La fonction exponentielle

Problème à résoudre

On cherche les fonctions f dérivables sur $\mathbb R$ telles que $\left\{ \begin{array}{cc} f(0) &=& 1 \\ f' &=& f \end{array} \right.$

Nous avons déjà essayé de construire une représentation graphique *approchée* d'une telle fonction au voisinage de 0 en utilisant la méthode d'Euler.

I) Définition de la fonction exponentielle

1) Théorème et définition

Théorème 1

Il existe une unique fonction f définie et dérivable sur \mathbb{R} telle que f(0) = 1 et f' = f. Cette fonction est appelée exponentielle et notée exp.

Démonstration. Deux points à montrer :

- Existence. (admis pour l'instant)
- Unicité.

Pour démontrer l'unicité d'une telle fonction nous allons avoir besoin d'un résultat intermédiaire :

Lemme 2

Si f est une fonction dérivable sur \mathbb{R} telle que f(0) = 1 et f' = f, alors

- 1) Pour tout $x \in \mathbb{R}$, $f(x) \times f(-x) = 1$.
- 2) La fonction f ne s'annule pas sur \mathbb{R} , elle est même strictement positive.

Démonstration du lemme 2.

1) Pour tout $x \in \mathbb{R}$, on pose $\varphi(x) = f(x)f(-x)$. La fonction φ est définie et dérivable sur \mathbb{R} . De plus φ est un produit de la forme $u \times v$, où v est une fonction composée :

$$\varphi'(x) = f'(x)f(-x) + f(x)f'(-x) \times (-1) = f(x)f(-x) - f(x)f(-x) = 0$$

Ainsi φ est constante. Or $\varphi(0) = f(0)f(-0) = 1 \times 1 = 1$. Donc, pour tout $x \in \mathbb{R}$,

$$f(x)f(-x) = \varphi(x) = \varphi(0) = 1$$

- 2) Raisonnons par l'absurde : soit $a \in \mathbb{R}$ tel que f(a) = 0. Alors $\varphi(a) = f(a)f(-a) = 0 \times f(-a) = 0$. Mais, d'après ci-dessus, $\varphi(a) = 1$. Ce qui est absurde.
 - Pour montrer que f > 0, raisonnons aussi par l'absurde : soit $a \in \mathbb{R}$ tel que f(a) < 0. La fonction f est dérivable donc continue sur \mathbb{R} , f(0) = 1 > 0 et f(a) < 0, donc, d'après le théorème des valeurs intermédiaires, il existe b compris entre 0 et a tel que f(b) = 0. Ce qui est impossible d'après ci-dessus. Donc f(x) > 0 pour tout $x \in \mathbb{R}$.

1

Démonstration du théorème 1 (unicité). Soit f et g qui conviennent¹. Posons $\varphi = \frac{f}{g}$. La fonction φ est définie et dérivable sur \mathbb{R} (car $g(x) \neq 0$ pour tout $x \in \mathbb{R}$, d'après le lemme). Vu que f' = f et g' = g, il vient

$$\varphi' = \frac{f'g - fg'}{g^2} = \frac{fg - fg}{g^2} = 0$$

Donc φ est constante et comme $\varphi(0) = f(0)/g(0) = 1/1 = 1$, pour tout $x \in \mathbb{R}$ $\varphi(x) = 1$. C'est-à-dire f/g = 1, d'où f = g. Il y a donc unicité.

2) Propriétés de la fonction exponentielle

Propriété 3

- 1) La fonction exp est dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$, $\exp'(x) = exp(x)$.
- **2)** $\exp(0) = 1$
- 3) Pour tout $x \in \mathbb{R}$, $\exp(-x) = \frac{1}{\exp(x)}$
- 4) Pour tout $x \in \mathbb{R}$, $\exp(x) > 0$
- 5) Pour tout $x \in \mathbb{R}$ et tout $y \in \mathbb{R}$, $\exp(x+y) = \exp(x) \exp(y)$
- **6)** Pour tout $x \in \mathbb{R}$ et tout $y \in \mathbb{R}$, $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
- 7) Pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{Z}$, $\exp(nx) = (\exp(x))^n$

Démonstration.

- 1) Par définition.
- 2) Par définition.
- 3) Lemme 2, point 1.
- 4) Lemme 2, point 2: pour tout $x \in \mathbb{R}$, $\exp(x) \exp(-x) = 1$ donc $\exp(-x) = \frac{1}{\exp(x)}$.
- 5) On procède comme lors de la démonstration du lemme 2, point 2. Soit $y \in \mathbb{R}$ fixé. La fonction définie par $\varphi_y(x) = \exp(x+y) \exp(-x)$ est définie et dérivable pour tout $x \in \mathbb{R}$. De plus

$$\varphi_y'(x) = \exp'(x+y) \exp(-x) + \exp(x+y) \exp'(-x) \times (-1) = \exp(x+y) \exp(-x) - \exp(x+y) \exp(-x) = 0$$

Ainsi φ_y est constante. Or $\varphi_y(0) = \exp(0+y) \exp(-0) = \exp(y)$. Donc, pour tout $x \in \mathbb{R}$,

$$\exp(x+y)\exp(-x) = \varphi_y(x) = \varphi_y(0) = \exp(y)$$

Donc, d'après le point 3, pour tout $x \in \mathbb{R}$, $\exp(x+y) = \frac{1}{\exp(-x)} \exp(y) = \exp(x) \exp(y)$

- 6) Conséquence des points 5 et 4.
- 7) Récurrence.

¹Début classique de la plus part des démonstrations d'unicité.

3) Le nombre e et la notation puissance

Les résultats précédents montrent que la fonction exp possède les propriétés algébriques des puis-

Définition 4

On note e le nombre $\exp(1)$:

$$e = \exp(1)$$

Remarque 5

 $e \simeq 2{,}718$. On peut d'ailleurs obtenir cette approximation avec la méthode d'Euler.

Recherche d'une notation simplifiée : Pour tout $n \in \mathbb{N}$,

$$\exp(n) = \exp(n \times 1) = (\exp(1))^n = e^n$$
 (d'après la propriété 3.7)

$$\exp(-n) = \frac{1}{\exp(n)} = \frac{1}{e^n} = e^{-n}$$
 (d'après la propriété 3.7)

Notation 6

Pour tout $x \in \mathbb{R}$ on note $\exp(x) = e^x$.

II) Étude de la fonction exponentielle

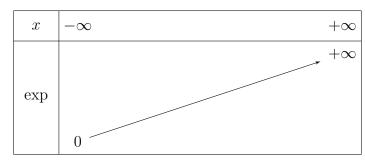
1) Sens de variation

Propriété 7

La fonction exp est strictement croissante sur \mathbb{R}

Démonstration. Pour tout $x \in \mathbb{R}$, $\exp'(x) = exp(x) > 0$ (propriété 3.4)

2) Tableau de variation



Pour la preuve des limites aux bornes, voir le paragraphe 5). Les preuves devront être connues.

Propriété 8

• Asymptote : $\lim_{x \to -\infty} \exp(x) = 0$ donc y = 0 est une asymptote à la courbe $\mathscr C$ au voisinage de $-\infty$.

3

• Équation de la tangente à \mathscr{C} en $x=0: y=\exp'(0)(x-0)+\exp(0)=1\times x+1=x+1$

• Position de \mathscr{C} par rapport à sa tangente en x=0Il faut étudier le signe de $\varphi(x)=e^x-(x+1)$ sur \mathbb{R} . La fonction φ est dérivable, et $\varphi'(x)=e^x-1$.

Or pour tout $x \in \mathbb{R}$, $\varphi'(x) \ge 0 \iff e^x \ge 1$ $\iff e^x \ge e^0$

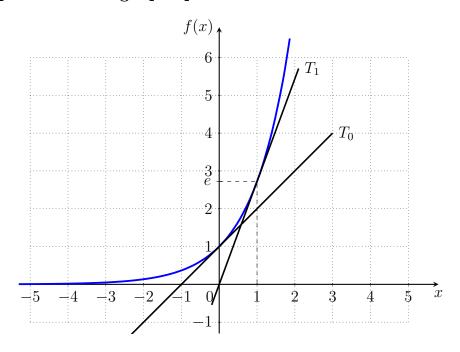
x	$-\infty$ 0 $+\infty$
$\varphi'(x)$	- 0 +
φ	

Donc, pour tout $x \in \mathbb{R}$, $\varphi(x) \geq 0$, c'est-à-dire \mathscr{C}_{exp} est au-dessus de sa tangente.

• Équation de la tangente à \mathscr{C} en x = 1. Par définition, $\exp(1) = e$ et $\exp'(1) = \exp(1) = e$. Donc

$$y = exp'(1)(x - 1) + \exp(1) = e(x - 1) + e = ex$$

3) Représentation graphique



4) Résolution d'équations et d'inéquations

Propriété 9

Pour tout réel a et b,

$$e^a = e^b \iff a = b$$

 $e^a > e^b \iff a > b$

Démonstration. La fonction exp est strictement croissante.

5) Limites en l'infini

Propriété 10

- $1) \lim_{x \to +\infty} e^x = +\infty.$
- $2) \lim_{x \to -\infty} e^x = 0.$

Démonstration.

- 1) D'après ci-dessus, pour tout $x \in \mathbb{R}$, $e^x \ge x+1$. Or $\lim_{x \to +\infty} x+1 = +\infty$. Donc, par comparaison, $\lim_{x \to +\infty} e^x = +\infty$.
- 2) La propriété précédente entraı̂ne $\lim_{x\to +\infty} \frac{1}{e^x} = 0$. De plus $\frac{1}{e^x} = e^{-x}$ et $\lim_{x\to -\infty} -x = +\infty$. Donc, par composition des limites, $\lim_{x\to -\infty} e^x = 0$.

III) Applications

1) Fonctions composées du type e^u

C'est un cas particulier de fonction composée à connaître impérativement.

Propriété 11

Soit u une fonction définie et dérivable sur un intervalle I. Alors

$$(e^u)' = u'e^u$$

Démonstration. Posons $v = \exp$. Puisque $v' = \exp$, la formule de dérivation des fonctions composées s'écrit $f' = (v \circ u)' = u' \times (v' \circ u) = u'e^u$.

Exemple 12

Étudier la fonction définie par $f(x) = e^{-x}$ pour tout $x \in \mathbb{R}$.

La fonction u définie sur \mathbb{R} par u(x) = -x a pour dérivée u'(x) = -1. Pour tout $x \in \mathbb{R}$, $f(x) = \exp(u(x))$, donc, d'après la propriété 11, $f'(x) = u'(x) \exp(u(x)) = -1 \times \exp(-x) = -e^{-x}$.

5

2) Croissance comparée

Propriété 13

- 1) $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$
- $2) \lim_{x \to -\infty} x e^x = 0.$

Démonstration. La démonstration est du même type que celle de la propriété 10.

1) Pour calculer la limite, nous allons minorer e^x/x (pour x > 0) par une fonction qui tend vers $+\infty$ en $+\infty$. Plus précisément, montrons que, pour tout x > 0,

$$\frac{x}{2} \le \frac{e^x}{x}$$

Le « 1/2 » est décoratif, pour simplifier les calculs (voir plus bas). Simplifions cette inégalité.

$$\frac{x}{2} \le \frac{e^x}{x} \Longleftrightarrow x^2 \le 2e^x \Longleftrightarrow 0 \le 2e^x - x^2 \qquad (x \text{ est positif ici !})$$

Pour tout $x \ge 0$, posons $\varphi(x) = 2e^x - x^2$, et étudions son signe. La fonction φ est dérivable (deux fois) sur \mathbb{R}_+ et, pour tout $x \ge 0$,

$$\varphi'(x) = 2e^x - 2x$$
 et $\varphi''(x) = 2e^x - 2 = 2(e^x - 1)$

D'après la proposition 9, $\varphi''(x) > 0$ pour tout x > 0 (d'où l'intérêt du « 1/2 »).

Donc φ' est strictement croissante et $\varphi'(x) > \varphi'(0) = 2 > 0$ pour tout x > 0.

Ainsi φ est elle aussi strictement croissante et $\varphi(x) > \varphi(0) = 2 > 0$. On en déduit que pour tout x > 0,

$$\frac{x}{2} \le \frac{e^x}{x}$$

Or $\lim_{x\to+\infty} x/2 = +\infty$, donc, par comparaison, $\lim_{x\to+\infty} \frac{e^x}{r} = +\infty$.

En conclusion, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

2) $\lim_{x \to -\infty} = \lim_{x \to +\infty} -xe^{-x}$. Or, pour tout x > 0,

$$-xe^{-x} = -\frac{x}{e^x} = -\frac{1}{\frac{e^x}{x}}$$

Or $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, donc $\lim_{x \to -\infty} xe^x = 0$.

Un corollaire de cette propriété est la généralisation suivante :

Propriété 14

Pour tout $n \in \mathbb{N}$,

- $1) \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$
- $2) \lim_{x \to -\infty} x^n e^x = 0.$

Démonstration. On suppose $n \ge 1$, sinon le résultat découle immédiatement de la propriété 10. Montrons le 1), le second point se montrant de la même façon qu'en 13. Pour tout $x \in]0; +\infty[$, on définie les fonction suivantes :

$$f(x) = \frac{e^x}{x^n}$$
 et $g(x) = \frac{e^x}{x}$

Or, pour tout x > 0, $f(x) = \left(\frac{e^{x/n}}{x}\right)^n = \left(\frac{e^{x/n}}{x/n}\right)^n \times \left(\frac{1}{n}\right)^n = C_n(g(x/n))^n$, où $C_n > 0$ est une constante fixée (puisque n est fixé). De plus, d'après les limites usuelles et la proposition 13,

$$\lim_{x \to +\infty} x/n = +\infty \qquad \qquad \lim_{x \to +\infty} g(x) = +\infty \qquad \qquad \lim_{x \to +\infty} x^n = +\infty$$

Donc, par composition des limites $\lim_{x\to +\infty} \frac{e^x}{x^n} = \lim_{x\to +\infty} f(x) = +\infty$