Révisions : Dernière feuille

1 Probabilités

Méthode : Décrire les événements, ne pas se précipiter sur les probabilités. Commencer par donner $X(\Omega)$.

Exercice 1 (CCP, 2016 – Exo 2)

Soient X et Y deux variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p. On pose Z = X + Y. Déterminer la loi de Z, son espérance et sa variance.

Exercice 2 (CCP 2017)

Donner la loi de $Z = \min(X, Y)$ lorsque $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \mathcal{G}(q)$, avec $p, q \in]0, 1[$.

Exercice 3

Une grenouille pond X oeufs selon une loi de poisson de paramètre $\lambda \in \mathbb{R}_+^*$, chaque oeuf éclot de façon indépendante selon une loi de Bernoulli $\mathscr{B}(p)$. Loi du nombre Y d'oeufs éclot.

Exercice 4 (version CCP 2017)

Soit X et Y deux variables aléatoires discrètes telles que $X \hookrightarrow \mathscr{P}(\lambda)$ avec $\lambda > 0$ et telle que pour tout $n \in \mathbb{N}$ la loi de Y sachant (X = n) est une loi binomiale de paramètres n, p avec $p \in]0,1[$.

- 1) Déterminer la loi conjointe de X et Y.
- 2) Déterminer la loi de Y.

2 Analyse

2.1 Séries de fonctions

Exercice 5 (CCP 2017 – Exo 2)

Convergence et somme de $\sum_{n>0}$ ch $(n)x^n$.

Exercice 6 (CCP 2017 – Exo 2)

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n}$. Étudier l'existence de I_n puis la convergence de la suite (I_n) .

Exercice 7 (CCP, 2017 – Exo 2)

Existence de
$$I = \int_0^1 \frac{\ln(t)}{1+t^2} dt$$
. Montrer que $I = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}$.

Exercice 8

La série des $f_n : \mathbb{R}_+ \to \mathbb{R}$ définie par $f_n(x) = \frac{x}{x^2 + n^2}$ pour $n \ge 1$ converge simplement sur \mathbb{R}_+ , ne converge pas normalement sur \mathbb{R}_+ , converge normalement sur tout segment [0, A] avec A > 0.

En déduire que $S = \sum_{n=1}^{+\infty} f_n$ est \mathscr{C}^0 sur \mathbb{R}_+ .

2.2 Intégration

Exercice 9 (RMS, 2017 – Exo 2)

Pour P et Q dans $\mathbb{R}_2[X]$, on pose $\langle P, Q \rangle = \int_0^{+\infty} e^{-t} P(t) Q(t) dt$.

1) Montrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}_2[X]$ et que (1, X - 1) est une base orthonormée de $\mathbb{R}_1[X]$.

1

2) Indiquer comment trouver le minimum sur \mathbb{R}^2 de $\varphi:(a,b)\mapsto \int_0^{+\infty} \mathrm{e}^{-t} (t^2-a-bt)^2 \,\mathrm{d}t$.

Exercice 10 (MT 2017, 2016 – extrait)

Soit $\langle .,. \rangle$ l'application définie sur $\mathbb{R}[X] \times \mathbb{R}[X]$ par $\langle P,Q \rangle = \int_{-1}^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} \mathrm{d}t$.

- 1) Montrer l'existence de $\langle P, Q \rangle$ pour tous $P, Q \in \mathbb{R}[X]$.
- **2)** Montrer que $\langle ., . \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

Exercice 11

Pour $(x,t) \in \mathbb{R}_+ \times [0,1]$ on pose $g(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$ et $f(x) = \int_0^1 g(x,t) \, \mathrm{d}t$. De plus, soit $h: \mathbb{R}_+ \to \mathbb{R}$ définie par $h(x) = \int_0^x e^{-t^2} \, \mathrm{d}t$.

- 1) Montrer que $\varphi(x) = \int_0^x t^2 dt$ est \mathscr{C}^1 sur \mathbb{R} , et déterminer sa dérivée.
- 2) a) Montrer que f est définie sur \mathbb{R}_+ .
 - **b)** Soit a > 0. Montrer que f est \mathscr{C}^1 sur [0, a] et calculer sa dérivée. En déduire que f est \mathscr{C}^1 sur \mathbb{R}_+ .
- 3) Montrer que h est définie et \mathscr{C}^1 sur \mathbb{R}_+ .
- 4) Vérifier que $f + h^2$ est une fonction constante sur \mathbb{R}_+ , que l'on déterminera.
- 5) Déterminer la limite de f en $+\infty$ (à l'aide d'une majoration) et en déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 12 (CCP, 2016 – Exo 1)

Soit Γ la fonction définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1) Montrer que Γ est définie sur \mathbb{R}_+^* . Calculer $\Gamma(1)$.
- 2) a) Montrer que pour tout $x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$. En déduire la valeur de $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
 - **b)** Soit t > 0, a > 0 et b > a. Montrer que pour tout $x \in [a, b]$, $t^{x-1} \le t^{a-1} + t^{b-1}$.
- 3) a) Montrer que Γ est de classe \mathcal{C}^2 sur \mathbb{R}_+^* . Expliciter $\Gamma''(x)$ et déterminer les variations de Γ' .
 - b) Montrer que Γ' s'annule en exactement un point $\alpha \in \mathbb{R}$, et que $\alpha \in]1,2[$. En déduire les variations de Γ .
- 4) Etudier les limites de Γ en 0^+ et en $+\infty$.
- 5) Démontrer l'existence d'une suite (a_n) , que l'on explicitera, telle que pour tout x > 0,

$$\Gamma(x) = \sum_{n=0}^{+\infty} \frac{a_n}{x+n} + \int_1^{+\infty} t^{x-1} e^{-t} dt.$$

3 Algèbre

Exercice 13 (CCP, 2016 – Exo 2)

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & z & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
, avec $z \in \mathbb{C}$.

- 1) Rang de A. (à savoir faire impérativement!)
- 2) Montrer que 0 est valeur propre de A, et donner la dimension du sous-espace propre associé.
- $\mathbf{3}$) A est-elle diagonalisable?

Exercice 14 (CCP 2016 – extraits)

Soit E un espace euclidien, muni du produit scalaire usuel. $u \in \mathcal{L}(E)$ est dit antisymétrique si pour tout $(x,y) \in E^2$, $\langle f(x), y \rangle = -\langle x, f(y) \rangle$.

- 1) Montrer que u est antisymétrique si et seulement si toute matrice de u dans n'importe quelle base orthonormée est antisymétrique.
- 2) Montrer que Ker(u) et Im(u) sont supplémentaires orthogonaux.