IV) Étude de la fonction tangente

A) Définition

Définition 1

La fonction tangente, notée tan, est la fonction définie pour tout $x \neq \dots$

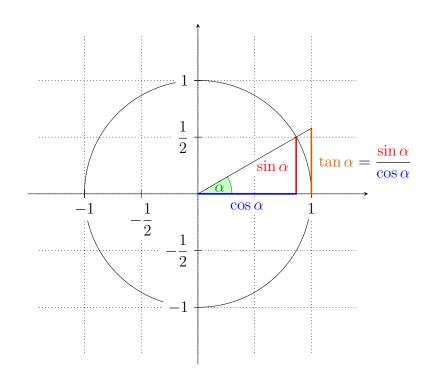
par

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

 $\mathscr{D}_{tan} = \dots$

Sur le cercle trigonométrique, la tangente se lit sur la droite tangente au cercle en A(0,1). Le théorème de Thalès nous donne ce résultat

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$



B) Propriétés géométriques

Propriété 1

La fonction tan est ...-périodique.

Démonstration. Pour tout $x \in \mathcal{D}_{tan} = \dots$

$$\tan(x+\ldots) = \frac{\ldots}{}$$

Il suffit donc d'étudier la fonction tangente sur un intervalle de longueur On va donc restreindre l'étude à l'intervalle $I=\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$.

Propriété 2

La fonction tan est impaire.

Démonstration. Pour tout $x \in \mathcal{D}_{tan} = \dots$

$$\tan(-x) = ----$$

Conséquences graphiques.

- Comme tan est π -périodique, sa courbe représentative est invariante par ...
- Comme tan est impaire, dans un repère orthonormal sa courbe représentative est . . .

C) Étude

1) Calcul de la dérivée et variations

Propriété 3

La fonction tan est dérivable sur \mathscr{D}_{tan} et $tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.

Démonstration. La fonction tan est dérivable car composée de fonctions dérivables (sin et cos).

$$tan'(x) = \dots$$

Conséquence 1

La fonction tan est strictement croissante sur tout intervalle du type $\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}.$

Démonstration.

2) Tableau de variation

Pour les raisons de symétrie évoquées dans la partie B), nous allons dresser le tableau sur $\left[0; \frac{\pi}{2}\right[$.

- $tan(0) = \frac{\cdots}{}$
- Étude de la limite en $\frac{\pi^-}{2}$:

$$\lim_{\substack{x \to \frac{\pi}{2} \\ x \to \frac{\pi}{2}^{-}}} \sin(x) = 1 \\ \lim_{\substack{x \to \frac{\pi}{2}^{-}}} \cos(x) = 0^{+} \\ \end{bmatrix} \text{Donc } \lim_{\substack{x \to \frac{\pi}{2}^{-}}} \tan(x) = \dots$$

x	0	$\frac{\pi}{2}$
$\tan'(x)$		
tan		

D) Tableau de valeurs

De même que dans le cas du sinus et du cosinus, il faut connaître — ou savoir retrouver — certaines valeurs de tan(x).

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\tan(x)$				
$\sin(x)$				
$\cos(x)$				

E) Représentation graphique

