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Abstract. In this note, we check that a complex projective algebraic va-
riety has (at most) countably many real forms. We more generally prove
it when the reals are replaced with a field that has only countably many
finite extensions up to isomorphism. The verification consists in gathering
known results about automorphism groups and Galois cohomology. This
contrasts with the recent discovery by A. Bot of an affine real variety with
uncountably many real forms.

1. Introduction

By countable we mean “at most countable”, possibly finite or even empty.
We say that a field k, with separable closure k̄, is tame if it has countably

many finite Galois extensions up to k-isomorphism, or equivalently if its ab-
solute Galois group Gal(k̄/k) is metrizable, or equivalently if k̄ has countable
degree over k (see Proposition 3.1). For instance, every non-discrete locally
compact field of characteristic zero is tame. Also, every pseudofinite field is
tame (indeed having at most n finite extensions of degree m can be character-
ized by a first-order formula), and so is every real-closed or algebraically closed
field. The above examples actually have finitely many extensions, up to iso-
morphism, in each given degree. Furthermore, countable fields are tame, and
if k is a tame field of characteristic zero, then so is the field k((t)) of Laurent
series. In contrast, the field C(t) is not tame.

If k is a perfect field with an algebraic closure k ⊂ k̄, by k-group we mean a
Gal(k̄/k)-group (see §2). We say that a k-group is countable-by-algebraic if it
has a normal k-subgroup of countable index that is isomorphic to an algebraic
k-group.

Theorem 1.1. Let k be a perfect tame field. Let G be a k-group that is
countable-by-algebraic. Then the Galois cohomology set H1(k,G) is countable.

The main example of a k-group we have in mind is the group of automor-
phisms of a k-variety (see §4). Here, a k-variety is meant to be a separated
noetherian scheme, locally of finite type over k (no reducedness or irreducibil-
ity assumption). A classical result (see Theorem 4.1) is that the group of
automorphisms of every complete k-variety is countable-by-algebraic.
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Corollary 1.2. Let k be a perfect tame field and k ⊂ k̄ an algebraic clo-
sure. Then every complete k̄-variety has countably many k-forms (up to iso-
morphism).

When k is the real field (which was our starting point), this number can
be infinite, even in the smooth projective case: the first examples are due to
Lesieutre [Leu18] and further ones were provided satisfying additional hypothe-
ses [DO19, DOY20, DOY21].

Note that the corollary holds for other objects provided the automorphism
group has a similar structure. For instance, it applies to k-forms of pairs (X,Y )
consisting of a complete variety X and a closed subvariety Y .

However, it does not apply to arbitrary varieties, and actually fails for affine
varieties. Indeed, Bot has constructed a smooth affine complex surface with
continuum many real forms [Bot21].

An anecdotic remark is that a perfect field k is tame if and only if the product
k̄-algebra k̄n has countably many k-forms for every n. This being observed,
one can naturally wonder whether a stronger converse of Corollary 1.2 is true,
namely:

Question 1.3. Is it true that for every non-tame perfect field k, there exists an
absolutely irreducible (smooth?) projective k-variety with uncountably many
k-forms?

If one drops the irreducibility requirement, this is therefore true: just con-
sidering the finite k-variety Spec(kn) for an appropriate n. Question 1.3 has
a positive answer in many cases: for instance when k∗/k∗n is uncountable for
some n ≥ 2. Indeed, the set of k-forms of the projective space Pn−1 is in bi-
jection with H1(k,PGLn), which is in bijection with k∗/k∗n (this example was
suggested by the referee).

Another related question is the following:

Question 1.4. Does there exist a complex projective variety X with infinitely
many real forms, for which the group Aut(X)/Aut(X)0 is finitely generated (it
has to be infinite anyway)?

Indeed, it is not finitely generated in the examples found so far [Leu18, DO19,
DOY20, DOY21].

For completeness, let us formulate a more general result that follows from the
proof. For α an infinite cardinal, say that a field k is α-tame if it has at most
α Galois extensions up to k-isomorphism, or equivalently if Gal(k̄/k) has ≤ α
open subgroups, or equivalently if the degree of k̄ over k is ≤ α. We say that a
k-group is (cardinal ≤ α)-by-algebraic if it has a normal algebraic k-subgroup
of index ≤ α.

Theorem 1.5. Let α be an infinite cardinal, k an α-tame field and let G be
a k-group that is (cardinal ≤ α)-by-algebraic. Then the Galois cohomology set
H1(k,G) has cardinal ≤ α.

Let k be a perfect field with at most α extensions up to k-isomorphism. Then
every complete k̄-variety has at most α k-forms.
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2. Group-theoretic background

We use standard conventions in Galois cohomology (as in [Ser]). If P is a
profinite group, by P -group G we mean a group G endowed with an action of
P by group automorphisms, such that the stabilizer Pg of each g ∈ G is open
in P . The action is denoted (s, g) 7→ s · g. By P -subgroup we just mean a
P -invariant subgroup. By GP we mean the subgroup of points fixed by P .

For reference we recall:

Definition 2.1. Let F be a finite group and G an F -group. By definition,
H1(F,G) is the set of maps b : F → G satisfying b(st) = b(s)(s · b(t)) for all
s, t ∈ F , modulo identifying b and b′ if there exists g ∈ G such that b′(s) =
g−1b(s)(s · g) for all s ∈ F .

If P is a profinite group and G is a P -group, H1(P,G) is the inductive limit
of H1(P/U,GU ) where U ranges over open normal subgroups of P .

Lemma 2.2. Let P be a metrizable profinite group and G a countable P -group.
Then H1(P,G) is countable.

Proof. In this case the number of open subgroups U of G is countable, so it is
enough to check that each H1(P/U,GU ) is countable. This is clear since the set
of maps P/U → GU is then countable. �

To prove Theorem 1.1 we need a dévissage result; namely there is one in [Ser,
I.§5.5], and we need its corollary:

Lemma 2.3 (I.§5.5, Cor. 3 in [Ser]). Let P be a profinite group, let H be a
P -group, N a normal P -subgroup, Q = H/N . Then H1(P,H) is finite (resp.
countable) if and only if its image in H1(P,Q) is finite (resp. countable), and
that for every cocycle b ∈ Z1(P,H) the quotient H1(P, bN)/(bQ)P is finite (resp.
countable). �

Here bN means N with the P -action twisted by the cocycle b (see [Ser,
I.§5.3]).

Corollary 2.4. Under the same assumption, if H1(P,Q) is finite (resp. count-
able) as well as H1(P, bN) for every b ∈ Z1(P,H) then so is H1(P,H). �

Recall that an abelian group is divisible if g 7→ gn is surjective for every
positive integer n (or equivalently every prime n).

Lemma 2.5. Let P be a metrizable profinite group. Let A be a divisible abelian
P -group, whose torsion subgroup T is countable. Then H1(P,A) is countable.

Proof. First we claim that H1(P,A) = {0} if A is torsion-free. In this case, A
is naturally a vector space over Q. Let U be an open subgroup of P . Since the
action of P on A is Q-linear, we see that AU is also divisible. Hence by the
usual averaging argument, H1(P/U,AU ) = {0}. By Definition 2.1 we deduce
H1(P,A) = {0}.

Under the more general assumption on A, we deduce H1(P,A/T ) = {0},
so by dévissage (Corollary 2.4) we are reduced to checking that H1(P, T ) is
countable, which holds by Lemma 2.2. �
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3. Tameness

We write the following proposition for record.

Proposition 3.1. Let k be a field with separable closure k̄. The following are
equivalent:

(1) the absolute Galois group G = Gal(k̄/k) is metrizable;
(2) k̄ has countable degree over k;
(3) k̄ has countably many k-subfields that are finite-dimensional over k;
(4) k̄ has countably many Galois k-subfields that are finite-dimensional over

k;
(5) k has countably many finite separable extensions up to k-isomorphism

(i.e., k is tame);
(6) k has countably many finite Galois extensions up to k-isomorphism.

Proof. A totally disconnected compact Hausdorff topological space is metrizable
if and only if it has countably many clopen subsets. Therefore, a profinite group
is metrizable if and only if it has countably many clopen subsets, if and only
if it has countably many normal open subgroups. This already implies the
equivalence of (1) with each of (3) and (4).

Suppose (2). Let (kn) be an increasing sequence of subfields of k̄ containing
k, with union k̄. These correspond to a decreasing sequence of open normal
subgroups of G, with trivial intersection. Hence G embeds into

∏
nGn, and

hence is metrizable. Conversely if G is metrizable, it has such a sequence of
open normal subgroups (enumerate open normal subgroups as (Hn) and define
Gn =

⋂
m≤nHm) and we deduce the equivalence with (1).

(5) clearly implies (6) and the converse is easy since each finite Galois exten-
sion contains only finitely many subextensions and each finite separable exten-
sion is contained in a finite Galois one.

The set of Galois k-subfields of k̄ is in natural bijection with the set of k-
isomorphism classes of finite Galois extensions, whence the equivalence between
(6) and (4). �

4. Automorphism groups

If k is a perfect field with an algebraic closure k ⊂ k̄, by k-group we mean a
Gal(k̄/k)-group. If H is an algebraic k-group, then H(k̄) is naturally a k-group
in this sense. Say that a k-group A is countable-by-algebraic if it has a normal
k-subgroup N such that H/N is countable and such that N is isomorphic as
k-group to the group of k̄-points associated to some algebraic k-group.

We need the following classical result.

Theorem 4.1 (Matsusaka, Grothendieck, Matsumura–Oort). Let k be a field.
For every complete k-variety X, the group of k̄-automorphisms of X is a countable-
by-algebraic k-group.

This is mostly due to Matsusaka [Mat58, §11], who essentially proved it
assuming X smooth projective. The general case was formulated by Matsumura
and Oort [MaO67, Theorem 3.7], relying on Grothendieck’s work in [Gro61].
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Note that “complete” means geometrically complete, i.e., without reference to
the field of definition.

Deduction of Corollary 1.2. This is basic Galois cohomology (see [Ser, III.§1]).
For a k̄-variety with no k-form, there is nothing to prove. Hence, let X be a
complete k-variety. Then mapping a k-form to its cohomology class induces
an injective map from the set of k-isomorphism types of k-forms of X into
H1(k,Autk̄(X)). Since the k-group Autk̄(X) is countable-by-algebraic (Theo-
rem 4.1), Theorem 1.1 applies. �

5. Proof of the theorem

The following is well-known and holds regardless of the characteristic.

Lemma 5.1. Let G be the group of k-points of a torus or abelian variety over an
algebraically closed field k. Then G is divisible with countable torsion subgroup.

Proof. The case of tori is straightforward (as G is then isomorphic to (k∗)dimG).
For abelian varieties, this follows from [Mum, §II.6, Appl. 2], which says that
G is divisible with finite n-torsion for every n. The countability of the torsion
subgroup immediately follows. �

We also use the following result about dévissage of algebraic group them-
selves.

Theorem 5.2 (Chevalley, see [Bri17]). Let k be a perfect field. Every smooth
connected algebraic k-group G has a smallest normal algebraic subgroup L such
that G/L is complete. Moreover, G/L is an abelian variety, L is connected
affine and smooth, and this formation commutes with taking field extensions.

�

Proof of Theorem 1.1. We assume that k is a perfect tame field and G is a
countable-by-algebraic k-group, and we have to prove that H1(k,G) is count-
able. Let us start with three special cases:

• Suppose that G is countable. Then Lemma 2.2 does the job.
• Suppose that G is a torus or an abelian variety. Then Lemma 2.5 yields

the conclusion (we can apply it thanks to Lemma 5.1).
• Suppose that G is unipotent. Then H1(k,G) = {0} (see [TT08] for

references and for counterexamples when k is not perfect).

By the dévissage Corollary 2.4, we can suppose that the k-group G is either
countable (this case is settled), or connected algebraic. So we now assume that
G is a connected algebraic k-group.

Using Theorem 5.2 and again using dévissage, we can suppose that the con-
nected algebraic k-group is either an abelian variety (this case has been settled),
or affine. So we now assume that G is a connected affine algebraic k-group.

Let H be a Cartan subgroup of G that is defined over k. Then H1(k,H)→
H1(k,G) is surjective [BoS64, Cor. 2.14]. This reduces to the case when G0

is affine solvable, and hence, by dévissage again, to the case when G is affine,
solvable and connected. In turn, the latter reduces, once more by dévissage, to
when G is either unipotent or a torus, and these cases have been settled. �
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Remark 5.3. If k = R one easily checks that H1(k,G) is finite for every abelian
k-variety G (and hence for every algebraic k-group G). For k = Qp this is
not true: H1(k,G) is infinite for every positive-dimensional abelian k-variety
G. (Indeed, by [Tat], H1(k,G) is then isomorphic to the Pontryagin dual of

the compact p-adic Lie group Ĝ(Qp), where Ĝ is the dual abelian variety;

in addition Ĝ(Qp) has dimension equal to dim(Ĝ) = dim(G) [Mat55] and in
particular is infinite, so the Pontryagin dual is infinite.)

On the proof of Theorem 1.5. The main difference is Lemma 2.2, in which case
we get the bound α instead of ℵ0. Then we need the obvious analogue of
Corollary 2.4, which is not stated in [Ser] but can be derived in the same fashion.
Note that the countability result in Lemma 5.1, which is used at several steps
in the dévissage, does not require any tameness assumption on k. �
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