + \tan^2 t \right)^{-n} \frac{1}{\cos^2 t} dt \qquad \text{Or } 1 + \tan^2 t = \frac{1}{\cos^2 t} = \tan' t$$

$$= \sqrt{n} \int_0^{\frac{\pi}{2}} \left(\frac{1}{\cos^2 t} \right)^{-n} \frac{1}{\cos^2 t} dt$$

$$= \sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n-2} t dt$$

Conclusion:

$$v_n = \sqrt{n}W_{2n-2}$$

5) L'énoncé nous rappelle que $W_n \sim \sqrt{\frac{\pi}{2n}}$, donc

$$W_{2n+1} \sim \sqrt{\frac{\pi}{2(2n+1)}} \sim \sqrt{\frac{\pi}{4n}} \sim \frac{1}{\sqrt{n}} \times \frac{\sqrt{\pi}}{2}$$

D'où $u_n \sim \frac{\sqrt{\pi}}{2}$ d'après 4)a), et donc

$$\lim_{n \to +\infty} u_n = \frac{\sqrt{\pi}}{2}$$

De même, $W_{2n-2} \sim \frac{1}{\sqrt{n}} \times \frac{\sqrt{\pi}}{2}$, donc, d'après 4)b),

$$\lim_{n \to +\infty} v_n = \frac{\sqrt{\pi}}{2}$$

Ainsi, grâce à l'encadrement obtenu en 3)b), la suite (I_n) converge vers $\frac{\sqrt{\pi}}{2}$. D'où

$$I = \int_0^{+\infty} e^{-x^2} dx = \lim_{n \to +\infty} \int_0^{\sqrt{n}} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Exercice 2 (E3A PSI 2016)

1) On utilise la factorisation par l'angle moitié

$$\begin{split} u &= e^{i\frac{\theta}{2}} (e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}) \\ &= 2\cos\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}} \\ &= -2\cos\left(\frac{\theta}{2}\right) e^{i\pi} e^{i\frac{\theta}{2}} \qquad \qquad \text{'(utile si } \cos\left(\frac{\theta}{2}\right) < 0) \end{split}$$

Ainsi
$$u| = 2 \left| \cos \left(\frac{\theta}{2} \right) \right|$$

Si $|u| \neq 0$, c'est-à-dire $\theta \neq \pi$, l'argument existe et

$$\arg u = \begin{cases} \frac{\theta}{2} [2\pi] & \text{si } \theta \in [0, \pi[\\ \pi + \frac{\theta}{2} [2\pi] & \text{si } \theta \in]\pi, 2\pi[\end{cases}$$

2) a) Etude des cas n=1 et n=2 On rappelle la factorisation suivante – toujours la série géométrique :

$$(X^{n}-1) = (X-1)(X^{n-1} + X^{n-2} + \dots + X + 1)$$

D'où l'on déduit, via X = a/b,

$$(a^{n} - b^{n}) = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

i) On pouvait aussi utiliser le binôme de Newton pour n=3 et n=5, en calculant les coefficients du binôme à l'aide du triangle de Pascal.

$$P_1 = \frac{1}{2i} \left((X+i)^3 - (X-i)^3 \right)$$

$$= \frac{1}{2i} (X+i-X+i)((X+i)^2 + (X+i)(X-i) + (X-i)^2)$$

$$= (X^2+2i-1) + (X^2+1) + (X^2-2i-1)$$

$$= 3X^2 - 1$$

$$P_{2} = \frac{1}{2i} \left((X+i)^{5} - (X-i)^{5} \right)$$

$$= \frac{1}{2i} (X+i-X+i) \left[(X+i)^{4} + (X+i)^{3} (X-i) + ((X+i)(X-i))^{2} + (X+i)(X-i)^{3} + (X-i)^{4} \right]$$

$$= 2\Re \left((X+i)^{4} + (X+i)^{3} (X-i) \right) + (X^{2}+1)^{2}$$

$$= 2X^{4} - 12X^{2} + 2 + 2(X^{2}-1)(X^{2}+1) + X^{4} + 2X^{2} + 1$$

$$= 5X^{4} - 10X^{2} + 1$$

Ainsi,
$$P_1 = 3X^2 - 1$$
 et $P_2 = 5X^4 - 10X^2 + 1$

ii) Comme P_1 est de degré 2 et P_2 de degré 4, $P_1 \in \mathbb{R}_2[X]$ et $P_2 \in \mathbb{R}_4[X]$

Un polynôme irréductible est un polynôme qui ne peut pas s'écrire comme un produit de polynôme non constants de degré plus petit.

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 ou les polynômes de degré 2 sans racines réelles. Par exemple, un polynôme de degré 4 sans racines réelles aura 4 racines complexes z_1 , \bar{z}_1 , z_2 , \bar{z}_2 , et en regroupant les racines conjuguées on l'écrit comme un produit de polynômes de degré 2.

Ainsi P_2 n'est pas irréductible car il est de degré 4, et $P_1 = (\sqrt{3}X - 1)(\sqrt{3}X + 1)$ donc n'est pas irréductible non plus.

Conclusion : P_1 et P_2 ne sont pas irréductibles

- b) Cas général
 - i) P_n est différence de deux polynômes de degré 2n+1 et est donc de degré au plus 2n+1 (c'est-à-dire dans $\mathbb{C}_{2n+1}[X]$).

On développe à l'aide de la formule du binôme, en ne gardant que les termes de plus haut degré :

$$\begin{split} P_n(X) &= \frac{1}{2i} \left(X^{2n+1} + \binom{2n+1}{1} X^{2n} i + R_1(X) & \text{avec deg } R_1 < 2n \\ &+ \left(X^{2n+1} - \binom{2n+1}{1} X^{2n} (-i) + R_2(X) \right) \right) & \text{avec deg } R_2 < 2n \\ &= (2n+1) X^{2n} + \frac{1}{2i} (R_1(X) - R_2(X)) \end{split}$$

Ainsi, comme $\deg \frac{1}{2i}(R_1(X) - R_2(X)) < 2n,$

 P_n est de degré 2n et son coefficient dominant est 2n+1

ii) Les racines N-ièmes de l'unité sont les complexes

$$e^{\frac{2ik\pi}{N}} \quad \text{avec} \quad k \in [0, N-1]$$

iii) On a

$$P_n(i) = \frac{(2i)^{2n+1}}{2i} = 2^{2n}(-1)^n$$

iv) Soit $a \in \mathbb{C}$. En remplaçant P_n par son expression il vient

$$P_n(a) = 0 \iff (a+i)^{2n+1} - (a-i)^{2n+1} = 0$$

 $\iff (a+i)^{2n+1} = (a-i)^{2n+1}$

Puis, en passant au module,

$$P_n(a) = 0 \Longrightarrow |a+i|^{2n+1} = |a-i|^{2n+1}$$
$$\Longrightarrow |a+i| = |a-i|$$

La dernière égalité signifie, géométriquement, que le point d'affixe a est équidistant des points d'affixes i et -i. Donc, en identifiant affixes et points, les racines sont sur la médiatrice du segment [i, i], c'est-à-dire l'axe des réels. Conclusion :

Les racines de
$$P_n$$
 sont réelles

v) \Longrightarrow Supposons que a soit racine de P_n . D'après iii), $P(i) \neq 0$ donc $a \neq i$, et

$$\left(\frac{a+i}{a-i}\right)^{2n+1} = 1$$

Lorsqu'on voit une barre de fraction, il faut que ce soit un réflexe : le dénominateur peut-il s'annuler ? Ce qui nous donne la raison d'être de la question iii.

Ainsi, $\frac{a+i}{a-i}$ est une racine 2n+1-ième de l'unité. D'après ii, il existe $k \in [0,2n]$ tel que

$$\frac{a+i}{a-i} = e^{\frac{2ik\pi}{2n+1}}$$

et donc, en développant,

$$a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1)$$

Il reste à écarter le cas k=0 : l'égalité précédente s'écrirait $a\times 0=2i$, ce qui est faux. Donc $k\neq 0$: $k\in [\![1,2n]\!]$.

Féciproquement, si $a(e^{2ik\pi/(2n+1)}-1)=i(e^{2ik\pi/(2n+1)}+1)$ avec $k\in[0,2n]$, on a

$$(a+i) = (a-i)e^{\frac{2ik\pi}{2n+1}}$$

En élevant à la puissance 2n+1 on trouve que $(a+i)^{2n+1}=(a-i)^{2n+1}$ et donc que $P_n(a)=0$. Conclusion :

$$a$$
 est racine de $P_n \iff \exists k \in [1, 2n], \ a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1)$

vi) D'après v), comme $e^{2ik\pi/(2n+1)} \neq 1$, les racines de P_n sont les

$$a_k = \frac{i(e^{2ik\pi/(2n+1)} + 1)}{(e^{2ik\pi/(2n+1)} - 1)} = i\frac{2\cos(k\pi/(2n+1))}{2i\sin(k\pi/(2n+1))} = \cot\left(\frac{k\pi}{2n+1}\right)$$

pour k = 1, ..., 2n. On trouve bien des racines toutes réelles.

Pour l'instant on connaît pas la multiplicité des racines : ces racines ne sont pas forcément distinctes.

vii) On développe les deux puissances par formule du binôme et on regroupe les termes :

$$2iP_n(X) = \sum_{k=0}^{2n+1} {2n+1 \choose k} X^k i^{2n+1-k} (1 - (-1)^{2n+1-k})$$

Les termes d'indice k impairs sont nuls : $1 - (-1)^{2n+1-k} = 0$ dans ce cas. Il reste donc

$$2iP_n(X) = 2\sum_{k=0}^n {2n+1 \choose 2k} X^{2k} i^{2n+1-2k}$$
$$= 2i\sum_{k=0}^n {2n+1 \choose 2k} (-1)^{n-k} X^{2k}$$

On en déduit que

$$P_n(X) = Q_n(X^2)$$
 avec $Q_n(X) = \sum_{k=0}^n \binom{2n+1}{2k} (-1)^{n-k} X^k$

viii) 2.a.i donne

$$Q_1 = 3\left(X - \frac{1}{3}\right) \text{ racine} : \frac{1}{3}$$

et

$$Q_2 = 5X^2 - 10X + 1 = 5\left(X - \frac{5 + 2\sqrt{5}}{5}\right)\left(X - \frac{5 - 2\sqrt{5}}{5}\right) \text{ racines } : \frac{5 - 2\sqrt{5}}{5}, \frac{5 + 2\sqrt{5}}{5}$$

Savoir repérer ce genre de questions, qui portent sur des objets simples que vous avez forcément calculé.

ix) Si a est racine de P_n alors a^2 est racine de Q_n . En particulier, on a les racines

$$a_k^2 = \operatorname{cotan}^2\left(\frac{k\pi}{2n+1}\right)$$
 avec $k \in [1, 2n]$

Notons Z(P) l'ensemble des racines – aussi appelées « zéros » – de P. La relation $P_n(X) = Q_n(X^2)$ $entra \hat{\imath} ne$

$$\{a^2 \mid a \in Z(P_n)\} \subset Z(Q_n)$$

Mais l'inclusion inverse n'est vraie que parce que l'on est dans \mathbb{C} : toute racine $b \in Z(P_n)$ peut s'écrire $b=a^2$ avec $a \in \mathbb{C}$, et donc provient d'une racine $a \in Z(Q_n)$. Ce n'est a priori plus vrai sur \mathbb{R} .

 $\deg P = 2n$ donc $\deg Q = n$: il nous faut n racines (comptées avec multiplicité).

Or cotan = $\frac{\cos}{\sin}$ est bijective de]0, π [dans \mathbb{R} et les $2k\pi/(2n+1)$ étant dans]0, π [, les a_k sont

2 à 2 distincts. De plus, $a_k \geqslant 0$ pour $\frac{k\pi}{2n+1} \leqslant \frac{\pi}{2}$, c'est-à-dire $k \in [1, n]$.

Les carrés sont donc aussi distincts : Ceci donne n racines distinctes de Q_n qui est de degré n et donc toutes ses racines.

Les racines de
$$Q_n$$
 sont les $b_k = a_k^2 = \cot^2\left(\frac{k\pi}{2n+1}\right)$ pour $k \in [1, n]$

Les racines de Q_n sont toutes de multiplicité 1.

3) Le coefficient dominant de Q_n est celui de P_n , 2n+1. $S_n=\sum_{k}b_k$, or Q_n est scindé à racines simples et s'écrit

$$Q_n = (2n+1) \prod_{k=1}^n (X - b_k)$$

$$= (2n+1) \left(X^n - \sum_{k=1}^n b_k X^{n-1} + \dots + (-1)^n b_1 \dots b_n \right)$$
 (en développant)

On voit que l'on a besoin du coefficient de X^{n-1} dans Q_n qui vaut d'après viii $-\binom{2n+1}{2n-2}$. On a ainsi

$$S_n = \frac{1}{2n+1} \binom{2n+1}{2n-2}$$

$$= \frac{1}{2n+1} \binom{2n+1}{3}$$

$$= \frac{(2n+1)2n(2n-1)}{6(2n+1)}$$

$$S_n = \boxed{\frac{n(2n-1)}{3}}$$

4) Pour $x \in \left[0, \frac{\pi}{2}\right]$, posons $f(x) = \sin(x) - x$ et $g(x) = x - \tan(x)$.

Ce sont des fonctions \mathscr{C}^{∞} et $f'(x) = \cos(x) - 1$ et $g'(x) = -\tan^2(x)$ sur l'intervalle. Donc

x	0	$\pi/2$
f'(x)	0	_
f	0	

x	$0 \qquad \qquad \pi/2$
g'(x)	0 -
g	0

Comme $\sin \ge 0$ sur $[0, \pi]$, nous avons

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \ 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x)\right]$$

De plus, en excluant 0, tout est strictement positif. Or $y \mapsto \frac{1}{y^2}$ est décroissante sur \mathbb{R}_+^* , donc

$$\forall x \in]0, \pi/2[, \frac{1}{\tan^2(x)} \le \frac{1}{x^2} \le \frac{1}{\sin^2(x)} = 1 + \frac{1}{\tan^2(x)}$$

Obtenir la seconde série d'inégalité est faisable : il faut écrire ce qu'on a, ce qu'on veut, et essayer de passer de l'un à l'autre. Sans a priori et en justifiant à chaque étape.

5) Pour $k \in [1, n]$, $\frac{k\pi}{2n+1} \in]0, \pi/2[$ d'après le calcul du 2.ix. Toujours vérifier les hypothèses avant d'appliquer un résultat.

En remplaçant x par $\frac{k\pi}{2n+1}$ et en sommant, les inégalités qui précèdent s'écrivent :

$$S_n \leqslant \sum_{k=1}^n \frac{1}{\left(\frac{k\pi}{2n+1}\right)^2} \leqslant n + S_n$$

ce qui donne

$$\frac{\pi^2 S_n}{(2n+1)^2} \le \sum_{k=1}^n \frac{1}{k^2} \le \frac{\pi^2 (n+S_n)}{(2n+1)^2}$$

Or $S_n = \frac{n(2n-1)}{3} \sim \frac{2}{3}n^2$. Donc $S_n + n \sim S_n$ et

$$\frac{\pi^2 S_n}{(2n+1)^2} \sim \frac{\pi^2}{4n^2} \times \frac{2n^2}{3} = \frac{\pi^2}{6}$$

Les deux coté de l'encadrement de $\sum_{k=1}^{n} \frac{1}{k^2}$ ont donc même limite, $\frac{\pi^2}{6}$: par théorème d'encadrement, la série $\sum \frac{1}{k^2}$ converge (ce que l'on sait car c'est une série de Riemann convergente) et

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$