Épreuve de Mathématiques 4

Durée 4 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

L'utilisation d'effaceurs chimiques ou de « vernis » de masquage est interdite. Tous les textes sont obligatoirement écrits à l'encre bleue foncée ou noire. L'usage du crayon à papier est interdit. D'autres couleurs peuvent être utilisées pour améliorer la présentation. Il est interdit de coller, couper les copies et adjoindre des brouillons.

Les calculatrices sont interdites

Exercice 1

On pose, lorsque cela est possible $f(x) = \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}\sqrt{t^{2}-1}}$

- 1) Déterminer l'ensemble de définition I de f.
- 2) En justifiant son existence, calculer $\int_0^{+\infty} \frac{\mathrm{d}x}{e^x + e^{-x}}$.
- **3)** Calculer f(1). On pourra utiliser l'application $\psi: u > 0 \mapsto \operatorname{ch}(u)$.
- **4)** Calculer f(2). On pourra remarquer que la dérivée de $x \mapsto \frac{\sinh(x)}{\cosh(x)}$ est égale à $x \mapsto \frac{1}{\cosh^2(x)}$.
- 5) Vérifier que f est positive sur I.
- 6) Montrer que f est décroissante sur I.
- 7) 5/2: Prouver que f est de classe C^1 sur I et préciser l'expression de f'(x). Retrouver alors le résultat de la question précédente.
- 8) Soit $x \in I$. Démontrer la relation

$$f(x+2) = \frac{x}{x+1}f(x)$$

On pourra effectuer, en la justifiant, une intégration par parties.

- 9) Soit $p \in \mathbb{N}^*$. Donner l'expression de f(2p) à l'aide de factorielles.
- 10) Pour tout réel x > 0, on pose

$$\varphi(x) = x f(x) f(x+1)$$

Prouver que $\varphi(x+1) = \varphi(x)$. Calculer $\varphi(n)$ pour tout $n \in \mathbb{N}^*$.

- 11) En utilisant la question précédente, déterminer un équivalent de f(x) quand $x \to 0^+$.
- **12)** Vérifier que $\forall n \in \mathbb{N}^*$, $f(n)f(n+1) = \frac{\pi}{2n}$. En déduire que $f(n) \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.
- 13) En utilisant des parties entières, prouver que $f(x) \underset{x\to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$.

DST 4

14) Déduire des questions précédentes le tableau des variations de f sur I et tracer sa courbe représentative dans un repère orthonormé.

15) Prouver que la fonction φ est constante sur \mathbb{R}^{+*} .

Exercice 2

Partie 1 (Étude d'un opérateur)

Posons $E = \{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \mid f \ 2\pi\text{-p\'eriodique} \}.$ Soit $r \in]0,1[$ fixé.

- 1) Montrer que E est un sous-espace vectoriel de $\mathscr{C}^0(\mathbb{R},\mathbb{R})$, l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .
- 2) Pour tout $n \in \mathbb{N}^*$, on définit la fonction p_n par

$$\forall t \in \mathbb{R}, \qquad p_n(t) = r^n \cos\left(nt\right)$$

- a) Montrer la convergence normale sur \mathbb{R} de la série de fonctions de terme général p_n .
- **b)** Pour tout réel t, on pose alors $P(t) = 1 + 2\sum_{n=1}^{+\infty} p_n(t)$. Montrer que

$$P(t) = \frac{1 - r^2}{r^2 - 2r\cos(t) + 1}$$

3) Pour tout $f \in E$, on pose

$$\forall x \in \mathbb{R}, \quad u(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(x-t)f(t) dt$$

Montrer que u est un endomorphisme de E.

4) On définit l'application $\varphi: E \to \mathbb{C}^{\mathbb{Z}}$ par $\varphi(f) = (c_n(f))_{n \in \mathbb{Z}}$ où

$$\forall n \in \mathbb{Z}$$
 $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt$

- a) Montrer que φ est une application linéaire. On admettra dans la suite de ce problème que φ est injective.
- b) Soit $f \in E$, que l'on suppose de plus de classe \mathscr{C}^1 . Montrer que

$$\lim_{n \to +\infty} c_n(f) = 0$$

- c) Calculer $\varphi(f)$ pour $f(t) = \cos(kt)$ avec $k \in \mathbb{N}^*$.
- 5) Soit $f \in E$ fixé.
 - a) Soit $(x,t) \in \mathbb{R}^2$ et $n \in \mathbb{N}$. Développer $\cos(n(x-t))$.
 - **b)** On note $g = u(f), g_0(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt = c_0(f)$ et pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos\left(nt\right) dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin\left(nt\right) dt, \quad g_n(x) = r^n \left(a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right)$$

Justifier alors l'égalité:

$$\forall x \in \mathbb{R}, \qquad g(x) = \sum_{n=0}^{+\infty} g_n(x)$$

- c) Montrer que toute fonction appartenant à E est bornée.
- d) Montrer que la fonction g = u(f) est de classe \mathcal{C}^1 sur \mathbb{R} . Est-ce que u est surjectif?

DST 4

- e) Soit $p \in \mathbb{Z}$. Montrer que $c_p(g) = r^{|p|}c_p(f)$.
- **6)** On admet l'injectivité de φ : pour tout $f \in E$, si $c_n(f) = 0$ pour tout $n \in \mathbb{Z}$, alors f = 0.
 - a) Grâce à 5e, déterminer les réels λ tels qu'il existe $f \in E$ non nulle, vérifiant $u(f) = \lambda f$.
 - b) L'endomorphisme $u: E \to E$ est-il injectif?

Partie 2 (Produit de convolution, opérateurs associés)

On considère ici l'espace vectoriel complexe noté $\mathcal{C}_{2\pi}$ des applications continues de \mathbb{R} vers \mathbb{C} , qui sont 2π -périodiques.

On note $\|\cdot\|_{\infty}$ la norme usuelle définie sur $\mathcal{C}_{2\pi}$ par :

$$\forall f \in \mathcal{C}_{2\pi}, \quad ||f||_{\infty} = \sup\{|f(t)|, t \in \mathbb{R}\}$$

1) Pour f et g dans $C_{2\pi}$, on définit h = f * g (dit produit de convolution de f et de g), par :

$$\forall x \in \mathbb{R}, \quad h(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t)g(t)dt.$$

Montrer que h ainsi définie est dans $C_{2\pi}$.

2) Pour la suite de cette partie, on admettra sans démonstration la relation suivante entre $c_n(f*g)$, $c_n(f)$ et $c_n(g)$:

$$\forall n \in \mathbb{Z}, \qquad c_n(f * g) = c_n(f) c_n(g).$$

- a) Montrer que pour tout f et g dans $C_{2\pi}$, on a : f * g = g * f.
- b) Montrer qu'il ne peut pas exister $\varepsilon \in \mathcal{C}_{2\pi}$, de classe \mathscr{C}^1 , telle que pour tout $f \in \mathcal{C}_{2\pi}$, on ait : $f * \varepsilon = f$.
- 3) Soit ψ donnée dans $\mathcal{C}_{2\pi}$. À toute function $f \in \mathcal{C}_{2\pi}$, on associe $\Theta(f) = \psi * f$.
 - a) Montrer que l'application Θ ainsi définie est un endomorphisme de l'espace vectoriel complexe $\mathcal{C}_{2\pi}$.
 - **b)** Montrer que $S_{\psi} = \{c_n(\psi), n \in \mathbb{Z}\}$ est borné, que $M = \sup_{n \in \mathbb{Z}} |c_n(\psi)|$ existe et vérifie $M \leq \|\psi\|_{\infty}$.
 - c) Justifier que :

$$\forall f \in \mathcal{C}_{2\pi}, \quad \forall x \in \mathbb{R}, \qquad |\Theta(f)(x)| \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| \, \mathrm{d}t \|\psi\|_{\infty}$$

Puis que, en notant $||f||_1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| dt$,

$$\forall f \in \mathcal{C}_{2\pi}, \qquad \|\Theta(f)\|_1 \leqslant \|f\|_1 \|\psi\|_{\infty}$$

- d) Montrer que S_{ψ} est exactement l'ensemble des nombres complexes λ tels qu'il existe f non nulle dans $C_{2\pi}$, vérifiant $\Theta(f) = \lambda f$.
- e) Caractériser à l'aide de S_{ψ} l'injectivité de Θ .

FIN DE L'ÉPREUVE