Épreuve de Mathématiques 7

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

L'utilisation d'effaceurs chimiques ou de « vernis » de masquage est interdite. Tous les textes sont obligatoirement écrits à l'encre bleue foncée ou noire. L'usage du crayon à papier est interdit. D'autres couleurs peuvent être utilisées pour améliorer la présentation. Il est interdit de coller, couper les copies et adjoindre des brouillons.

Les calculatrices sont interdites

Exercice 1 (Une caractérisation de la loi géométrique)

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N}^* , indépendantes et de même loi, toutes les deux définies sur le même espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$. On pose, pour tout $\omega \in \Omega$,

$$I(\omega) = \min(X(\omega), Y(\omega)), \quad M(\omega) = \max(X(\omega), Y(\omega)) \quad \text{et} \quad D(\omega) = M(\omega) - I(\omega)$$

- 1) Montrer que $\mathbb{P}(X = Y) = \sum_{k=1}^{+\infty} \mathbb{P}(X = k)^2$.
- 2) Dans cette question, on suppose que la loi commune de X et Y est géométrique de paramètre $p \in]0,1[$. On pourra poser q=1-p.
 - a) Reconnaître la loi de la variable I.
 - b) Calculer, pour tout $(i,d) \in \mathbb{N}^* \times \mathbb{N}$, la probabilité $\mathbb{P}([I=i] \cap [D=d])$ (qu'on pourra noter $\mathbb{P}(I=i,D=d)$).

 On séparera les cas d=0 et d>0.
 - c) Déterminer la loi de la variable D.
 - d) Vérifier que les variables I et D sont indépendantes.
- 3) Dans cette question, la loi commune de X et Y est inconnue et on suppose que les variables I et D sont indépendantes.

On note $b := \mathbb{P}(D=0)$ et, pour tout entier naturel k non nul, $p_k = \mathbb{P}(X=k)$. On suppose $p_k > 0$ pour tout $k \in \mathbb{N}^*$.

- a) Exprimer le réel b à l'aide de la famille $(p_i)_{i\in\mathbb{N}^*}$.
- **b)** Exprimer, pour tout entier naturel k, la probabilité $\mathbb{P}(I > k)$ à l'aide de la famille $(p_i)_{i \in \mathbb{N}^*}$.
- c) Soit $k \in \mathbb{N}$. En calculant la probabilité $\mathbb{P}(I > k, D = 0)$ établir l'égalité

$$\sum_{i=k+1}^{+\infty} p_i^2 = b \left(\sum_{i=k+1}^{+\infty} p_i \right)^2.$$

- d) i) En déduire, pour tout entier naturel k non nul, l'égalité : $(1-b) p_k = 2b \mathbb{P}(X > k)$.
 - ii) Calculer p_1 en fonction de b puis établir, pour tout entier naturel k non nul, l'égalité : $p_{k+1} = \frac{1-b}{1+b} p_k.$
- e) En déduire que la loi commune des variables X et Y est géométrique de paramètre p_1 .

Exercice 2 (Variables aléatoires à valeurs dans $\{-1,1\}$)

Dans ce problème, toutes les variables aléatoires introduites sont supposées définies sur le même espace probabilisé (Ω, \mathcal{A}, P) . Pour X une variable aléatoire sur Ω , on note $X(\Omega)$ l'ensemble de ses valeurs. On dit qu'une variable aléatoire X sur (Ω, \mathcal{A}, P) suit une loi de Rademacher lorsque :

$$X(\Omega) = \{-1, 1\}$$
 $P(X = -1) = \frac{1}{2}$ $P(X = 1) = \frac{1}{2}$

Partie 1 (Marche aléatoire sur un carré)

Dans cette partie, le plan usuel \mathbb{R}^2 est muni de sa structure euclidienne canonique.

1) Rotations du plan.

Soit $\theta \in \mathbb{R}$.

- a) Donner la matrice dans la base canonique de la rotation f_{θ} d'angle θ de $E = \mathbb{R}^2$.
- b) Pour $(x, y) \in \mathbb{R}^2$, calculer $f_{\theta}(x, y)$. À partir de cette question, on identifie le plan complexe \mathbb{C} au plan usuel \mathbb{R}^2 . Ainsi, à chaque point (x, y) dans \mathbb{R}^2 est associé une unique affixe x + iy dans \mathbb{C} .
- c) Pour $(x,y) \in \mathbb{R}^2$, démontrer que l'affixe correspondante à $f_{\theta}(x,y)$ s'écrit $e^{i\theta}(x+iy)$. Pour la suite de cette partie, on admet que la rotation d'angle θ et ayant pour centre l'origine est représentée par l'application complexe $r_{\theta} : \mathbb{C} \to \mathbb{C}$ définie par :

$$r_{\theta}(z) = e^{i\theta}z$$
 où $z \in \mathbb{C}$

2) Racines n-ième de l'unité.

Dans cette sous-partie, n désigne un entier naturel non nul. On rappelle qu'une racine n-ième de l'unité est un nombre complexe z vérifiant $z^n=1$. On note, pour $k\in\mathbb{Z},\ \omega_k=e^{\frac{2k\pi}{n}i}$.

- a) Montrer que $\{z \in \mathbb{C} \mid z^n = 1\} = \{\omega_k \mid k \in [0, n-1]\}.$
- **b)** Pour tout $k \in [0, n-1]$, déterminer $r_{2\pi/n}(\omega_k)$.
- c) Dans le cas où n=4, donner la forme algébrique x+iy de $\omega_0, \omega_1, \omega_2$ et ω_3 .
- 3) Marche aléatoire sur un carré.

Dans cette sous-partie, le plan est assimilé à l'ensemble des nombres complexes \mathbb{C} . On s'intéresse à une boussole centrée en 0 dont l'aiguille peut indiquer l'une des quatre directions :

Est (d'affixe 1), Nord (d'affixe
$$i$$
), Ouest (d'affixe -1) et Sud (d'affixe $-i$).

On suppose que lorsque l'aiguille se trouve en l'un des quatre points précédents à une étape, elle se déplace d'un point à l'étape d'après avec la probabilité $\frac{1}{2}$ que ce soit dans le sens trigonométrique ou dans le sens inverse. D'une étape sur l'autre, elle ne peut donc pas rester sur place.

Pour $n \in \mathbb{N}$, on étudie le déplacement de l'aiguille de l'étape n à l'étape n+1 et on note A_n la variable aléatoire qui indique l'affixe de l'aiguille de la boussole à l'étape n. Ainsi A_n prend ses valeurs dans $\{1, i, -1, -i\}$.

On admet que les résultats du cours pour les variables aléatoires à valeurs réelles le sont aussi pour les variables aléatoires à valeurs complexes. On pourra donc les utiliser sur les variables A_n .

Pour $n \in \mathbb{N}$, on note aussi D_n la variable aléatoire qui vaut +1 si la boussole tourne dans le sens trigonométrique entre l'étape n et l'étape n+1, et -1 dans le sens inverse. De ce fait D_n suit une loi de Rademacher.

- a) Soit $n \in \mathbb{N}$. Justifier que $A_{n+1} = e^{i\frac{\pi}{2}D_n}A_n$.
- **b)** Soit $n \in \mathbb{N}$. Montrer que

$$P(A_{n+1} = 1) = \frac{1}{2}P(A_n = i) + \frac{1}{2}P(A_n = -i)$$

c) Soit $n \in \mathbb{N}$. Déterminer, de même, la loi de A_{n+1} en fonction de la loi de A_n .

On note
$$M = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \end{pmatrix}$$
.

- d) Justifier que M est diagonalisable dans \mathbb{R} .
- e) La matrice M est-elle inversible?
- f) Montrer que $t = (1 \ 1 \ 1 \ 1)$ est un vecteur propre de M et préciser la valeur propre associée.
- g) Montrer que -1 est valeur propre de M.
- h) Déterminer le rang de M et en déduire l'ensemble des valeurs propres, ainsi que la dimension des sous-espace vectoriel associés.
- i) Posons $U_n = \begin{pmatrix} P(A_n = 1) \\ P(A_n = i) \\ P(A_n = -1) \\ P(A_n = -i) \end{pmatrix}$. Exprimer U_{n+1} en fonction de U_n et d'une matrice que l'on précisera.
- **j)** Déterminer la loi de A_n en fonction de n.

Partie 2 (Orthonormalité des lois de Rademacher) Soit $n \in \mathbb{N}^*$ fixé.

1) Un produit scalaire.

On note $V_f(\Omega)$ l'ensemble des variables aléatoires réelles discrètes sur Ω admettant un nombre fini de valeurs :

$$V_f(\Omega) = \{X : \Omega \to \mathbb{R} \mid X(\Omega) \text{ est fini}\}$$

- a) Montrer que, si X suit une loi de Rademacher, alors $X \in V_f(\Omega)$ et déterminer E(X), où E désigne l'espérance.
- b) Montrer que $V_f(\Omega)$ est un \mathbb{R} -espace vectoriel.
- c) On définit l'application Φ sur $V_f(\Omega) \times V_f(\Omega)$ par

$$\forall (X,Y) \in V_f(\Omega)^2 \qquad \Phi(X,Y) = E(XY)$$

Montrer que Φ est un produit scalaire sur $V_f(\Omega)$.

2) Orthonormalité et projection.

On considère X_1, \ldots, X_n une suite de n variables aléatoires mutuellement indépendantes et suivant toutes la même loi de Rademacher.

- a) Montrer que (X_1, \ldots, X_n) est une famille orthonormale dans $V_f(\Omega)$ pour Φ . On garde dans cette dernière sous-partie les notations introduites ci-dessus. On note F le sous-espace vectoriel de $V_f(\Omega)$ engendré par X_1, \ldots, X_n .
- b) Déterminer la dimension de F.
- c) Montrer que, si $X \in V_f(\Omega)$ est indépendante de chacune des variables X_1, \ldots, X_n , alors $X \in F^{\perp}$.
- d) Soit $X = \sum_{k=1}^{n} \frac{1}{2}(X_k + 1)$. Déterminer la loi de X, puis la distance de X à F pour la norme associée à Φ .

DST 7

Exercice 3 (Extrait de Mines-Ponts PC-PSI)

Dans tout le sujet, on fixe un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ sur lequel toutes les variables aléatoires considérées sont définies. On utilisera systématiquement la locution « variable aléatoire » pour parler d'une variable aléatoire à valeurs dans \mathbb{Z} . On pourra noter :

$$X(\Omega) = \{x_n, n \in I\}$$

où I est un sous-ensemble fini ou dénombrable de \mathbb{N} et $x_n \in \mathbb{R}$ pour tout $n \in I$.

Définition 1 (Dispersion d'ordre α)

On fixe un réel $\alpha > 0$. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire. On dit que X vérifie la condition (\mathcal{D}_{α}) – dite de dispersion d'ordre α – lorsque, quand n tend vers $+\infty$,

$$\mathbb{P}(|X| \geqslant n) = \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right). \tag{1}$$

Définition 2 (Variables aléatoires symétriques)

On dit que X est symétrique lorsque -X suit la même loi que X, autrement dit lorsque :

$$\forall x \in X(\Omega), \quad \mathbb{P}(X=x) = \mathbb{P}(X=-x). \tag{2}$$

On admet le principe de transfert de l'égalité en loi :

Théorème 1

Étant donné deux variables aléatoires X et Y prenant leurs valeurs dans un même ensemble E, ainsi qu'une application $u: E \to F$, si X et Y suivent la même loi alors u(X) et u(Y) aussi.

Partie 1 (Questions de cours)

- 1) Soit X une variable aléatoire. Rappeler la définition de « X est d'espérance finie ». Montrer alors que X est d'espérance finie si et seulement si |X| est d'espérance finie.
- 2) Soit X une variable aléatoire. Montrer que si X est bornée, autrement dit s'il existe un réel $M \ge 0$ tel que $\mathbb{P}(|X| \le M) = 1$, alors X est d'espérance finie.

Partie 2 (Généralités sur les variables aléatoires)

- 1) Soit X une variable aléatoire entière vérifiant (\mathcal{D}_{α}) . Montrer que X n'est pas d'espérance finie, et que X^2 non plus.
- 2) Soient X une variable aléatoire symétrique, et $f: \mathbb{R} \to \mathbb{R}$ une fonction impaire. Montrer que f(X) est symétrique, et que si f(X) est d'espérance finie alors $\mathbf{E}(f(X)) = 0$.
- 3) Soient X et Y deux variables aléatoires symétriques indépendantes. En comparant la loi de (-X, -Y) à celle de (X, Y), démontrer que X + Y est symétrique.

Partie 3 (Fonction caractéristique d'une variable aléatoire symétrique)

On fixe dans cette partie une variable aléatoire symétrique X. On pose :

$$\Phi_X : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \mathbf{E} \left(\cos(tX) \right), \end{array} \right.$$

appelée fonction caractéristique de X.

- 1) Montrer que Φ_X est bien définie, paire et que : $\forall t \in \mathbb{R}, |\Phi_X(t)| \leq 1$.
- 2) En utilisant le théorème du transfert, montrer que Φ_X est continue. On pourra distinguer les cas finis et dénombrables.

FIN DE L'ÉPREUVE