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Abstract. We perform a general study of the structure of locally compact
modules over compactly generated abelian groups. We obtain a dévissage
result for such modules of the form “compact-by-sheer-by-discrete”, and then
study more specifically the sheer part. The main typical example of a sheer
module is a polycontractable module, i.e., a finite direct product of modules,
each of which is contracted by some group element. We show that every sheer
module has a “large” polycontractable submodule, in a suitable sense.

We apply this to the study of compactly generated metabelian groups. For
instance, we prove that they always have a maximal compact normal subgroup,
and we extend the Bieri-Strebel characterization of compactly presentable
metabelian groups from the discrete case to this more general setting.

1. Introduction

We fix a locally compact abelian (LCA) group A, which will often be assumed
to be compactly generated. General structure of LCA groups ensures that every
compactly generated LCA group has a cocompact lattice isomorphic to Zd for
some d. Therefore, the reader can assume A = Zd; this is not a significant
restriction.

We consider locally compact (LC) A-modules M , that is, M is an LCA-group
endowed with a continuous homomorphism A → Aut(M) (continuity is equiv-
alent to continuity of the action A ×M → M). We aim at providing general
results on the structure of such modules M . They will then be illustrated in
the study of compactly generated LC metabelian groups. One extreme case is
when M is discrete. In this case, it can be handled with classical commutative
algebra. The “opposite” case is when M is compact: such modules then in-
herit a description, namely as Pontryagin duals of discrete modules. Recall that
the Pontryagin dual of an LCA group M is M̂ = Hom(M,R/Z) (continuous
group homomorphisms), and that this defines a contravariant self-equivalence of
the category of LCA groups, notably exchanging discrete and compact modules.
Functoriality ensures that it is compatible with group actions, and thus it induces
a contravariant self-equivalence of the category of A-modules (there is a minor
continuity verification for the action, see §2.1). In particular, denoting by N⊥
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the orthogonal {χ ∈ M̂ : χ|N = 0} for a closed submodule N of M , orthogonality

is an order-reversing isomorphism between submodules of M and those of M̂ .
The purpose of the forthcoming definitions is to “isolate” the “essential part” of

M that is “in between” — roughly speaking, that has “few” compact submodules
and discrete quotients — and to do it precisely, so as to avoid such quotation
marks (this will be done in Definition 1.3, Theorem 1.4). The first definition in
this purpose is thus:

Definition 1.1. The polycompact radical W(M) (or WA(M) in case of am-
biguity) of M is the sum of all compact submodules. The codiscrete radical
Ω(M) is the intersection of all open submodules.

Note that modding out by the closure of the polycompact radical, and taking
the codiscrete radical are “exchanged” by Pontryagin duality (see Proposition 2.2
for details). A first fact is the following:

Theorem 1.2. If A is compactly generated, then W(M) is closed for every LC-
module M , and every compact subset of W(M) is contained in a compact sub-
module.

This is easily deduced from a group-theoretic fact, namely, in a compactly
generated LC group, the subgroup generated by all compact normal subgroups
is closed. The latter is a nontrivial fact, proved in [C15], which relies on work of
Trofimov, who essentially proved it for totally disconnected compactly generated
LC groups. See §2.3.

We now alter these definitions because of the following shortcomings:

• W(M) need not be compact;
• W(M) need not be contained in Ω(M) (e.g., if M is finite, Ω(M) = {0}

and W(M) = M).

Definition 1.3. A module M is compact parafinite if it is compact with no
nonzero finite quotient. Define the reduced polycompact radical W[(M) as
the sum of all compact parafinite submodules of M .

A module M is purely discrete if it is discrete with no nonzero finite sub-
module. Define the augmented codiscrete radical Ω](M) as the intersection
of all open submodules with purely discrete quotient.

A module M is sheer if W[(M) = {0} and Ω](M) = M .

Clearly, 0 ⊆ W[(M) ⊂ W(M) and Ω(M) ⊆ Ω](M) ⊆ M ; note that the latter

are also exchanged by orthogonality in Pontryagin duality: W(M)⊥ = Ω(M̂) and

W[(M)⊥ = Ω](M̂). In particular, a module is sheer if and only if its Pontryagin
dual is sheer. A first observation is the following.

Theorem 1.4 (Canonical filtration with sheer subquotient). We have the inclu-

sions 0 ⊆ W[(M) ⊆ Ω](M) ⊆ M . If A is compactly generated, then W[(M) is
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compact parafinite, M/Ω](M) is purely discrete, and the subquotient Ω](M)/W[(M)
is sheer.

See §2.4 for the proof. The first assertion is quite straightforward, while the
second one makes use of Theorem 1.2.

Theorem 1.4 reduces most of the study of modules to that of sheer modules, so
we proceed to describe structural results about them. Central in their description
is the notion of contracting automorphism. Recall that an automorphism α of
a LC group G is contracting if αn(x) tends to 1, uniformly for x in compact
subsets of G.

Definition 1.5. A LC A-module M is said to be contractable if there exists
α ∈ A acting as a contracting automorphism of the LCA-group M . It is said to
be polycontractable if it splits as a finite topological direct sum of contractable
modules (not necessarily with the same contracting element).

A LC A-module is said to be amorphic if it is both sheer and compact-by-
discrete. This means that it is profinite-by-(discrete locally finite). (Here both
“locally finite” and “profinite” refer to the module structure and not just the
underlying LCA group.)

A LC A-module is said to be Euclidean if the underlying LCA group is iso-
morphic to Rd for some d. It is said to be distal Euclidean if it is Euclidean
and the action of A is by matrices with only complex eigenvalues of modulus 1.

All these notions are invariant under Pontrayagin duality. For instance, if p is
prime and M = Qp with some action i : A→ Q∗p, then M is sheer, and either i(A)
consists of elements of norm one and M is amorphic, or else M is contractable.

Polycontractable modules are sheer and they constitute the main source of
sheer modules, and, in the sense, the most “interesting” ones. Indeed, it read-
ily follows from the definition that W(M) = {0} and Ω(M) = M when M is
contractable. Also, Euclidean modules and amorphic modules are sheer. The
following theorem indicates that each sheer module has a canonical “large” poly-
contractable submodule.

Theorem 1.6. Suppose that A is compactly generated. Every sheer module has a
unique decomposition P ⊕E ⊕ V , with P polycontractable, E amorphic, V distal
Euclidean.

See §4.1. The uniqueness part is not difficult. The existence part relies on the
case A = Z, where it takes a more precise form, see Lemma 3.6. The latter makes
use of Willis theory [Wil], which deals with automorphisms of (possibly non-
abelian) totally disconnected locally compact groups. Here we take advantage of
the module being an abelian group to obtain these more precise results.

Corollary 1.7. Suppose that A is compactly generated. Then for every compactly
generated LC A-module M , the polycompact radical W(M) is compact.
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Example 1.8 (Being sheer does not pass to submodules or quotients). Here are
some examples of polycontractable, and hence sheer, modules M over the group
A = Z with a non-sheer closed submodule N , namely a cocompact lattice. In
each case, the quotient M/N is compact parafinite and hence is not sheer either.
The first example is totally disconnected, and the third is Euclidean.

(1) The module Fp((t)) × Fp((t
−1)), where the positive generator of Z acts

on both factors by multiplication by t, is polycontractable. The module
Fp[t, t

−1] can be viewed as a discrete cocompact submodule of the former,
by the obvious natural diagonal embedding.

(2) Similarly, the module R×Qp, where the positive generator acts on both
factors by multiplication by p, is polycontractable. It admits the diagonal
embedding of Z[1/p] as a discrete submodule. In this case, the quotient,
called “solenoid”, is connected.

(3) Similarly, again with A = Z acting on R2 through powers of the matrix(
2 1
1 1

)
, R2 is a sheer module, but its submodule Z2 is not, since it is

purely discrete.

Theorem 1.9. Suppose that A is compactly generated. Let M be a sheer LC A-
module. Then M has a canonical decomposition

(⊕n
i=1 Pi

)
⊕E⊕V , with Pi 6= {0}

contractable monotypic (in the sense that all its simple quotients are isomorphic),
E amorphic, V distal Euclidean. Moreover every closed sheer submodule N splits
with respect this decomposition, namely N =

(⊕n
i=1N ∩Pi

)
⊕(N ∩E)⊕(N ∩V ).

Theorem 1.9 gives a reasonable understanding of sheer closed submodules of
sheer modules. It mostly reduces to understanding submodules of contractable
(monotypic) modules. These ones are tackled by the following (see Theorem 5.2).

Theorem 1.10. Let M be a contractable A-module. Let R be the closure of the
image of the group ring Z[A] in EndA(M). Then R is an artinian commutative
ring, M is a module of finite length over R, and the closed A-submodules of M are
exactly the R-submodules of M (i.e., these submodules are automatically closed).

(Here, the group ring is defined regardless of the topology on A.) These mod-
ules are thus completely governed by abstract commutative algebra. Example
1.8 shows that there are non-sheer submodules of sheer modules occurring as
cocompact lattices. The following theorem (see Theorem 4.5) shows that taking
cocompact lattices is essentially the only way to do so.

Theorem 1.11. Suppose that A is compactly generated. Let M be a sheer A-
module, and N a closed submodule. Then there are unique sheer closed submod-
ules N�, N� of M with N� ⊆ N ⊆ N�, with N/N� a cocompact lattice in
N�/N�.

Let us now describe applications to metabelian locally compact groups (§6.1).
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Theorem 1.12. Let G be a compactly generated metabelian group. Then for
every ascending sequence (Hn) of closed normal subgroups, there exists n such

that Hn is cocompact in
⋃
kHk. In particular,

(1) G has a maximal compact normal subgroup;
(2) every closed normal subgroup is compactly generated as normal subgroup.

Actually (1) is proved directly, making uses of applications in both senses:
groups to modules, then modules to groups. Namely, if G is a compactly gener-
ated LC group, then W(G), the union of all compact normal subgroups, is closed.
This fact is used in the study of modules (Theorem 1.2). Next structural results
on LC modules give rise to the compactness result for modules, Corollary 1.7,
which in turns implies its analogue for groups, (1) above.

We now describe a more elaborate application. Let G be a compactly generated
metabelian group. Let M be a closed normal abelian subgroup such that Q =
G/M is abelian. For a character χ ∈ Hom(Q,R), define Qχ = {g ∈ Q : χ(g) ≥
0}. Define the Bieri-Strebel invariant as

Γ(G) = {0} ∪ {χ ∈ Hom(Q,R) : M is not comp. gen. as Qχ-module}.
This was defined by Bieri and Strebel [BS2] when G is discrete. They actually

rather defined its complement. But the convention here is much more convenient,
for the reason that, after identifying Hom(Q,R) to a subspace of Hom(G,R) it
does not depend on the choice of M (while the complement does: just consider
G = Z and the choices of M = {0} vs M = Z to see the issue with taking the
open complement). The subset Γ(G) shares properties with the a spectrum of
an operator, or a set of weights. It is invariant under positive homotheties. The
following theorem extends the case of discrete metabelian groups from [BS2].

Theorem 1.13. Let G be a compactly generated metabelian LC group. Then G
is compactly presentable if and only Γ(G) contains no line through the origin, or
equivalently does not contain any two opposite nonzero characters.

The main “typically non-discrete” case of Theorem 1.13 is when M (closed
normal abelian subgroup of G with abelian quotient Q = G/M) is polycon-
tractable, namely M =

⊕
i∈IMi, with Mi contractable indecomposable (hence

either totally disconnected or connected). Let θi : Q→ R be the logarithm of the
homomorphism describing the action of Q on the Haar measure of Mi. Let J be
the set of i such that Mi is totally disconnected. Then Γ(M) = {0}∪

⋃
j∈J R≥0θj.

In the discrete case, Γ is known to be a polyhedral cone, not necessarily reduced
to a finite union of half-lines. Proving Thereom 1.13 thus has two first special
cases: the sheer case (easily reducing to the polycontractable case), and the
discrete case (due to Bieri-Strebel). Then additional work is needed to “put
things together”, relying on the previous structural results.

Acknowledgement. I thank P-E. Caprace and G. Willis for encouraging me
to write this material down.
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2. Basic facts

2.1. Pontryagin duality. Continuity of the action defining a LC A-module M
is equivalent to continuity of A → AutLCA(M). Recall that the topology of
the latter is defined by: αi → α if the map (αi, α

−1
i ) : M2 → M2 converges

to (α, α−1), uniformly on compact subsets of M . To check that continuity is
preserved when passing to Pontryagin duality, we just need to check the following.

Proposition 2.1. Let M be an LCA group. Then the action of Aut(M) on the

Pontryagin dual M̂ = Hom(M,R/Z) is continuous.

Proof. It is enough to prove that if (αi) is a net in Aut(M) converging to the

identity, then so does (α̂i). We have, for χ ∈ M̂ and x ∈M
α̂i(χ)(x) = χ(α−1i (x))

and thus
α̂i(χ)(x)− χ(x) = χ(α−1i (x)− x).

Then α−1i (x) − x converges to 0, uniformly for x in compact subsets. Hence
χ(α−1i (x) − x) converges to 0, uniformly for (x, χ) in compact subsets. This
means that α̂i(χ) converges to χ, uniformly for χ in compact subsets. In turn,
this means that α̂i converges to the identity, uniformly on compact subsets. The
same argument with α−1i yields that α̂−1i also converges to the identity uniformly

on compact subsets. So α̂i tends to the identity in the topology of Aut(M̂). �

Let us provide, as a sample, the following fact of Pontryagin duality.

Proposition 2.2. Let M be an A-module. The Pontryagin dual of the inclu-
sion map W(M) → M is (canonically identified with) the quotient map M̂ →
M̂/Ω(M̂). In M̂ , the orthogonal of W(M) is Ω(M̂).

Proof. The above inclusion map i : W(M)→ M satisfies the following universal
property: for every compact A-module N and continuous homomorphism f :
N →M , there exists a uniqueA-module homomophism g : N →W(M) such that

f = i ◦ g. Therefore, by Pontryagin duality, the projection map p : M̂ → Ŵ(M)
satisfies the following universal property: for every continuous discrete A-module
N (continuous meaning that the A-action is continuous, i.e., point stabilizers are

open) and every continuous A-module homomorphism f : M̂ → N , there exists

a unique A-module homomorphism g : Ŵ(M) → N such that f = g ◦ p. But

clearly the quotient M̂ → M̂/Ω(M̂) also satisfies this universal property. The
result follows.

Recall that the orthogonal of a submodule N of M is N⊥ = {χ ∈ M̂ : χ|N = 0}.
There is a canonical isomorphism N̂ ' M̂/N⊥. The second fact therefore follows
from the first. Alternatively, a submodule is compact if and only if its orthogonal
is open. Orthogonality is an order-reversing isomorphism between the lattices of
submodules of M and M̂ . Then W(M), as supremum (in this lattice) of the set
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of all compact submodule of M , is mapped to the infimum of the set of all open
submodules of M̂ , and this is Ω(M̂). �

2.2. Lower sheer, upper sheer modules. Since “sheer” involves two condi-
tions, it is useful to separate them.

Definition 2.3. An A-module M is lower-sheer if W[(M) = {0}, and upper-
sheer if Ω](M) = M . It is sheer if is both lower-sheer and upper-sheer.

Note that the classes of lower-sheer and upper-sheer A-modules are exchanged
under Pontryagin duality.

Note that lower-sheer passes to closed submodules, and upper-sheer passes to
quotients. However sheer passes neither to submodules nor quotients (Example
1.8).

2.3. The polycompact radical is closed. We use the following

Theorem 2.4. Let G be a compactly generated locally compact group. Then
the union Wgrp(G) of all compact normal subgroups of G, is closed, and every
compact subset of Wgrp(G) is contained in a compact normal subgroup of G.

Proof. This is [C15, Theorem 2.8]. Let us point out that the proof in [C15],
published in 2015, has been slightly corrected in the 2017 arXiv version at https:
//arxiv.org/abs/1306.4194. Let us also mention that the main case, that
of G totally disconnected, was essentially due to Trofimov. More precisely, he
obtained the case of cocompact subgroups of automorphisms of locally finite
connected graphs. The totally disconnected case follows by the “Cayley-Abels
graph” construction [CH, Prop. 2.E.9]. �

Theorem 2.5. If A is compactly generated, then W(M) is closed for every LC
A-module M , and every compact subset of W(M) is contained in a compact
submodule.

Proof. Let N be the A-submodule generated by compact subset of M with
nonempty interior. Thus N is an open compactly generated submodule of M .
So N oA is a compactly generated LC group, and hence Wgrp(N oA) is closed
by Theorem 2.4. We directly see from the definition that Wgrp(N o A) ∩ N
equals W(N). Thus W(N) is closed in N . It also follows from the definition that
W(M)∩N = W(N). Thus the subgroup W(M) is locally closed, and hence it is
closed.

For the additional statement, let K be a compact subset of W(M). Above,
we can choose N to contain K. Then the above reference also ensures that K is
contained in a compact normal subgroup L of N oA. Then L ∩N is a compact
submodule of M containing K. �
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2.4. Canonical filtration with sheer subquotient.

Theorem 2.6. Suppose that A is compactly generated. We have the inclusions
0 ⊆W[(M) ⊆ Ω](M) ⊆M . If A is compactly generated, then W[(M) is compact

parafinite, M/Ω](M) is purely discrete, and subquotient Ω](M)/W[(M) is sheer.

Proof. If N1 is a compact parafinite submodule and N2 is an open submodule
with purely discrete quotient, the projection of N1 on M/N2 is compact discrete,
hence finite; since N1 is parafinite, it is trivial. This shows that N1 ⊆ N2. Since
this holds for all N1, N2, we deduce the inclusion W[(M) ⊆ Ω](M).

Now assume that A is compactly generated, and let us show that the reduced
polycompact radical is compact for every LC A-module. By Pontryagin duality,
openness of the augmented codiscrete radical follows for every LC A-module.

Define N as the closure of W[(M). Let K be the closure of the submodule
generated by some compact subset of N with nonempty interior. By Proposition
2.5, K is compact; by construction, K is open in N . Since N is generated
by its compact parafinite submodules, this is also true for the discrete module
N/K, which is thus generated by its finite parafinite submodules. Since a finite
parafinite module is trivial, this means that N = K. Thus N is compact, and
being topologically generated by parafinite submodules, it is parafinite. Thus
N = W[(M). Hence W[(M) is compact; it is clearly parafinite. By Pontryagin

duality (applied to M̂), we deduce that Ω[(M) is open, with purely discrete
quotient.

Given that W[(M) is compact parafinite and the extension of two compact

parafinite modules is compact parafinite, we see that M/W[(M) is lower-sheer,

and hence so is Ω](M)/W[(M). By Pontryagin duality, the latter is therefore
also upper-sheer. �

2.5. Extensions of sheer modules.

Proposition 2.7. An extension of two sheer (resp. lower-sheer, resp. upper-
sheer) modules is also sheer (resp. lower-sheer, resp. upper-sheer).

Proof. Upper-sheer means that every homomorphism to a purely discrete module
is zero, and this clearly passes to extensions. The lower-sheer case follows by
Pontryagin duality. The sheer case follows from the other two cases. �

Proposition 2.8. Suppose that A is compactly generated. The submodule Ω](M)
is the largest upper-sheer submodule of M , and Ω](Ω](M)) = Ω](M).

The quotient M/Wβ(M) is the largest lower-sheer quotient module of M , and
Wβ(M/Wβ(M)) = {0}.

Proof. LetN be an upper-sheer closed submodule ofM . Then the image ofN into
every purely discrete quotient of M is zero, so N ⊆ Ω](M). Then M/Ω](Ω](M))
is extension of Ω](M)/Ω](Ω](M)) by M/Ω](M), both of which are purely discrete
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(by Theorem 2.6), and hence is purely discrete. So Ω](Ω](M) ⊆ Ω](M), whence
the two are equal, which means that Ω](M) itself is upper-sheer.

The second statement follows, by Pontryagin duality. �

Proposition 2.9. Suppose that A is compactly generated. Let M be an LC
module and N a submodule. Then Ω](N) ⊆ Ω](M).

Proof. By Proposition 2.8, Ω](N) is upper-sheer. Hence the image of Ω](N) in the
purely discrete module M/Ω](M) is zero, which means that Ω](N) ⊆ Ω](M). �

2.6. Structure of distal modules.

Proposition 2.10 (Conze-Guivarch [CGu]). Let G be a group. Let V be a distal
Euclidean G-module. If V is irreducible (as real representation), then the image of
G in GL(V ) has compact closure. Hence, in general, there is an upper-triangular
decomposition such that the image of G in GL of the diagonal blocks has compact
closure. �

The following consequence is well-known.

Corollary 2.11. Let G be a group and V a distal Euclidean G-module. Then no
G-orbit 6= {0} accumulates at zero.

Proof. Let by contradiction X 6= {0} be an orbit accumulating at zero. Let W
be the span of the given orbit, and W ′ an irreducible quotient of W . Then the
image X ′ of X in W ′ is also an orbit accumulating at zero, and spans W ′ 6= {0}.
Since G has a compact closure in GL(W ′) by Proposition 2.10, a nonzero orbit
cannot accumulate at zero. This is a contradiction. �

2.7. No homomorphism between modules of different kinds. Uniqueness
in Theorem 1.6 is based on the following lemma.

Lemma 2.12. Let C be a polycontractable A-module, E an amorphic one, V
a distal Euclidean one. Then every homomorphism between any two distinct
elements of {C,E, V } is zero.

Proof. It is no restriction to assume that C is contractable.
Hom(V,C) = 0. Let f : V → C be a homomorphism, and H the closure of the

image; it is also contractable. Also, H is connected. So, by general structure of
LCA groups, it has a maximal compact subgroup W and the quotient H/W is
isomorphic to Rk for some k. Then H/W is a quotient module of V and hence
is distal as well; since it is contractable we deduce H/W = {0}, so H = W is
compact. Also, W is compact and contractable, hence trivial. So H = {0}.

Hom(V,E) = 0. This is clear since V is connected and amorphic implies totally
disconnected.

Hom(C, V ) = 0, Hom(C,E) = 0. This is clear since no A-orbit in V or E
accumulates at zero (for V , this is Corollary 2.11).

Hom(E, V ) = 0, Hom(E,C) = 0. This is clear since V and C have no nonzero
compact submodule, and E is the union of its compact submodules. �
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2.8. Amorphic modules.

Lemma 2.13. Every closed submodule or quotient of an amorphic module is
amorphic.

Proof. Since being amorphic is invariant under Pontryagin duality, it is enough to
consider submodules. Namely, let M be amorphic, Ω a compact open submodule,
N a closed submdule. Since Ω is profinite, so is N ∩Ω, and the discrete quotient
N/(N ∩ Ω) being a submodule of the locally finite discrete module M/Ω, it is
locally finite as well. Hence N is amorphic. �

2.9. Facts on LCA groups. For M an LCA-group, we can view it as module
over the trivial group. In particular, W(M) is just the union of all compact
subgroups. When M is an A-module, we can also view it as plain group, and
we can thus write WA(M) and W{0}(M) to specify the module structure. We
always have WA(M) ⊆W{0}(M).

Similarly, with self-explanatory notation, we have W[
{0}(M) ⊆ W[

A(M) and

Ω]
A(M) ⊆ Ω]

{0}(M). In particular, every sheer A-module is sheer as LCA group.

Lemma 2.14. Let M be an LCA-group. The natural homomorphism M◦ ×
W{0}(M) → M defined by (x, y) 7→ x − y, is proper with open image. Its kernel
is the diagonal of W(M◦). Its discrete cokernel is a torsion-free abelian group,
and is the largest such quotient for M .

Proof. Let us first check that it has an open image, i.e., that M◦ + W(M) is
open. This property is trivial when M is connected. It is inherited from open
subgroups, and from quotient by compact subgroups. Since M is compact-by-Lie,
it is therefore inherited by M .

For properness, first assume that M is σ-compact. The kernel is compact
(namely the diagonal of W(M◦)) and its image is open by the previous paragraph,
hence is closed. So properness follows. In general, properness follows from being
proper on every σ-compact open subgroup.

The second assertion (on the kernel) is straightforward.
Let us now prove the third assertion; we can suppose that W(M◦) = {0}. First

assume that M/M◦ is elliptic, in which case we have to show M = M◦+ W(M).
Modding out by a compact subgroup, we can suppose that M is Lie. Then the
divisible group M◦ has a complement in M as abstract group. This complement
is a discrete subgroup, hence is a complement, and is actually locally finite, thus
equals W(M).

Now, let us prove the second assertion in general. If by contradictionM/M◦W(M)
is not torsion-free, it has a nontrivial finite subgroup. Let N be its inverse in
M . Then N/N◦W(N) is finite and nontrivial. So N is connected-by-elliptic,
implying, by the previous paragraph, N = N◦W(N), contradiction.

Finally, clearly every homomorphism to a torsion-free discrete group is trivial
on both M◦ and W(M), whence the “largest” assertion. �
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Corollary 2.15. Let M be a sheer LCA-group (that is, W(M◦) = {0} and M
has no nonzero torsion-free discrete quotient). Then M is the topological direct
product of the Euclidean group M◦ and the totally disconnected group W{0}(M).
In addition, this is the only decomposition of M as topological direct product of
connected and totally disconnected LCA groups. In particular, whenever M is
also an A-module, this is also a decomposition as A-module. �

Proof. This is a particular case of Lemma 2.14: in this case the map M◦ ×
W{0}(M) → M of Lemma 2.14 is an isomorphism: injectivity holding because
the kernel W(M◦) is trivial, surjectivity holding because M is upper-sheer. If
M = C × T is another decomposition (C connected, T totally disconnected),
clearly C = M◦. Also T being totally disconnected and upper-sheer, we have
T = W{0}(T ), so T ⊆W{0}(M) and then M = C +T ensures T = W{0}(M). �

2.10. Cocompact subgroups. The following is classical, see for instance [CH,
Prop. 4.C.11(2)].

Proposition 2.16. Let G be an LC group and H a closed cocompact subgroup.
Then G is compactly generated if and only H is compactly generated. �

Although we only the next proposition in the abelian case, we write it, for
reference, in more generality.

Proposition 2.17. Let G be a compactly generated LC group. Then G has a
finitely generated (f.g.) subgroup with cocompact closure.

Proof. 1) If G is connected and Lie, then it has a f.g. dense subgroup.
2) If G is totally disconnected, let X be a Cayley-Abels for G, that is, a

nonempty connected graph of finite valency with a vertex-transitive action of G
with compact vertex stabilizers. It exists [CH, Prop. 2.E.9]. Fix a vertex x0 of
X and let S be a finite subset of G such that the neighbors of x0 are the sx0 for
s ∈ S. Let Γ be the subgroup generated by S. Then Γ acts transitively on X.
Indeed, if x ∈ Γx0, writing x = γx0, each neighbor of x has the form γsx0 for
some s ∈ S, and hence also belongs to Γx0. If K is the stabilizer of x0, we then
have G = ΓK, so Γ is cocompact.

3) If W(G◦) is trivial, then G◦ is Lie and hence has a dense f.g. subgroup, and
since G/G◦ has f.g. subgroup with cocompact closure, so does G.

4) In general, the previous case applies to G/W(G◦). Lifting a f.g. subgroup
of the latter, we obtain a f.g. subgroup Γ such that Γ W(G◦) is cocompact. Thus
Γ is cocompact. �

3. One automorphism

We recall that an automorphism φ of a locally compact group G is contracting
if limn→∞ φ(x) = 1 for every x ∈ G. In this case, the convergence is uniform on
compact subsets of G [Si, Lemma 1.4(iv)]. The automorphism is said to be
compacting if there exists a compacting subset, that is, a compact subset
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Ω ⊆ G with α(Ω) ⊆ Ω and G =
⋃
n≥0 α

−n(Ω). Note that such Ω has nonempty
interior (by Baire’s theorem). If M is totally disconnected, Ω can be chosen to
be a compact open subgroup. If α is compacting with compacting subset Ω, the
intersection

⋃
n≥0 α

n(Ω) is a compact subgroup, called limit subgroup of α; it is
independent of the choice of Ω.

Observe that α is contracting if and only every compact neighborhood of 1 is
a compacting subset, if and only α is compacting with limit subgroup reduced to
{1}.

For α ∈ A, we say that A is α-contractive (resp. α-compactive) if α acts on
A as a contracting (resp. compacting) automorphism. If A is α-compactive with
limit subgroup L, then L is a compact A-submodule and M/L is α-contractive.

We say that M is α-contractable if there exists α ∈ A such that M is α-
contractive.

3.1. Willis’ theory. Let G be a totally disconnected locally compact group and
α a topological automorphism of G.

If V is a compact open subgroup of G, define V ± =
⋂
n≥0 α

±n(V ); these are

compact subgroups of V ; note that α±1(V ±) ⊃ V ±.

Theorem 3.1 (Willis, Theorem 1 in [Wil]). For every G and α there exists a
compact open subgroup V such that

(1) V = V +V − = V −V +;
(2) the subgroups V ++ =

⋃
n≥0 α

n(V +) and V −− =
⋃
n≥0 α

−n(V −) are closed

subgroups of G. In particular, V ++ is α−1-compactive and V −− is α-
compactive.

The theorem is stated only for conjugation automorphisms in [Wil] but, as
observed in subsequent papers, the general statement follows by considering the
semidirect product Go 〈α〉.

3.2. Closedness of the set of contracted points. Now and in the sequel,
when we consider Z[α±1]-module, it is understood that the acting group is the
infinite cyclic group A = 〈α〉.

Let M be a locally compact Z[α±1]-module. Denote by Cα(M) the set of
elements x in M such that limn→+∞ α

n(x) = 0. This is a possibly non-closed
submodule (see Remark 3.3).

Proposition 3.2. If M is lower-sheer as Z[α±1]-module (i.e. W]
Z[α±1](M) =

{0}), then Cα(M) is closed, and is an α-contractive module.

Proof. We can assume that Cα(M) is dense and we have to show that M is
α-contractive.

Let V be a compact open subgroup, write V − =
⋂
n≥0 α

−n(V ) (so α(V −) ⊆ V −)

and V −− =
⋃
n≥0 α

−n(V −). For each x ∈ Cα(M), the element αn(x) belongs to
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V for n large enough, say n ≥ n0. Hence αn0(x) ∈ V −, and therefore x ∈ V −−.
This proves that Cα(M) ⊆ V −−.

Willis’ theorem (Theorem 3.1) ensures that there exists V such that V −− is
closed; we assume V has this property. Then the density of Cα(M) ensures that
V −− = M . Note that by Baire’s theorem, this implies that V − has nonempty
interior, hence is open.

Define F =
⋂
n≥0 α

n(V −). Then L is a compact submodule and α induces
a contracting automorphism of M/L. To conclude, it remains to show that

F = {0}. Since W[(M) = 0, to show that F = {0} it is enough to check that F
has no proper open submodule. Otherwise, modding out, we can suppose that F
is finite, and let us deduce that F = {0}.

Let Ω be a compact open subgroup of M with Ω ∩ F = {0}. Since α is
contracting modulo F there exists a compact open subgroup K of Ω with α(K) ⊆
K + F , and K can be chosen arbitrary small. In particular, K can be chosen to
be contained in α−1(Ω). So α(K) ⊆ (K+F )∩Ω = K. Write F ′ = Fr{0}. Since
α(F ′) = F ′, we deduce α(K+F ′) ⊆ K+F ′. It follows that K+F ′∩Cα(M) = ∅.
By density of Cα(M), we deduce that the open subset K+F ′ is empty, and hence
F = {0}. �

Remark 3.3. Without lower-sheerness of M , closedness of Cα(M) can fail, even
when M is totally disconnected or connected. Let B be a nontrivial finite abelian
group, and M = BZ, endowed with the shift automorphism f 7→ (n 7→ f(n+ 1)).
Then Cα(M) is the set of eventually (at +∞) zero sequences, and thus is not
closed. Also, the automorphism of the 2-torus R2/Z2 induced by the matrix(

2 1
1 1

)
has a non-closed contraction subgroup. These examples are classical.

Lemma 3.4. Let M be a lower-sheer locally compact Z[α±1]-module. Suppose
that M is α-compactive. Then M is sheer, M = Cα(M)×W(M) and W(M) is
compact.

Proof. If N is a discrete quotient of M , then N is also α-compactive, and clearly
this implies that N is a locally finite module. Thus M is upper-sheer, and hence
sheer. In particular, it is sheer as LCA-group.

By Theorem 2.5, W(M) is closed, and has a compact open submodule Ω. Then
W(M)/Ω is α-compactive and discrete, hence finite. Hence W(M) is compact.

Now let us prove the decomposition statement. By Corollary 2.15, we can
suppose that M is either Euclidean or totally disconnected. The Euclidean
case is clear: in this case, since M has no nonzero compact submodule, it is
α-contractive.

Assume M totally disconnected. By Proposition 3.2, Cα(M) is closed. Con-
sider the natural homomorphism f : Cα(M) ×W(M) → M . It is proper, by
compactness of W(M). Its kernel is therefore compact, and hence its projection
to Cα(M) is a compact α-contractive module, hence trivial. Thus the kernel is
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contained in W(M) on which the homomorphism is clearly injective. Finally,
surjectivity of f is given by [BW, Corollary 3.17]. �

3.3. A lemma on contraction minus identity. For a Z[α±1]-module, recall
that it is understood that A = 〈α〉. To be polycontractable just means to be the
direct sum of an α-contractive and an α−1-contractive module.

Lemma 3.5. Let M be a polycontractable locally compact Z[α±1]-module. Then
the multiplication by (α− 1) is an automorphism of the topological module M .

Proof. It is enough to assume that M is either α-contractive or α−1-contractive.
If the α-contractive case works, the other case follows since α−1−1 = −α−1(α−1).
So assume that M is α-contractive.

By Siebert’s theorem [Si, Proposition 4.2] (or Corollary 2.15), we can suppose
that M is either Euclidean or totally disconnected. The Euclidean case being
straightforward from linear algebra, assume that M is totally disconnected.

Let Ω be a compact open Z[α]-submodule. Observe that for every v ∈ M , we
have

(3.1) v ∈ Ω ⇔ αv − v ∈ Ω.

The implication ⇒ is clear. Let by contradiction v is a counterexample to ⇐,
namely αv−v ∈ Ω and v /∈ Ω. Considering n maximal such that αnv /∈ Ω (which
exists by contractivity), and define w = αnv. Then w /∈ Ω and αw ∈ Ω. Since
αv − v ∈ Ω and αΩ ⊆ Ω, we have αn(αv − v) = αw − w ∈ Ω. Hence w ∈ Ω, a
contradiction.

Consider the ultrametric on M defined by d(x, y) = exp(inf{n : αn(x − y) ∈
Ω}). It is complete, addition-invariant and defines the topology of M . Moreover,
by (3.1), the multiplication by (α − 1) is an isometric embedding of (M,d) into
itself; in particular its image is closed, by completeness. It remains to check that
it is surjective: indeed, if we mod out by the image, we obtain a module on which
α is contracting but acts as the identity, so we obtain the trivial module. �

3.4. Decomposition under a single automorphism.

Lemma 3.6. Let M be a sheer LC Z[α±1]-module. Then M decomposes as a
topological A-module:

M = Cα(M)⊕ Cα−1(M)⊕W(M)⊕ E(M),

where E(M) is the largest distal subspace of the Euclidean A-module M◦.

Proof. For a direct product of an Euclidean and a totally disconnected module,
all given subspaces split accordingly. Hence Corollary 2.15 reduces to the cases
when M is either Euclidean or totally disconnected (to apply the corollary, note
that M being a sheer A-module, it is a sheer LCA group).

The case when M is Euclidean is just plain linear algebra: the subspaces in
the decomposition are then as follows. The sum of characteristic subspaces of
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α with respect to complex eigenvalues of modulus > 1 (resp. < 1, resp. = 1) is
Cα(M) (resp. Cα−1(M), resp. E(M)), and W(M) = {0}.

Now assume that M is totally disconnected. We then have to prove that
M = Cα(M)⊕ Cα−1(M)⊕W(M). By Willis’ theorem (Theorem 3.1), there are
closed submodules N+, N− such that N+ is α-compactive, N− is α−1-compactive,
and N+ + N− is open. Therefore, by Lemma 3.4, there are closed submodules
C+, C−, and a compact submodule Ω such that C+ is α-contractive, C− is α−1-
contractive, Ω is compact, and C+ + C− + Ω is open. Note that C± = C±(M),
and Ω ⊆W(M).

Consider the sum homomorphism f : Cα(M) ⊕ Cα−1(M)⊕W(M) → M . Let
K be its kernel. Let s = (c+, c−, z) be an element of K, in this decomposition.
Then c+ + c− + z = 0 in M . Thus, for every n, 0 = αn(c+) + αn(c−) + αn(z).
Then, for n → ∞, αn(c+ + z) is bounded, while αn(c−) tends to infinity unless
c− = 0. This forces c− = 0. Similarly, letting n tend to −∞ ensures c+ = 0.
Hence c+ = c− = 0, so z = −c+ − c− = 0 showing that K = {0}, that is, f is
injective. All this argument showing that f is injective with open image is true
for some σ-compact submodule of M . Hence f is proper.

It remains to see that f is surjective. Write T = Cα(M) + Cα−1(M) + W(M),
which is the image of f and which we already proved to be open; let us show
that M = T . Since M is sheer, the discrete quotient M/T is locally finite as
A-module.

Take x ∈M . Since the discrete module M/T is a locally finite module (because
M is sheer), for some k ≥ 1 we have αkx = x in M/T , i.e. (αk − 1)x ∈ T .
Write P = Cα(M) ⊕ Cα−1(M), so that T = P ⊕W(M). We can decompose
(αk − 1)x ∈ T according to this decomposition. By Lemma 3.5, we can write
(αk − 1)x = (αk − 1)u + v with u ∈ P and v ∈ W(T ). Set y = x − u, so
that (αk − 1)y = v. Modulo the closed submodule N generated by v (which is
compact), we have αky = y, and therefore, modulo N , the submodule generated
by y is actually generated, as a group, by the finite set {y, . . . , αk−1y}. Since M
is elliptic as an LCA-group, we deduce that the closed submodule of M generated
by y is compact, and therefore y ∈W(M). So x = u+ y ∈ P + W(M) ⊆ T . �

4. Structure of sheer modules

4.1. Decomposition of sheer modules.

Theorem 4.1. Suppose that A is compactly generated. Every sheer module has a
unique decomposition P ⊕E ⊕ V , with P polycontractable, E amorphic, V distal
Euclidean.

We need to keep track of the construction in the proof. Therefore we intro-
duce some definition. For a sheer A-module M and α ∈ A, define C≤0α (M) =
Cα−1(M) ⊕WZ[α±1](M) ⊕ EZ[α±1](M). So Lemma 3.6 says that M = Cα(M) ⊕
C≤0α (M). If M is a sheer A-module and α ∈ A, this is an A-module decomposi-
tion.
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Now let (αi)i≥1 be a sequence in A. For a sheer LC A-module M and define
B0 = M , and by induction Ci = Cαi

(Bi−1) and Bi = C≤0αi
(Bi−1), so that Bi−1 =

Ci ⊕Bi. Then for each n, we have M = C1 ⊕ · · · ⊕ Cn ⊕Bn.

Lemma 4.2. Suppose that for some n, we have S = {αi : i ≤ n} satisfies the

following: S = S−1, and 〈S〉 is cocompact in A (this exists as soon as A is
compactly generated). Then W(Bn) is an amorphic A-module and E(Bn) = B◦n
is a distal Euclidean A-module.

Proof. Using Corollary 2.15, we can assume that M is either totally disconnected
or Euclidean (since the decomposition is preserved at each step).

We start with the easier Euclidean case: we have to prove that Bn is distal.
Complexify and triangulate the A-action on the real vector space Bn. Consider a
diagonal coefficient, given by a continuous homomorphism ω : A→ C∗. Then by
construction, for each α ∈ S we have |ω(α)| ≤ 1. Since S = S−1, we deduce that
S ⊆ Ker(|ω|). Hence the homomorphism log |ω| : A → R factors through the

compact group A/〈S〉, and hence it is zero. Thus |ω| = 1, that is, Bn is distal.
Now suppose that M is totally disconnected. For every α ∈ S, the module

Bn is amorphic over Z[α±1]. For T ⊆ S symmetric, we prove by induction on
|T | that there is a compact open 〈T 〉-submodule; the case T empty is clear.
More precisely, suppose that T has maximal cardinal such that this holds, with
a compact open 〈T 〉-submodule Ω, and by contradiction choose α ∈ SrT . Since
Bn is amorphic over Z[α±1], the union

⋃
n∈Z α

nT has compact closure. Hence the
closure of the additive subgroup by this union is compact and invariant under
T ∪ {s,−s}, contradiction.

Thus M is an amorphic 〈S〉-module. Let Ω be a compact open 〈S〉-submodule.
Its stabilizer in A is open and contains the subgroup 〈S〉 with cocompact closure,
and hence is a finite index subgroup B of A. Therefore the sum

∑
a∈A aΩ is a

finite sum, and thus is a compact open A-submodule.
The existence of (αi) is ensured by Proposition 2.17: find a finite family

(α1, . . . , αm) generating a dense subgroup of a cocompact subgroup. Then set
n = 2m, αm+i = αi for 1 ≤ i ≤ m, and αi = 1 for i > 2m. �

Proof of Theorem 4.1. Lemma 2.12 ensures uniqueness: if P1⊕E1⊕V1 is another
decomposition, considering projections P1 → E, P1 → V , the lemma then implies
these are zero, so P1 ⊆ P and similarly E1 ⊆ E, V1 ⊆ V , whence equality holds.

For the existence, apply Lemma 4.2 (for a suitable sequence (αi), which exists
since A is compactly generated). Then, with the notation preceding the lemma,
M = C1⊕ · · · ⊕Cn⊕Bn with each Ci contractable, and the lemma says that Bn

is the direct sum of an amorphic and a distal Euclidean module. �

Corollary 4.3. Let A be compactly generated. Then for every compactly gener-
ated LC A-module M , W(M) is compact. That is, M has a maximal compact
submodule.
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Proof. Modding out by the compact submodule W[(M), we can suppose that M
is lower-sheer. By Theorem 4.1, write N = Ω](M) = P ⊕E⊕V with E = W(N),
P polycontractable, V distal Euclidean. Let E ′ be a compact open submodule
of E. Then Q = M/(P ⊕ E ′ ⊕ V ) is a discrete A-module, with the locally finite
submodule E ′/E.

Let B be a cocompact lattice in A. Then since QoA is a compactly generated
LC group, so is its cocompact lattice Q o B (see Proposition 2.16). Hence Q is
a finitely generated B-module. By noetherianity, we deduce that E/E ′ is also a
finitely generated B-module, since it is also locally finite as B-module, it is finite.
Thus E is compact.

Since the projection of W(M) in the purely discrete group M/N is trivial, we
deduce that W(M) = W(N) = E is compact. �

4.2. Sheer submodules and quotients.

Theorem 4.4. Suppose that A is compactly generated. Let M be a sheer A-
module and N a closed submodule. Then N is sheer if and only if M/N is sheer.

As far as we tried, this is not a plain consequence of the definition. The proof
uses Theorem 4.1, and, more specifically, its more explicit form given in Lemma
4.2, which outputs a decomposition with some specific properties for the module
and its submodule simultaneously. Indeed, one main issue is that a quotient of a
polycontractable module need not be polycontractable. However, this is true for
a quotient of a contractable module, and we need to be able to exploit this.

Proof. Because of Pontryagin duality, it is enough to prove one direction. Suppose
that N is sheer.

We apply Lemma 4.2 simulatenously to M and N . Namely M = C1⊕· · ·⊕Cn⊕
Bn, Bn = W(Bn)⊕B◦n with W(Bn) = W(M) amorphic and B◦n distal Euclidean,
and Ci = Cαi

(Ci⊕· · ·⊕Cn⊕Bn). Consider the same decomposition for N , namely
N = C ′1 ⊕ · · · ⊕ C ′n ⊕ B′n. Then from the definition it follows that C ′i = Ci ∩N .
Also W(B′n) ⊆ W(M) = Bn, and (B′n)◦ ⊆ B◦n. So M/N = C ′′1 ⊕ · · · ⊕ C ′′n ⊕ B′′n
with C ′′i = Ci/C

′
i contracted by αi and B′′n = Bn/B

′
n. Clearly B◦n/(B

′
n)◦ is distal

Euclidean, and W(Bn)/W(B′n) being quotient of the amorphic module W(Bn),
has to be amorphic as well (Lemma 2.13). Hence M/N is sheer. �

4.3. Sheer core and envelope.

Theorem 4.5. Suppose that A is compactly generated. Let M be a fixed sheer LC
A-module. For a submodule N of M , write N� = Ω](N) (sheer core of N) and

let N� (sheer envelope of N in M) be the inverse image of W[(M/N) ⊆M/N
in M . Then N� ⊆ N ⊆ N�, N/N� is purely discrete, and N�/N is compact
parafinite. The submodule N� is sheer and maximal for this property among
submodules of N ; the submodule N� is sheer and minimal for this property among
submodules containing N . If N1 ⊆ N2 then N�

1 ⊆ N�
2 and N�

1 ⊆ N�
2 .
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Remark 4.6. While N 7→ N� is intrinsic to N , the assignment N 7→ N� definitely
depends on M . This may sound strange in view of Pontryagin duality, but rather,
the dual statement is that the assignment M/N 7→M/N� only depends on M/N .

Proof of Theorem 4.5. It is enough to prove all assertions about the sheer core,
since those about the sheer envelope follow by Pontryagin duality (using Theorem
4.4 in some cases).

The assertion N� ⊆ N is trivial. The N� is sheer: it is lower-sheer as submod-
ule of the sheer module M , and is upper-sheer by Proposition 2.8. That N/N�

is purely discrete is part of Theorem 2.6. If N1 ⊆ N2, then by Proposition 2.8
applied successively in N1 and N2, the submodule N�

1 is upper-sheer, and hence
contained in N�

2 . �

4.4. Chains of submodules. We start with the following lemma. Exception-
ally, we write it in the non-commutative setting, since the proof is not longer
than the case of modules.

Lemma 4.7. Let M be a contractable LC A-module. Then there is a bound
(depending only on M) on the length of chains of closed submodules of M . More
generally, if G is an LC-group with a contracting automorphism α, there is a
bound on the length of chains of α-invariant subgroups (H α-invariant meaning
α(H) = H).

Proof. First case: G is totally disconnected. This case is actually covered by
[GW, Theorem 3.3]; let us provide a much shorter argument. Let α−1 multiply
the Haar measure of G by nG. Then nM is a positive integer, namely it equals
the index [Ω : α(Ω)] for some/every compact open subgroup Ω of G such that
αΩ ⊆ Ω. Now let us check that if H is an α-invariant closed subgroup then
nH ≤ nG, and if nH = nG then H = G. Then nG = [G : α(G)] and nH = [Ω∩H :
α(Ω ∩ H)]. The inequality immediately follows; if it is an equality we deduce
that Ω = α(Ω)(Ω ∩ H). It follows that the image of Ω in G/H is a compact
α-invariant subset. Since α acts as a contraction (to the base-point) on the coset
space G/H, we deduce that this is a point, i.e. Ω ⊆ H. Thus H is open, and since
the discrete coset space G/H admits a contraction, we deduce that it is reduced
to a point and thus H = G. The bound immediately follows (e.g., log2(nG) is
such a bound).

Second case: G is connected, namely a d-dimensional simply connected nilpo-
tent Lie group. Then since every contractable subspace is a real subspace, we
have the bound d.

The general case then follows from the Siebert’s decomposition [Si]. �

Corollary 4.8. Let M be a polycontractable LC A-module. Then there is a bound
(depending only on M) on the length of chains of sheer closed submodules of M .

Proof. Given Lemma 4.2, this follows from the contractable case, namely Lemma
4.7. �
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Remark 4.9. Corollary 4.8 does not extend to general closed submodules. For
instance, we have the bi-infinite sequence of lattices 3nZ[1/2] (n ∈ Z) in R×Q2

(viewed as Z[α±1]-module, α acting by multiplication by 2).

An LC A-module is topologically characteristically simple if M 6= {0}
and the only closed Aut(M)-invariant closed submodules are {0} and M (Aut(M)
being the group of topological A-module automorphisms). It is topologically
simple if M 6= {0} and its only closed submodules are {0} and M . Of course
topologically simple implies topologically characteristically simple.

Theorem 4.10. Let M be a topologically characteristically simple LC A-module.
Then exactly one of the following holds:

(1) M is finite;
(2) M is compact infinite;
(3) M is discrete infinite;
(4) M is Euclidean and contractable;
(5) M is Euclidean distal;
(6) M is contractable and totally disconnected;
(7) M is amorphic, neither discrete nor compact. In this case, M is not

topologically simple.

Proof. By assumption, M 6= {0}. Clearly, M is either connected or totally dis-
connected.

If M is connected, let us conclude (we will not need the assumption on A).
Then W(M) is a compact characteristic subgroup, hence either is M or trivial. In
the first case, M is compact (hence Case (2)), and otherwise, M is Euclidean. If
M is not distal (Case (5)), let us check that M is contractable (Case (4)). Indeed,
this means that there is some α acting with an eigenvalue z of modulus 6= 1. If
z is real (resp. non-real), the Ker(α− z) (resp. Ker((α− z)(α− z̄)) a nontrivial
subspace, invariant under Aut(M), hence equals M which is then contractable.

Now suppose that M is totally disconnected. Then Ω[(M) is either zero or M ,
and in the first case, Theorem 2.6 (which uses that A is compactly generated)

ensures that M is purely discrete (Case (3)). Similarly W[(M) is either zero or M ,
and in the second case, M is compact paracompact (Case (2)). Otherwise, M is
sheer. Using that A is compactly generated (and that M is totally disconnected),
Theorem 4.1 then ensures that M is either contractable (Case (6)) or amorphic.

If M is amorphic, then it is either compact (Case (2)) discrete (Case (3)),
or none (Case (7)). In the latter case, it has a proper open submodule that is
infinite, so is not topologically simple. �

Remark 4.11. By a simple commutative algebra exercise, if M is discrete (Cases
(1) or (2)), the kernel of A→ Aut(M) is an open subgroup B, and there is a prime
ideal P of Z[A/B] (with A/B acting faithfully on Z[A/B]/P , i.e., A/B∩1+P =
{1}) such that M is a nonzero vector space over the field Frac(Z[A/B]).
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Case (7) is not much harder to describe: for some prime p, M is a Zp-module
and either M is a finite-dimensional vector space over Qp, or, for some infinite
set I, M has an open subgroup isomorphic to ZI

p and pM is dense in M .
If M is Euclidean, one can check that M is a real or complex vector space with a

scalar action, which, in the complex case, is given by a continuous homomorphism
A→ C∗ whose image is not contained in R∗.

Theorem 4.12. Suppose that A is compactly generated. Let M be a compactly
generated A-module. Then there is a compact submodule W of M , namely W =
W(M), such that for every ascending sequence (Mn) of closed submodules of M ,

for large enough n, Mn is cocompact in
⋃
iMi.

Proof. By Corollary 4.3, W(M) is compact. Hence, for the first assertion, there
is no restriction in assuming that W(M) is trivial.

The module Ω](M) is sheer. Let us use the notation � relative to the ambient
module Ω](M). Since W(M) = {0}, we can write Ω](M) = P ⊕ V with P
polycontractable and V distal Euclidean. Hence, by Corollary 4.8, the sequence
(Mn ∩ Ω](M))� is stationary, say, equal to a certain submodule L. There is no
restriction in assuming that (Mn ∩ Ω](M))� = L for all n. By Theorem 4.5,
(Mn ∩ Ω](M))� contains Mn ∩ Ω](M) as closed cocompact subgroup. Hence
L ∩Mn is closed cocompact in L. It follows that M ′

n = L + Mn is closed and
contains Mn as closed cocompact subgroup.

We claim that (M ′
n) is stationary. We first observe that M ′

n∩Ω](M) = L. The
inclusion ⊆ is trivial. If x ∈ M ′

n ∩ Ω](M), write it as y + z, y ∈ L, z ∈ Mn.
Since x ∈ Ω](M), we have z ∈ Ω](M), so z ∈ Mn ∩ Ω](M) ⊆ L and hence
x ∈ L. The observation ensures that M ′

n ∩ Ω](M) is stationary. Then the claim
follows because the projection of M ′

n in the discrete quotient is ascending, hence
stationary by noetherianity.

Write M ′
n = M ′ for large n. Then Mn is cocompact in M ′ for large enough n.

The result follows. �

Corollary 4.13. Let A be compactly generated. Then every closed submodule of
a compactly generated LC A-module is compactly generated.

Proof. Let M be a compactly generated LC module. Let N be a closed submod-
ule. Let N0 be an open, compactly generated closed submodule of N . Since M
is σ-compact, so is N , and hence the discrete quotient N/N0 is countable. Hence
there is an ascending sequence (Nn) of compactly generated submodules of N
with N0 as previously defined, and

⋃
Ni = N . By Theorem 4.12, for some n,

Nn is cocompact in N . Since Nn is compactly generated and cocompact in N , it
follows that N is compactly generated (Proposition 2.16). �
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5. Fine structure of contractable modules

Lemma 5.1. Let M,M ′ be LC A-modules. Suppose M⊕M ′ is contractable. Then
HomA(M,M ′) (the group of continuous homomorphisms) is locally compact for
the compact-open topology.

Proof. The assumption means that there exists α ∈ A acting as a contraction on
both M and M ′, we fix such an α. Since HomA(M,M ′) is a topological group, it
is enough to find a compact neighborhood of 0.

The zero homomorphism has a basis of neighborhoods of the form V (K,K ′),
where K is a compact symmetric subset of M , K ′ is a compact neighborhood
of 0 in M ′, where V (K,K ′) is the set of continuous homomorphisms M → M ′

mapping K into K ′.
We first observe the following: if K generates M as A-module, then V (K,K ′)

is compact has a compact closure V ′ in M ′M (the set of maps M →M ′ endowed
with the pointwise convergence topology, ignoring the topology on M). And
moreover the closure of V (K,K ′) consists of maps that are locally bounded (the
image of every compact subset has compact closure). Indeed if P is a compact
subset of M , then P ⊆

⋃n
i=1 αiK for some finite family (αi)1≤i≤n, and hence

for every f ∈ V (K,K ′) we have f(P ) ⊆
⋃n
i=1 αiK

′. (The existence of K only
makes use of the fact that M is compactly generated, which follows from being
contractable.)

Next, we show that every element f of the closure V ′ is continuous. Namely,
we show that, assuming the existence of α as above, every locally bounded homo-
morphism f is continuous. Indeed, if (xj) is a net tending to 0 in M , we can write
xj = αkj(yj) with (yj) bounded and kj → +∞. So f(xj) = αkjf(yj) ∈ αkj(f(K)).
Since f(yj) is bounded, while αkj converges uniformly on bounded subsets to the
constant 1. Hence f(xj) tends to 0.

Thus V (K,K ′) is compact in the pointwise convergence topology. This implies
it is also compact in the compact-open topology, by a general argument only
based on the Baire theorem, see [CGl]. �

Theorem 5.2. Let M be a contractable A-module. Let R be a closed A-subalgebra
of EndA(M). Then every R-submodule of M is closed and in particular M has
finite length over R. The underlying ring R is an artinian ring (i.e., R has finite
length as R-module).

Proof. Let us first show the closedness statement. Here it is enough to suppose
that R is the closure R0 of the image of Z[A] and in particular is commutative.

Let M be a counterexample, of minimal length as a topological module, and
N a non-closed submodule. By minimality, N is dense, and does not contain any
nonzero closed submodule of M .

If x ∈ N r {0} then N ∩ R0x is a non-closed submodule of M and hence is
dense; in particular R0x = M for every x ∈ N .
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If M is not simple as a topological module, let L be a closed submodule of M
distinct from {0},M . Then by minimality N ∩ L = {0} and the projection of N
on M/L is all of M/N ; in particular, M = N ⊕ L as an abstract module. The
latter holds for every nonzero proper submodule N and non-closed submodule L.
This shows that there is no proper inclusion

• between any two non-closed submodules of M ;
• between any two nonzero proper closed submodules of M . In particular,
M has length 2 as a topological module.

It follows that M also has length 2 as an abstract module over R0. Since it is a
faithful R0-module, we deduce that R0 is artinian. More precisely, the existence
of a faithful module that is the direct sum of two simple modules implies that
either R0 is a field, or the product of two fields. If by contradiction R is the
product of two fields, let π and 1 − π be its nontrivial idempotents. Then in
the (then unique) direct product decomposition of M , the summands are Ker(π)
and Ker(1− π), which are closed, a contradiction. Thus R0 is a field. So R0 is a
locally compact field and M is isomorphic to R2

0; in this case every R0-submodule
of R2

0 is closed and we also have a contradiction with the assumption that M is
not topologically simple. Hence M is simple as a topological module.

Observe that the multiplication by α in EndA(M), and hence in R0, is contract-
ing. Let us show that for every m ∈ M , the multiplication map End(M) → M
mapping r to rm, is a proper map.

Indeed, let (ri) be a net tending to infinity in End(M). If Ω is a compact
neighborhood of 0, we can write ri = α−ki(φi), where φi ∈ Ωrα(Ω), and ki tends
to +∞. By contradiction, we can assume that rim is bounded, and actually tends
to an element m′ of M , and also that φi tends to an element φ of End(M). Define
ei = rim−m′, which tends to 0. So φim− αkim′ = αkiei, and hence φim tends
to zero. So φm = 0. Since the set of m such that φm = 0 is a closed submodule,
we deduce that φ = 0, a contradiction. So the multiplication map End(M)→M
mapping r to rm, is a proper map.

Fix a nonzero m ∈ N . We deduce that R0m is closed for every m ∈ N . Since
we proved earlier that R0m is dense in M , we have M = R0m ⊆ N , and thus
N = M , a contradiction. Therefore the closedness assertion is proved. The
second one then follows from Lemma 4.7.

(We do no longer assume R0 = R.) Since R0 is commutative and M is a
faithful R0-module of finite length, it follows that R0 is an artinian ring. Now R
is also a contractable module and applying this to M = R, we obtain that R is
artinian (i.e. has finite length as left module over itself), since it has finite length
over R0, both as a left or right module. �

Remark 5.3. For A = 〈α〉 infinite cyclic, in the case of the polycontractable
module M = Z/pZ((t))× Z/pZ((t−1)) (with α acting by multiplication by t), the
closure of the image of Z[α±1] in End(M) is reduced to Z/pZ[t±1]. In particular,
M is not finitely generated over this closure.
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Let K be a locally compact field. Let i : A → K∗ be a continuous homo-
morphism whose image is not contained in the 1-sphere (the maximal compact
subgroup of K∗, which is the group of norm-1 element for any compatible multi-
plicative norm), such that the closed additive subgroup generated by i(A) equals
K. The following corollary was obtained by Glöckner and Willis for A = Z (the
case of arbitrary A is not more difficult, although we use here a different language
even when A = Z).

Corollary 5.4. Each such module is simple contractable, and conversely every
simple contractable A-module has this form.

Proof. Given such data, if W ⊆ K is a nonzero closed submodule and w ∈
W r {0}, then w−1W is also a nonzero submodule, hence contains i(A), and
hence equals K by assumption. Hence W = K and K is a simple A-module.
Since some element of i(A) has norm < 1, it acts as a contraction on K.

Conversely, let M be a simple contractable module. Then K = EndA(M) is a
locally compact ring (Lemma 5.1), and is also, by Theorem 5.2 an artinian ring
with a faithful simple module, and hence is a field. Let i be the canonical map
A → K. Fixing any nonzero m ∈ M , the map K → M mapping r 7→ rm yields
the desired isomorphism. �

Proposition 5.5. Let M,S be nonzero contractable A-modules, with S simple.
Then S is isomorphic to a quotient of M if and only if it is isomorphic to a
submodule of M , if and only if it is isomorphic to a subquotient of M .

Proof. This follows from the analogous statement for finitely generated modules
over artinian rings. �

Definition 5.6. The support of a polycontractable A-module is the set of its
isomorphic classes simple contractable subquotients (or equivalently, simple con-
tractable submodules, or quotients).

The polycontractable module is monotypic if its support is a singleton; the
unique simple module in this singleton is called its type. Two polycontractable
modules are disjoint if their supports are disjoint.

Proposition 5.7. Two polycontractable modules M,M ′ are disjoint if and only
if HomA(M,M ′) = {0}. �

Proposition 5.8. Every polycontractable A-module M has a unique decompo-
sition

⊕
iMi as finite direct product of pairwise disjoint monotypic contractable

submodules. Every polycontractable submodule N decomposes accordingly, i.e.,
N =

⊕
(N ∩Mi).

Proof. First suppose that A is compactly generated. Lemma 4.2 reduces to when
M is contractable. Then the result follows from Theorem 5.2 and the analogous
result for finitely generated modules over artinian rings.

In general, there is a compactly generated open subgroup B of A over which M
is polycontractable. The resulting decomposition is A-invariant. Hence we can
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suppose (for the existence) that M is monotypic over B. Then Lemma 4.7 ensures
that the number of summands in a direct decomposition of M is bounded: choose
a compactly generated B′ ⊇ B such that the monotypic disjoint decomposition
has the largest possible number of summands. Then for every B′′ ⊇ B′, the
monotypic disjoint decomposition is the same over B′′ and B′. To show that this
is the monotypic decomposition over A, we show the following:

Suppose that S, S ′ are non-isomorphic simple contractable A-modules. Then
there is a compactly generated open subgroup B of A such that S, S ′ are not
isomorphic as B-modules. If there is no common contracting element, the result
is clear. So let α ∈ A be a common contracting element for S and S ′, and fix a
compactly generated subgroup B0 containing α. Then, for B containing B0, we
have the submodule VB = HomB(S, S ′) of S × S. If B ⊆ B′ then VB ⊇ VB′ . By
Lemma 4.7, there exists a compactly generated subgroup B ⊆ A containing B0

such that for every compactly generated B′ ⊆ A containing B, we gave VB = VB′ .
It follows that VA = VB. Since VA = {0}, we deduce VB = 0. �

Another coarser decomposition is the characteristic one.

Proposition 5.9 (Characteristic decomposition). Every polycontractable LC A-
module uniquely decomposes in a unique way as a topological direct sum of mod-
ules

M = M◦ ⊕

(⊕
p

Mp

)
⊕

(⊕
p

Np

)
,

where p ranges over primes, only finitely of the summands are nonzero, pnpMp = 0
for some np ≥ 1, Np is canonically a finite-dimensional vector space over Qp, and
M◦ is a Euclidean group.

Proof. Uniqueness is clear, so let us focus on existence. Proposition 5.8 reduces
to the case of a monotypic contractable module M , with simple quotient S ' K,
K a nondiscrete locally compact field endowed with a homomorphism A → K∗.
Then M has a finite composition series with each subquotient isomorphic to S.
If K has finite characteristic, say characteristic p, then pnM = 0 for some n, and
hence the conclusion holds. If K has characteristic zero, it is a finite extension of
the closure of Q, which is isomorphic to either R or Qp for some p. In all cases,
the conclusion holds. �

Definition 5.10. We say that a locally compact abelian group V is character-
istically pure if one of the following holds:

• pnV = {0} for some prime p and n ≥ 1. We then say that the character-
istic is (p, p);
• V is a finite-dimensional vector space over Qp. We then say that the

characteristic is (0, p);
• V is a finite-dimensional real vector space. We then say that the charac-

teristic is (0, 0).
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The “characteristic” is of course unique, unless V = {0}. From Proposition 5.9
it follows that every indecomposable polycontractable module is characteristically
pure.

For A = 〈α〉 infinite cyclic, a contractable module is contracted by either α or
α−1. In finite characteristic we have a simple classification result.

Theorem 5.11. Suppose that A = 〈α〉 is infinite cyclic. Let M be an indecom-
posable module of finite characteristic on which α acts as a contraction. Then
there exists a prime p and n ≥ 1 such that M is isomorphic to (Z/pnZ)((t)), with
α acting by multiplication by t.

Proof. There exists a prime p and n ≥ 1 (chosen minimal) such that pnA = {0}.
Hence we see that M is naturally a module over the ring (Z/pnZ)((t)), with α
acting by multiplication by p. (More precisely, if we consider the unique ring
homomorphism Z[α±1] → (Z/pnZ)((t)) mapping α 7→ t, we see that the action
Z[α±1] ×M → M uniquely factors through a continuous action (Z/pnZ)((t)) ×
M →M .)

Now we observe that Rn = (Z/pnZ)((t)) is a principal ideal local ring, with
its ideals being the ideals (pk) for 0 ≤ k ≤ n. Indeed, first we see that every
element of the form 1 + x with x ∈ t(Z/pnZ)[[t]] is invertible. Now every element
y of Rn r pRn can be written as y = tkλ(s + 1 + x) with k ∈ Z, s nilpotent,
λ ∈ (Z/pnZ)× and x ∈ t(Z/pnZ)[[t]]. Indeed, k is the smallest degree at which the
coefficient of y is not a multiple of p, λ is the given coefficient. Then s+ (1 + x),
as sum of a nilpotent and an invertible, is invertible.

It follows that every element of Rn can be written as pkz with k ≥ 0 and z
invertible, showing the desired result.

From the classification of modules over principal ideal rings1, we deduce that
every finitely generated indecomposable Rn-module has the form Rn/(p

k) for
some k. Since n is minimal for the property pnM = {0}, we deduce that M is
isomorphic to Rn (viewed as the free Rn-module of rank one). �

Remark 5.12. By Theorem 5.11, there are, up to isomorphism, countably many
torsion contractable LC modules over an infinite cyclic group. This is in contrast
with characteristic zero: indeed, the action on Qp with α acting by an element
x ∈ Q∗p of modulus 6= 1 defines a simple contractable module Mx, and the modules
Mx are pairwise non-isomorphic, and there are continuum many.

For A = Z2 = 〈α, β〉 we also get continuum many simple contractable modules
in characteristic p, by letting A act on (Z/pZ)((t)), α acting by multiplication
by t and β by a nonzero element x. The resulting modules Mx are pairwise
non-isomorphic.

1We can, for instance, use the fact that every local principal ideal ring is a quotient of a
local PID. Here this can be done explicitly, namely defining R∞ as the ring of formal series∑

n∈Z ant
n with an ∈ Zp and for which the p-valuation of an tends to ∞ when n tends to

−∞. Alternatively, the classification of finitely generated modules can be directly established
without appealing to the case of domains.
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Retrospectively, most of the theory can be reduced to A = Z by the following
proposition.

Proposition 5.13. Let M be a polycontractable LC A-module. Then there exists
α ∈ A such that M is polycontractable as Z[α±1]-module. More precisely, there
exists n and nonzero continuous homomorphisms f1, . . . , fn : A → R such that
every α /∈

⋃n
i=1 Ker(fi) works.

Proof. Write M =
⊕

Mi with Mi monotypic. Let Si be a simple quotient of Mi:
it can be identified with a local field, with norm ‖ · ‖i, on which A acts through
a homomorphism ui into the multiplicative group, such that the homomorphism
fi = log ◦‖ · ‖i ◦ ui is nonzero. Then any element of A not in the kernel of fi acts
on Si, and hence on Mi, as a contraction or the inverse of a contraction. Whence
the conclusion. �

Let us now provide a cocompactness criterion.

Theorem 5.14. Suppose that A is compactly generated. Let M be a sheer LC
module. Write M = D ⊕

⊕n
i=0Mi with D distal Euclidean, M0 amorphic, each

Mi polycontractable with the Mi pairwise disjoint. Let H be a closed submodule
of M .

(1) Suppose that the sheer envelope H� of H (see Theorem 4.5) equals M .
Then the projection of H on each Mi is dense, and the projection of H on D
spans D.

(2) Suppose that the projection of H on each Mi is dense, and the projection
of H on D spans D. Then H is cocompact in M .

Proof. (1) Let Hi be the closure of the projection of H in Mi, and let V be the
span of the projection of H in D. Then V ⊕

⊕n
i=0Hi is sheer and contains H.

The assumption implies that it equals M , whence the conclusion.
(2) Since H� is sheer, the assumptions ensure that H� decomposes along the

same decomposition: H� = (H�∩D)⊕
⊕n

i=0(H
�∩Mi). Since the projections of

H are dense and H ⊆ H�, we have H� ∩Mi = Mi for all i. Also, since H� ∩D
spans D and is sheer, we have H� ∩D = D. Hence H� = M . Now Theorem 4.5
says that H�/H is compact. �

6. Metabelian groups

6.1. Compact generation and ascending sequences. We begin by the fol-
lowing result, which is very classical in the discrete case, and is a particular case
of [Ab, Satz 2.1.b].

Lemma 6.1. Let G be a compactly generated metabelian LC-group with a closed
normal abelian subgroup M such that A = G/M is abelian. Then M is a com-
pactly generated ZA-module.
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Proof. Since G is compactly generated and G/M is compactly presentable, the
kernel M is compactly generated as normal subgroup (see [CH, Prop. 8.A.10(2)]).

�

The following lemma will be superseded by Corollary 6.4, but we need it at
this point as it will be used to prove the latter.

Lemma 6.2. Let G be a compactly generated metabelian locally compact group.
Let N be a closed central subgroup of G. Then N is a compactly generated locally
compact group.

Proof. Let M be an abelian closed normal subgroup such that G/M is abelian.
The assumptions imply that M ′ = MN is an abelian normal subgroup. Hence by
Lemma 6.1, M ′ is compactly generated as Z[G/M ′]-module. By Corollary 4.13, it
follows that its closed submodule N is compactly generated as Z[G/M ′]-module.
Since it is central, it is thus abstractly compactly generated. �

Theorem 6.3. Let G be a compactly generated locally compact metabelian group,
(Nn) an ascending sequence (or more generally, filtering net) of closed normal

subgroups of G. Define N =
⋃
Nn. Then there exists n0 such that Nn is cocom-

pact in N for all n ≥ n0.

Proof. First, when G is abelian, the result can be viewed as a particular case of
Theorem 4.12 (for the action of the trivial group).

Let M be a closed normal abelian subgroup of G such that A = G/M is abelian.
We begin with the particular case when Nn ∩M does not depend on n, say is

equal to L. Then modding out by L if necessary, we can suppose that Nn ∩M =
{1} for all n. Since [G,Nn] ⊆ Nn ∩M for all n, we deduce that Nn is central
for all n. Hence N is central in G as well. By Lemma 6.2, it follows that N is
compactly generated as well. By the abelian case, there exists n0 such that Nn

is cocompact in N for all n ≥ n0.
In general Mn = Nn ∩ M and V =

⋃
nMn. Then (Mn) is an ascending

sequence of closed A-submodules of the compactly generated A-module M , so
Theorem 4.12 ensures that for large n, Mn is cocompact in V . Write N =⋃
n V Nn. Then V Nn is closed and intersects M in V , and for n large enough, Nn

is coompact in V Nn. Also, the previous paragraph applies: for n large enough,
V Nn is cocompact in N . Hence, for n large enough, Nn is cocompact in N . �

Similarly to Corollary 4.13, we deduce:

Corollary 6.4. If G is a compactly generated locally compact metabelian group,
then every normal subgroup N is compactly generated as a normal subgroup.

Proof. Let N0 be an open subgroup of N , compactly generated as a normal
subgroup. SinceG and henceN is σ-compact, N/N0 is countable, hence choose an
ascending sequence (Nn) of open subgroups, each open and compactly generated
as normal subgroup, whose union is N . By Theorem 6.3, there exists n such that
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Nn is cocompact in N . Thus the compactly generated submodule Nn has finite
index in N , and hence N is compactly generated as well. �

Theorem 6.5. Let G be a compactly generated metabelian locally compact group.
Then

(1) G has a maximal compact normal subgroup W(G), and W(G/W(G)) = 1.
(2) If W (G) = 1 and G is totally disconnected, then [G,G] is closed.

Proof. Write M = [G,G] and A = G/M .
(1) That W(G) compact implies W(G/W(G)) trivial is straightforward (for

an arbitrary LC group). Hence we need to prove that W(G) is compact. By
Corollary 4.3, there is a maximal compact ZA-submodule WG(M) in M ; we can
mod out and assume it is trivial, so that M ∩W(G) = {0}.

Since [G,W(G)] ⊆ M ∩W(G), we deduce that W(G) is central. By Lemma

6.2, the central subgroup N = W(G) is a compactly generated LCA group. By
density of W(N) in N , we have Hom(N,R) = {0}. Being a compactly generated
LCA group with Hom(N,R) = {0}, we see that N is compact, so N = W(G) is
compact.

(2) Since W(G) is trivial, W(M) is trivial as well. In particular, M is lower-
sheer. Hence the sheer module Ω](M) can be written as P × E with P poly-
contractable, E = W(M) amorphic (Theorem 4.1). Since W(M) is trivial, we
have E = {0}, so M = P is polycontractable. It follows from Lemma 3.5 that

M ⊆ [G,G]. Hence [G,G] is open in M = [G,G] and hence [G,G] is closed. �

6.2. Compact presentability. Let Q be a finitely generated abelian group and
v : Q→ R an epimorphism. Define the closed submonoid Qv = {q ∈ Q : v(q) ≥
0}.

Lemma 6.6. Let Q be an a group, and M a LC group with an action of Q, and
fix χ ∈ Q∗. Suppose that M is compactly generated as Qχ-group, and generated,
as Q-group by a compact subset S with nonempty interior. Then M is generated
by S as Qχ-group.

Proof. If χ 6= 0 there is nothing to prove; assume otherwise. Let N be the
Qχ-subgroup generated by S; it is open. Fix u ∈ Q with χ(u) < 0. Then
M =

⋃
n≥0 u

−n(N). This ascending union is either constant or strictly increasing,
and the latter is excluded since M is compactly generated as Qχ-group. Hence
N = M . �

Proof. This is trivial if χ = 0; assume otherwise. Pick q ∈ QrQv (so v(q) < 0).
Let N be the Qv-submodule generated by S. Then we have M =

⋃
n≥0 q

nN ,

where each qnN is an open Qv-submodule of M , and qnN ⊆ qn+1N for each n.
Since M is compactly generated as Qv-module, we have qnN = qn+1N for some
n and hence N = qN ; thus N is a Q-submodule and N = M . �
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Remark 6.7. The particular case when M is abelian and M is discrete was ob-
tained by Bieri and Strebel [BS2, Proposition 2.1]. The above proof differs from
the original proof: indeed, the latter relies on a criterion (written in [BS2, Propo-
sition 2.1]) for M to be compactly generated over Qv, which is stated as the
existence of a certain nonzero element (with suitable properties) in the annihi-
lator in Z[Q] of M . This criterion does not carry over to the non-discrete case,
since M can be compactly generated over Qv and have a trivial annihilator: for
instance consider M = Qp and Q = 〈t〉 infinite cyclic, where t acts on Qp by mul-
tiplication by some transcendental element of positive valuation, and v defined
by v(t) = −1. However, we will use this criterion in the proof of Lemma 6.14.

Remark 6.8. If we assume thatQ is countable, or more generally, Q is a σ-compact
locally compact group and the Q-action is continuous, we can, by a simple appli-
cation of Baire’s theorem, remove the assumption that S has nonempty interior.

We now need two lemmas of abstract group theory. If G is a group and u ∈
G, define an u+-subgroup to be a subgroup stable under the left conjugation
endomorphism x 7→ uxu−1 and similarly define an u−-subgroup; define an u-
subgroup as a subgroup stable under conjugation by u and u−1.

Lemma 6.9. Consider a group G with a generating subset S ∪ {u} with S sym-
metric. Let W0 ⊆ G be a subgroup and define Wn = unWu−n for n ∈ Z. Assume
that the following conditions hold

(1) for every n ≥ 0, S normalizes Wn;
(2) uWu−1 ⊆ W0;
(3) uSu−1 is contained in the u−-subgroup generated by S.

Then the normal subgroup N generated by W0 is the ascending union W∞ =⋃
n≥0 u

−nW0u
n.

Proof. Observe that because of Condition (2), the union W∞ =
⋃
n≥0W−n is

indeed ascending, and hence is a subgroup since Wn is a subgroup.
Next, we see by a straightforward induction (only based on (3)) that for every

y ∈ S and n ≥ 0, the element unyu−n belongs to the u−-subgroup generated by
S.

Observe that for every n ≥ 0, u−nSun normalizes W0: indeed, for s ∈ S and
w ∈ W0, we have

u−nsunW0 = u−nsWn = u−n

Wn = W0.

Since by the previous fact, the normal subgroup 〈〈S〉〉 generated by S is generated
by
⋃
n≥0 u

−nSun, we deduce that 〈〈S〉〉 normalizes W0. Since 〈〈S〉〉 is normal, it
therefore normalizes every conjugate of W , hence normalizes each Wn, and hence
normalizes W∞. Since G = 〈u〉〈〈S〉〉, it therefore normalizes W∞. �

Lemma 6.10. Keep the assumptions of the preceding lemma. Assume that G
carries a topology of locally compact group such that S,W are compact, N is
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closed, and S has non-empty interior. Then if G/N is compactly presentable, so
is G.

Proof. We can suppose that W ⊆ S, and fix L = S ∪ {u} as generating subset.
Consider relators of bounded length for G/N , and lift them to relators of the
form r ≡ u−nwun with n bounded.

By a compactness argument, there exist n0 and k0 such that uSu−1 is con-
tained in the set of products of at most n0 elements of the form

⋃
0≤k≤k0 u

−kSuk.
Prescribe them as relators as well.

Include the relators xwx−1 = w′ for (x,w,w′) ∈ L×W 2 as well.
Let G′ be the group defined by this presentation. By construction, the canon-

ical projection p : G′ → G is injective on each of S, and W (which are viewed
both as subsets of G′ and G, as well as the element u). By Lemma 6.9, the
normal subgroup N of G′ generated by W is the ascending union

⋃
n≥0 u

−nWun.
It follows that N is mapped injectively onto its image in G, also called N . Since
the relators include lifts of relators of G/N , the mapped G′/N → G/N induced
by projection p is an isomorphism. Therefore p is a group isomorphism as well.
Since relators have bounded size, this shows that G is compactly presentable. �

6.3. The Bieri-Strebel geometric invariant. Let us introduce some basic
definitions in the locally compact setting. If G is a locally compact group, denote
G∗ = Hom(G,R) the set of continuous homomorphisms G → R, endowed with
the compact-open topology. When G is compactly generated, this is a finite-
dimensional real vector space, with its usual topology. If χ ∈ G∗, define Gχ =
{g ∈ G : χ(G) ≥ 0}.

Definition 6.11 (Bieri-Neumann-Strebel invariant in the locally compact set-
ting). Let H be a locally compact group with a continuous action of G by auto-
morphisms. Define

ΓG(H) = {0} ∪ {χ ∈ G∗ : H is not compactly generated

over any compactly generated submonoid of Gχ},

In particular, define

Γ(G) = ΓG([G,G]).

This is introduced in [BNS] when G,H are discrete,, in which case this is a
closed subset of G∗, stable under positive homotheties [BNS, Theorem A].

(The invariant defined in [BS2, BNS] is rather the quotient of G∗ r Γ(G) by
the group of positive homotheties; while these are obviously equivalent data, it
is much more practical not to use the complement, for instance so as to state the
next lemma.)

We will check (Lemma 6.16) that for G metabelian, this matches with the
original definition in [BS2], namely, for a closed abelian normal subgroup M with
Q = G/M abelian, we have a natural identification Γ(G) = ΓQ(M). (Such an
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identification would not be possible by working with the open complement in the
definition!)

Lemma 6.12. Let W,Q′ ⊆ Q be closed subgroups, with W compact, such that
Q = W +Q′. Let χ : Q→ R be a continuous homomomorphism. Then every LC
Q-module M that is compactly generated as Qχ-module is compactly generated as
Q′χ-module.

Proof. Since χ vanishes on W , we have Qχ = Q′χ + W . Let K be a compact
subset generating M as Qχ-module. Then WK is compact and generates M as
Q′-module. �

Lemma 6.13. Let Q be a σ-compact LC abelian group and M a locally compact
group with a continuous action of Q. Consider χ ∈ Q∗. Suppose that M is
compactly generated as a Qχ-group. Then M is compactly generated over some
compactly generated subsemigroup of Qχ.

Proof. Let S be a compact generating subset of M as a Q-group, with non-empty
interior. By Lemma 6.6, S generates M as a Qχ-group. Fix u ∈ Q with χ(u) < 0.
Write Qχ as an ascending union of compactly generated subsemigroups Pk, such
that P0∪{u} generatesQ as a semigroup. Thus ifNk is the Pk-subgroup generated
by S, we have M =

⋃
n≥0 u

−nNk for each k. Besides, we have
⋃
k≥0Nk = M . In

particular, by compactness, u−1S is contained in Mk for some k. By an immediate
induction (using that Q is abelian), it follows that u−nS is contained in Nk for
all n. We deduce that Nk = M . �

The following two lemmas will appear as particular cases of Theorem 6.23, but
we need them for the moment.

Lemma 6.14. Let Q be a compactly generated abelian group and M a compactly
generated Z[Q]-module. Fix χ ∈ Q∗ and suppose that M is compactly generated
as a Qχ-module. Let N be an open Z[Q]-submodule of M . Then N is compactly
generated as a Qχ-module.

Proof. Let W be the maximal compact subgroup in Q. Let Q′ be a finitely
generated subgroup of Q whose projection in Q/W is dense.

Fix u ∈ Q′ with χ(u) < 0. Following [BS2], for m ∈ Z[Q′], define χ(m) as the
infimum of inf{χ(q) : q ∈ Q′,m(q) 6= 0}. Here m is viewed as a finitely supported
function Q′ → Z. (We agree that χ(0) = +∞.)

By Lemma 6.12, M is compactly generated as Q′χ-module, and hence as Q′χ-
module. Hence M/N is finitely generated as a Q′χ-module. Therefore, by [BS2,
Proposition 2.1], there exists m ∈ Z[Q′] such that m acts on M/N as the identity
and χ(m) > 0. Replacing m by a large enough power, we can suppose χ(m) >
−χ(u).

Let S0 be a compact neighborhood of 0 in N , generating N as Z[Q]-submodule.
Let T be a finite subset of M such that S∪T generates M as a Qχ-module. Write
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S = S0 ∪ (1−m)T , and observe that S ⊆ N . Let N ′ be the Qχ-submodule of N
generated by S. We claim that N ′ = N .

If s0 ∈ S, using that S ∪ T generates M as a Q′χ-module, write a finitely
supported decomposition us0 =

∑
s∈S ass +

∑
t∈T btt, with as, bt ∈ Z[Q′χ]. Write

(1 −m)t =
∑

s∈S css, so that (1 −m)
∑

t∈T btt =
∑

s∈S
∑

t∈T btcss. Write ds =
(1−m)as+cs

∑
t∈T bt. Then (1−m)ux =

∑
s∈S dss. Thus us0 = mus0+

∑
s∈S dss.

This shows that uS ⊆ N ′ = Z[Q′χ]S. By induction, unS ⊆ N ′ for all n ≥ 0. Since
every element of Q′ can be written as unq with q ∈ Q′χ and n ≥ 0, we deduce
that N ′ is a Z[Q′]-submodule, hence equals N . �

Lemma 6.15. Let Q be a compactly generated abelian group and M a compactly
generated Z[Q]-module. Fix χ ∈ Q∗ and suppose that M is compactly generated
as a Z[Qχ]-module. Let N be a closed Z[Q]-submodule of M such that Q acts
trivially on M/N . Then N is compactly generated as a Z[Qχ]-module.

Proof. By Corollary 4.13, N is compactly generated as Q-module. By Corollary
4.3, W(N) and W(M) are compact. Modding out if necessary, we can suppose
that W(N) = {0}. Then N ∩W(M) = {0}, so, modding out again, we can also
suppose that W(M) = {0}. So both N,M are lower-sheer. Using Theorem 4.1,
write Ω](M) = P ×D, Ω](M) = P ×D with P, P ′ polycontractable, D,D′ distal
Euclidean as Q-modules. Then P ′ ⊆ P and D′ ⊆ D. Then P/P ′ embeds into
M/N which is a module with trivial action. Since P is generated by contractable
submodules, it has no nonzero homomorphism into M/N , which means that
P ⊆ N and thus P = P ′. By Lemma 6.14, the open submodule Ω](M) is
compactly generated as Qχ-module, and hence so is its quotient P . Hence it
is enough to show that N/P is compactly generated as Qχ-module. Indeed,
Ω](N)/P is closed in D and hence compactly generated as abelian group. Finally,
the discrete module N/Ω](N) is open in M/Ω](M) and therefore is also, by (the
discrete case of) Lemma 6.14, compactly generated. �

Lemma 6.16. Let G be a compactly generated metabelian group in an exact
sequence

1→M → G→ Q→ 1

with M,Q abelian and M closed. Then M is compactly generated as a Q-module,
and

Γ(G) = ΓQ(M),

where Q∗ is naturally included in G∗.

Proof. That M is a compactly generated Q-module is already asserted in Lemma
6.1.

Let us first check ΓQ(M) ⊆ Γ(G). Let χ belong to ΓQ(M). If by contradiction

χ /∈ Γ(G), then χ 6= 0 and [G,G] is compactly generated over some compactly
generated subgroup of Gχ, and hence over Qχ.
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Since Q is abelian, we have [G,G] ⊆ M . In particular, M being abelian, it

centralizes [G,G]. Hence [G,G] is compactly generated over Qχ. Since M/[G,G]

is isomorphic to a closed subgroup of G/[G,G], it is compactly generated; hence
M is compactly generated over Qχ. This contradicts the assumption, so χ ∈
Γ(G).

Conversely, let us show Γ(G) ⊆ ΓQ(M). We first check Γ(G) ⊆ Q∗. Indeed,
let χ belong to G∗ r Q∗. This means that χ is not zero on M . In particular,
MGχ = G. Thus a closed subgroup of M is Gχ-invariant if and only if it is
G-invariant. Since M is compactly generated over G, this implies that it is also
compactly generated over Gχ, and hence χ /∈ Γ(G). We have proved Γ(G) ⊆ Q∗.

Now let χ belong to Q∗rΓQ(M). Hence χ 6= 0 and M is compactly generated

as a Qχ-module. Since [G,G] is a closed submodule of M and the action on

the quotient M/[G,G] is trivial, Lemma 6.15 ensures that [G,G] is compactly
generated as Qχ-module. Thus χ /∈ Γ(G). �

Theorem 6.23 will remove the assumption below that N is open.

Lemma 6.17. Let Q be a compactly generated abelian group and M a compactly
generated Z[Q]-module. Assume that N is a closed submodule. Then

ΓQ(M/N) ⊆ ΓQ(M) ⊆ ΓQ(N) ∪ ΓQ(M/N).

If N is open in M , then ΓQ(M) = ΓQ(N) ∪ ΓQ(M/N).

Proof. Clearly ΓQ(M/N) ⊂ ΓQ(M). The inclusion ΓQ(N) ⊂ ΓQ(M) follows from
Lemma 6.14 (we only use there that N is open). The reverse inclusion follows
from the fact that an extension of compactly generated modules (over Qχ for
given χ) is compactly generated. �

Definition 6.18. If Q is a compactly generated abelian group, we have an in-
clusion Hom(Q,Q) ⊂ Hom(Q,R) = Q∗ (with Q endowed with the discrete
topology), Hom denoting continuous homomorphisms; we call its elements the
rational characters; if χ is a rational character, the closed half-line R+χ is
called a rational half-line in Q∗.

In general, the closure in Q∗ of the set of rational characters is the subspace
(Q/Q◦)∗ of Q∗ consisting of homomorphisms vanishing on the component Q◦.
Note that χ ∈ Q∗ is a scalar multiple of a rational character if and only if has a
discrete image in R.

Lemma 6.19. Let Q be a compactly generated abelian group. Let M be a
monotypic contractable Q-module, with simple quotient K, a nondiscrete locally
compact field endowed with a continuous homomorphism φ : Q → K∗. Write
χ0 = − log |φ|. Then

• if M is connected, ΓQ(M) = {0};
• if M is totally disconnected then ΓQ(M) = R+χ0, which is a rational

half-line. Moreover, M admits an open compact Qχ0-submodule.
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Proof. (The description of K is provided by Corollary 5.4.)
Note that being monotypic contractable, M is either connected or totally dis-

connected. If M is connected it is compactly generated as locally compact abelian
group and the conclusion is clear, so assume that M is totally disconnected.

Each ball in K is preserved by Qχ0 , since the latter acts on K by elements
of norm ≤ 1. Hence K is not a compactly generated Qχ0-module. Since K
is a quotient of M as Qχ0-module, the latter is not compactly generated. So
χ0 ∈ ΓQ(M).

Conversely, let χ be an element in Q∗ r R+χ0. Then there exists α ∈ Q
with χ(α) > 0 (i.e., α ∈ Qχ) and χ0(α) < 0 (i.e., |φ(α)| > 1). Then for every
compact neighborhood V of 0 in K we have K =

⋃
n≥0 φ(αn)V . In particular,

K is compactly generated over Qχ. Since M is an iterated extension of copies of
the Q-module K, we deduce that M is compactly generated over Qχ as well, i.e.,
χ /∈ ΓQ(M).

Since χ0 has a discrete image, R+χ0 is a rational half-line.
Let us check the additional assertion of existence of an open Qχ0-submodule.

Choose u ∈ Q such that χ0(u) is the positive generator of χ0(Q). Then Qχ0 is
generated by Ker(χ0) ∪ {u} as a semigroup. As a Ker(χ0)-module, K and hence
M is amorphic. So there is a compact open Ker(χ0)-submodule L ⊆M . Since u
acts as a contraction on K and hence on M , for large enough n, the submodule
unL is contained in L. Hence

∑
n≥0 u

nL is a compact open Qχ0-submodule of
M . �

Proposition 6.20. Let Q be a compactly generated abelian group. Let M be
an upper-sheer compactly generated locally compact Q-module. Then ΓQ(M) is
a finite union of rational half-lines (emanating from 0). More precisely, for
χ ∈ Q∗ r {0}, χ ∈ ΓQ(M) if and only if there is a totally disconnected sim-
ple contractable closed submodule K of M with a normed field structure, such
that the action is given by some homomorphism φ : Q→ K∗, and such that χ is
positively proportional to − log |φ|.

Proof. If M is polycontractable, it is a finite direct product of contractable mono-
typic modules and the result follows from Lemma 6.19.

In general, modding out by W(M) (which is compact, by Corollary 4.3), we
can suppose that W(M) = {0}. So M is sheer and by Theorem 4.1 it can
be written as P × D, with P polycontractable and D distal Euclidean. Since
ΓQ(M) = ΓQ(M/D) = ΓQ(P ), we are done. �

Proposition 6.21. Let Q be a compactly generated abelian locally compact group.
Let M be a compactly generated locally compact Q-module. Then ΓQ(M) is a
rational polyhedral cone, i.e., is the union of finitely many convex polyhedral cones
(based at one) whose faces have rational equations.

Proof. LetN be an upper sheer open submodule ofM . Then ΓQ(M/N) is rational
polyhedral by Bieri-Groves’s theorem [BG], and ΓQ(N) is a finite union of rational
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half-lines by Proposition 6.20. Then Lemma 6.17 ensures that Γ(M) is the union
of ΓQ(M/N) with a finite union of rational half-lines. �

Lemma 6.22. Let Q be a compactly generated abelian group. Let M be a sheer
module and N a closed submodule. Then ΓA(N) ⊆ ΓA(M).

Proof. The first case is when N is polycontractable. This case directly follows
from Proposition 6.20.

In general, let N� be the sheer envelope, as in Theorem 4.5. By the polycon-
tractable case, ΓA(N�) ⊆ ΓA(M). This thus reduces to the case when N� = M ,
which we now assume.

Let χ be an element of ΓQ(N), and write Q′ = Ker(χ). Since M is a sheer Q-
module, it is a sheer Q′-module. Using Theorem 4.1, write N = D⊕M0⊕P with
D distal Euclidean Q′-module, M0 amorphic Q′-module, and P polycontractable
Q′-module. In turn, write the monotypic decomposition (Proposition 5.8) of the
Q′-module P as P =

⊕n
i=1Mi. Write D = M−1.

Let u be an element of Q with χ(u) < 0. Then there is a proper Qχ-submodule
L of N such that N =

⋃
n≥0 u

−nL (namely, one can take Qχ-submodule of N
generated by any compact generating subset of N as Q-module with nonmpty
interior in N). For i ≥ 0, let Li (resp. Ni) be the closure of the projection of
L (resp. N) on Mi. For i = −1, we define L−1 (resp. N−1) be the span of the
projection of L (resp. N) on M−1. By Theorem 5.14(1), Ni = Mi for all i ≥ −1.

Then
⋃
n≥0 u

−nLi = Ni = Mi, and thus Li is an open Qχ-submodule of Mi.
Suppose by contradiction that for all i, we have Li = Mi. By Theorem 5.14(2),

L is cocompact in M . But L is open of infinite index in N . We reach a contra-
diction.

Hence, there exists i ≥ −1 such that Li 6= Mi. Then Mi, being the strictly
increasing union of Qχ-submdules

⋃
n≥0 u

−nLi, is not compactly generated as a
Qχ-module. We deduce χ ∈ ΓQ(Mi) ⊆ ΓQ(M) (because Mi is a quotient of M),
and we are done. �

Theorem 6.23. Let Q be a compactly generated abelian group. Let M be a LC
module and N a closed submodule. Then ΓA(N) ⊆ ΓA(M).

Proof. The proof relies on two main particular cases: when N is open (Lemma
6.14), and when M is sheer (Lemma 6.22).

The result is trivial if M is not compactly generated, since then ΓQ(M) =
Q∗. Assume that M is compactly generated. By Corollary 4.3, W(M) is com-
pact. Note that W(N) ⊆ W(M). We have the closed embedding N/W(N) ⊆
M/W(M), and since ΓQ(−) does not change when modding out by a compact
submodule, we can suppose that W(N) = W(M) = {0}. Thus M is lower-sheer.

Write Ω = Ω](M), so Ω is sheer. Then ΓQ(N) ⊆ ΓQ(Ω∩N)∪ ΓQ(N/(Ω∩N))
by Lemma 6.17. So it is enough to show that the latter two are contained in
ΓQ(M). Indeed, first, we have ΓQ(Ω ∩ N) ⊆ ΓQ(Ω) ⊆ ΓQ(M): here the first
inclusion follows from Lemma 6.22, and the second from Lemma 6.14. Second,
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we have ΓQ(N/N ∩ Ω) = ΓQ(N + Ω/Ω) ⊆ ΓQ(M/Ω) ⊆ ΓQ(M). Here the first
inclusion follows from Lemma 6.14, and the second one is trivial. �

6.4. Characterization of compact presentability.

Theorem 6.24. Let G be a compactly generated locally compact metabelian
group. Then G is compactly presentable if and only if Γ(G) contains no line
(i.e. Γ(G) ∩ −Γ(G) = {0}).

Proof. We can suppose that G is totally disconnected, since replacing G by G/G◦

does not affect being compactly presentable, and does not modify Γ(G) (it would
modify its open complement!). Let M be a closed abelian normal subgroup of G
such that Q = G/N is abelian.

By Proposition 6.21, Γ(G) ∩ −Γ(G) is a rational polyhedral cone. Hence if
not reduced to {0}, it contains a rational half-line; some element in this line is a
homomorphism χ onto Z; both χ and −χ belong to Γ(G). Then Γ(G) = ΓQ(M)
by Lemma 6.16, and hence ±χ /∈ ΓQ(M). The first Bieri-Strebel theorem [BS1],
in its locally compact version [CH, Cor. 8.C.4] implies that G is not compactly
presentable.

Conversely suppose that Γ(G) ∩ −Γ(G) = {0} and let us show that G is com-
pactly presentable. So M is a compactly generated Q-module, and by Corollary
4.3 W(M) is compact. We can mod out and suppose that W(M) is reduced to
zero. Since M is totally disconnected and W(M) is zero, Theorem 4.1 ensures
that the open submodule N = Ω[(M) is polycontractable.

By Proposition 5.8, there exists k ≥ 0 such that N is the direct product
of k nonzero monotypic contractable modules. We prove that G is compactly
presentable by induction on k.

If k = 0, we have N = {0} and thus G is discrete. By Bieri-Strebel’s character-
ization of finitely presentable metabelian groups [BS2], G is finitely presentable.

If k ≥ 1, let V be one of these monotypic submodules By induction, G/V is
compactly presentable. Let K be the simple quotient of V . By Corollary 5.4, K
has a structure of non-discrete totally disconnected locally compact field, such
that the Q-action is given by a homomorphism φ : G → K× (factoring through
Q = G/M); define χ = − log |φ|. Thus ΓQ(V ) is the half-line generated by χ
(Lemma 6.19). Fix u ∈ G with χ(u) > 0 equal to the positive generator of χ(G);
thus 0 < |φ(u)| < 1.

By Lemma 6.19, there is a compact open Qχ-submodule W of N . Thus
uW ⊆ W and

⋃
n≥0 u

−nW = N . Consider a symmetric subset S ⊂ Ker(χ)
with non-empty interior such that S ∪ {u} generates G. Let us check the as-
sumptions of Lemma 6.10: those written in Lemma 6.10 are fulfilled; among
those in Lemma 6.9, (1), (2) hold, and let us check (3), namely that uSu−1 is
contained in the u−-subgroup H generated by S. Indeed, clearly H is open; we
have G =

⋃
n≥0 u

nHu−n (ascending union). Since −χ /∈ Γ(G), the normal sub-

group [G,G] is compactly generated as a G−χ-group, and hence so is H (since
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H/[G,G] is a compactly generated abelian group). Therefore the above ascend-
ing union stabilizes, which means that uHu−1 = H, and hence that G = H.
Therefore Lemma 6.10 implies that G is compactly presentable. �

7. A few counterexamples

The following gathers “counterexamples” to the above results, when one as-
sumption is relaxed. Especially, we consider cases when the acting group A is
not compactly generated.

Here we fix A discrete free abelian of countable rank with basis (ei)i≥1. In each
case, p is a fixed prime (and A could also be replaced with A/pA).

Example 7.1 (Theorem 1.2 fails without compact generation of A.). Consider the
additive group M of Fp((t)). Let A act as follows:

ei ·
∑
n

ant
n =

∑
n6=±i

ant
n + ait

−i + a−it
i.

In other words, ei exchanges ti and t−i, fixes other monomials, and is extended
by continuity. Then WA(M) = Fp[t, t

−1] is not closed.

Example 7.2 (Corollary 1.7 fails without compact generation of A.). Let I be
the ideal of Z/pZ[A] generated by all ei. Consider the discrete module M =
Z/pZ[A]/I2. It is finitely generated, i.e., compactly generated. Then WA(M) =
I/I2 is infinite, i.e., not compact.

Example 7.3 (Theorem 2.6 fails without compact generation of A.). Let (Xn)n≥1
be a partition of Z such that for each n, Xn is infinite and Xn ∩ N≥1 = {n}.
Let σn be a permutation of Z acting as a single infinite cycle on Xn and identity
elsewhere. Let M be the additive group of Fp((t)). Let A act as follows:

ei ·
∑
n

ant
n =

∑
n

ant
σi(n).

This is well-defined because σi maps every lower-bounded subset to a lower-
bounded subset, and continuous because σi is identity near +∞. Since the σi
have pairwise disjoint supports, they commute and thus this defines an action of
A. Then, as a A-module, M is residually purely discrete: indeed it embeds into

the product
∏

n F
(Xn)
p . Hence, Ω](M) = {0}. But M is not discrete. Thus Ω](M)

is not open.
If N is the Pontryagin dual, then N is the closure of W[(N) but N is not

compact.

Example 7.4 (Non-compactly generated metabelian groupG in which W(G) is not
closed). This is a classical example [WY, §6, Example 1]. Let (pi) be a sequence
of odd primes (it can be constant or injective), and G =

⊕
i Fpi o

∏
i F
∗
pi

(as
an abstract group, this can be viewed as a subgroup of

∏
i Fpi o F∗pi , namely

consisting of those sequences for which the additive term is eventually zero).
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Then G is metabelian and W(G) is not closed and actually dense, namely equal
to
⊕

i Fpi o F∗pi .

Example 7.5 (Theorem 6.5(2) and Theorem 4.1 fails without compact generation
of A). Let M be the group of adeles, namely the sequences (np), with np ∈ Qp and
np ∈ Zp for all but finitely many p, with compact open subgroup

∏
p Zp. Define

G = M o
∏

p〈p〉 with the natural action. Then [G,G] equals the dense subgroup⊕
p Qp of M , hence is not closed, although W(G) is trivial (thus Theorem 6.5(2)

“fails” here).
Also, this module is sheer, has no nonzero Euclidean or amorphic submodule,

but is not polycontractable; hence Theorem 4.1 “fails” too.

Example 7.6. Theorem 6.5(2) is not true without the “totally disconnected” as-
sumption. Indeed, fix a dense proper subgroup Λ of R, e.g., Z[

√
2]. Consider

the semidirect product G = (R × Λ) o Z where the action is by powers of the
automorphism (x, t) 7→ (x+ t, t). Then [G,G] is the non-closed subgroup Λ×{0}
of R× Λ.
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