Devoir de Mathématiques numéro 1

Exercice 1

Soit $(S_n)_{n\in\mathbb{N}}$ une suite de polynômes définie par :

$$\forall n \in \mathbb{N}, \ S_n(X) = 1 + \frac{X}{1!} + \dots + \frac{X^n}{n!} = \sum_{i=0}^n \frac{X^i}{i!}$$

On admet que, pour tout $n \ge 2$, les racines de S_n sont de module strictement plus petit que n.

On admet que, pour tout $z \in \mathbb{C}$, $e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}$.

- 1) Donner le tableau de variations de S_3 . Représenter sur un même graphique les courbes des fonctions S_1, S_3 ainsi que la fonction exponentielle $(x \mapsto e^x)$ en s'attachant à respecter la position relative de ces trois courbes.
- 2) Soit $n \in \mathbb{N}$. Démontrer que le polynôme S_n n'a pas de racine réelle si n est pair et a une unique racine réelle simple si n est impair. (Indication : On pourra faire une démonstration par récurrence.)

Dans la suite du problème, on note α_n l'unique racine réelle de S_n , pour tout entier naturel **impair** n.

- 3) On se propose d'étudier le comportement de la suite $(\alpha_{2n+1})_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.
 - a) Justifier que la suite $(\alpha_{2n+1})_{n\in\mathbb{N}}$ est décroissante. (Indication : On pourra étudier le signe de $S_{2n+1}(\alpha_{2n-1})$.)
 - b) Soit $(v_m)_{m\in\mathbb{N}}$ une suite de nombres réels qui converge vers un nombre réel ℓ .
 - i) Soit ε un nombre réel > 0. Justifier qu'il existe un entier naturel M tel que :

$$\forall m \in \mathbb{N}, \ m > M \Rightarrow |S_m(v_m) - e^{v_m}| < \varepsilon.$$

- ii) En déduire que la suite $(S_m(v_m))_{m\in\mathbb{N}}$ converge vers e^{ℓ} .
- c) En déduire que la suite $(\alpha_{2n+1})_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Soit h la fonction de la variable réelle x définie par :

$$h(x) = xe^{1-x}.$$

- 4) Étudier la fonction h. Représenter son graphe sur \mathbb{R} .
- 5) Démontrer qu'il existe une fonction g de classe \mathscr{C}^{∞} de $]-\infty,1[$ dans $]-\infty,1[$ telle que :

$$\forall x \in]-\infty, 1[, h(g(x)) = x.$$

Représenter le graphe de g. L'étude précise de g n'est pas demandée.

- 6) Démontrer qu'il existe un unique nombre réel ρ tel que $h(\rho) = -1$.
- 7) Démontrer que ρ est dans l'intervalle]-1/2,-1/4[. Indication : on pourra utiliser le fait que $\ln 2 \geqslant \frac{13}{20}$.
- 8) Soit z un nombre complexe tel que : $|z| \le 1$ et $|ze^{1-z}| \le 1$. Soit n un entier naturel. On note $T_n(z) = S_n(nz)$.
 - a) Justifier l'égalité:

$$1 - e^{-nz}T_n(z) = (ze^{1-z})^n e^{-n} \sum_{k=n+1}^{+\infty} \frac{n^k}{k!} z^{k-n}.$$

DL 1

b) En déduire que :

$$|1 - e^{-nz}T_n(z)| \le 1 - e^{-n}T_n(1).$$

- c) En déduire que $T_n(z) \neq 0$.
- 9) Soit n un entier naturel impair ≥ 3 . Démontrer que α_n est dans l'intervalle $]-n, n\rho[$. Pour tout entier naturel m, on pose $\gamma_{2m+1} = \alpha_{2m+1}/(2m+1)$.
- 10) Démontrer que pour tout nombre réel u et tout entier naturel n, on a :

$$e^{-u}S_n(u) = 1 + \frac{1}{n!} \int_u^0 t^n e^{-t} dt.$$

11) Soit m une entier naturel. On note n=2m+1. Justifier l'égalité :

$$\int_{\gamma_n}^0 h(t)^n \, \mathrm{d}t = -\frac{n!e^n}{n^{n+1}}.$$

- 12) En déduire que la suite $\left(\int_{\gamma_{2m+1}}^0 h(t)^{2m+1} dt\right)_{m \in \mathbb{N}}$ est une suite convergente et expliciter sa limite.
- 13) Démontrer que $\left(\int_{\gamma_{2m+1}}^{\rho} h(t)^{2m+1} dt\right)_{m \in \mathbb{N}}$ est une suite convergente et expliciter sa limite.
- 14) Déterminer un équivalent de α_{2m+1} .

Exercice 2

A. Intégrales de Wallis

Pour tout entier naturel n, on pose $W_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

1) a) Montrer que, pour tout $n \ge 0$,

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t$$

(cette question est indépendante des suivantes).

- **b)** Calculer W_0 et W_1 et justifier que $W_n > 0$ pour tout $n \in \mathbb{N}$.
- c) A l'aide d'une intégration par parties, montrer que, pour tout entier $n \ge 2$,

$$nW_n = (n-1)W_{n-2}$$

- d) En déduire que la suite $(nW_nW_{n-1})_{n\geqslant 1}$ est constante de valeur $\frac{\pi}{2}$.
- 2) a) Montrer que la suite (W_n) est décroissante et que pour tout $n \ge 1$,

$$\frac{n-1}{n} \leqslant \frac{W_n}{W_{n-1}} \leqslant 1$$

b) En déduire un équivalent de W_n .

B. Formule de Stirling

On considère la suite $(u_n)_n$ définie, pour $n \ge 1$, par

$$u_n = \frac{n!e^n}{n^n \sqrt{n}}$$

et la suite auxiliaire $(v_n)_n$ définie, pour $n \ge 2$, par $v_n = \ln(u_n) - \ln(u_{n-1})$.

- 1) a) Simplifier $\frac{u_{n+1}}{u_n}$.
 - b) Exprimer simplement v_n en fonction de n.
 - c) Donner un développement limité à l'ordre 2 en $\frac{1}{n}$ de la suite $(v_n)_n$.

- d) En déduire que la série $\sum v_n$ est convergente.
- e) En déduire que les suites $(\ln u_n)_n$ et $(u_n)_n$ convergent et donc qu'il existe un réel K>0 tel que

$$n! \sim K \left(\frac{n}{e}\right)^n \sqrt{n}$$

- 2) a) En utilisant la question A1)c), montrer que $W_{2p} = \frac{(2p)!}{(2^p p!)^2} \frac{\pi}{2}$. En déduire W_{2p+1} en fonction de p.
 - b) Déterminer un équivalent simple de la suite $(W_{2p})_p$ à l'aide de l'équivalent de n! trouvé précédemment.
 - c) En déduire la valeur de K, et, par suite, un équivalent de n!.