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Definitions. X set, A,B ⊂ X are commensu-

rable if the symmetric difference A4B is finite.

G group, X G-set. A subset A ⊂ X is commen-

surated by G if A and gA are commensurable

for all g ∈ G. We write `A(g) = #(A4gA).

Examples. (i) A G-invariant (⇐⇒ `A = 0)

(ii) more generally, A commensurable to G-
invariant subset B (so `A is bounded, namely

by 2#(A4B). These are called the trivial com-

mensurated subsets.

(iii) First non-trivial example: G = X = Z

(action by translation), A = N = {0,1,2, . . .}.
Here `A(n) = |n|. More generally, if Γ is a

finitely generated group and X = Γ with left

translation action, then there is a non-trivial

commensurated subset if and only if Γ has at

least 2 ends.

1



Converse to (ii): Proposition: if `A is bounded

then A is commensurable to an invariant subset

B [Brailovsky–Pasechnik–Praeger 1995; P.Neu-

mann 1996: B can be chosen with

#(B4A) ≤ max(0, sup `A − 1)

(optimal)]. Other proofs (folklore) use Jung’s

circumcenter lemma.

Generalization of the first statement in (iii):

let G act on a tree T and fix a vertex v. Let X

be the set of oriented edges in T (pairs (x, y)

such that {x, y} is an edge). Let A be the set

of oriented edges pointing towards v. Then G

commensurates A and

`A(g) = d(g, vg).

In particular, A is non-trivial if and only G has

unbounded orbits.
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Definition. G group. A cardinal definite length

on G is a function G→ R of the form `A with

X G set, A ⊂ commensurated.

Proposition. Every cardinal definite is condi-

tionally negative definite.

Proof. For p ≥ 1 define

`
p
A(X) = {ξ : X → R : ξ − 1A ∈ `p(X)};

this is an affine space over `p(X). The G-

action on RX preserves `pA(X). We have

dp(1gA,1A)p = #(A4gA) = `A(g).

For p = 2 this shows that `A is conditionally

negative definite (with a concrete realization

of the associated affine isometric action). �

Remark: this is a particular case of an obser-

vation by Robertson and Steger (1998).
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Definition G has Property PW if there exists

on G a proper cardinal definite function and has

Property FW if every cardinal definite function

on G is bounded (or equivalently if actions of

G have no nontrivial commensurated subsets).

Clearly (PW and FW)⇐⇒ finite. Also, since

Haagerup Property and Property T have the

same definition replacing “cardinal definite” by

“conditionally negative definite”, we have, as

corollary of the proposition

PW =⇒ Haagerup

Property T =⇒ FW

Examples of PW groups: free, surface groups.

Coxeter groups. Stable under taking subgroups,

wreath products.
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Haglund (2007): Haagerup =⇒/ PW.

Haglund’s lemma. In a finitely generated

group G with Property PW, any infinite cyclic

subgroup 〈x〉 is undistorted, i.e. the word length

of xn has linear growth.

Proof. We present a combinatorial proof. (Hag-

lund’s original proof uses dynamics of isome-

tries in infinite-dimensional cube complexes.)

Let Z act on X commensurating A. Write

n · x = Tnx where T is a permutation of X.

Decompose X =
⊔
i∈I Xi into Z-orbits. Set

Ai = A ∩ Xi. So `A =
∑
i∈I `Ai. We have

`(1) <∞ so

J = {i ∈ I : Ai4T (Ai) 6= ∅}

is finite. For i /∈ J Ai is Z-invariant, so

` =
∑
i∈J

`i (finite sum)

For i ∈ J, if Xi is finite then `Ai is bounded.
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Suppose the Z-orbit Xi is infinite. So we can
identify xi with Z with T acting as translation
by +1. We thus have

Ai4(Ai + 1) finite

and therefore Ai is commensurable to one of:
∅, Z, N, −N. In the first two cases `Ai is
bounded. In the last two cases we get

`Ai(n) = |n|+ (bounded function).

We conclude

∃k ∈ N, ∀n ∈ Z, `A(n) = kn+(bounded function)

So if k = 0, `A is bounded and otherwise it has
linear growth.

Now if X is a G-set and A a commensurated
subset such that `A is proper and x has infinite
order, then `A is unbounded on Z = 〈x〉 so
grows linearly on Z. Also `A is sub-additive
on G so is bounded by a multiple of the word
length, whence the conclusion. �
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Proposition [C]. FW =⇒/ T.

First example: irreducible lattices in G × H,
G connected Lie group without Property T
and H locally compact group with Property T
(for instance arithmetic lattices in SO(4,1) ×
SO(3,2)).

Second example: SL2(Z[
√
n]), n positive non-

square integer. Thus these infinite groups are
both Haagerup and FW. Main lines of proof:

As discrete subgroups (actually lattices) in SL2(R)2,
these groups are Haagerup. On the other hand,
elementary matrices are undistorted (consequence
of the existence of infinite order units (Dirich-
let’s unit theorem)). The proof of Haglund’s
lemma shows that every cardinal definite func-
tion is bounded on these subgroups. By bounded
generation by unipotents (Carter-Keller), Prop-
erty FW follows.

Conjecture. Every irreducible lattice in SL2(R)2

has Property FW.
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Proposition [C]. Every central extension

1 −→ Z −→ Γ̃ −→ Γ −→ 1

with Γ̃ having Property PW is virtually split, in

the sense that there exists a subgroup K with

K ∩ Z = {e} and KZ has finite index in Γ.

Example: Γg a closed surface group and Γ̃g its

inverse image in S̃L2. Then Γ̃g does not have

Property PW (although it is Haagerup and has

no distorted cyclic subgroups). Since Γ̃g is

quasi-isometric to Γg × Z, this shows that PW

is not stable under quasi-isometries (it’s un-

known whether Haagerup is closed under quasi-

isometries).

In short, the proposition says that any central

Z is virtually a direct factor. The result ex-

tends (with slightly more complicated proof)

to show that every normal Zk in an PW-group

is virtually a direct factor.
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Proof of the proposition. Consider a Γ̃-set

X with commensurated subset A. Let `A be

the associated cardinal definite function and

assume it unbounded on Z. Decompose X into

Z-orbits: X =
⊔
Xi and Ai = A ∩Xi. Define

J = {i : Ai and Xi rAi are infinite}.

Then Y =
⋃
i∈J Xi is Γ̃-invariant. On Z, we

have

`A =
∑
i∈J

`Ai +
∑
i/∈J

`Ai.

The proof of Haglund’s lemma shows that the

second term is bounded on Z (so that the first

term is unbounded) and that J is finite. The

group Γ̃ acts by permuting the Xi, i ∈ J. So

some finite index subgroup Λ of Γ (containing

Z) stabilizes all the Xi (i ∈ J). Since Z is

central, it acts by translation on each Xi. Fix

j ∈ J and let K be the kernel of the action of

Λ on Xj. Then Λ = Z×K. �
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Definition. V G-set. A walling W on V is

the data of a G-set X (index set) and a G-

equivariant map X → 2V , x 7→Wx such that for

all u, v ∈ V , the set of x such that Wx separates

u and v is finite. Its cardinality is denoted by

dW(u, v); dW is called the wall pseudo-distance

on V .

This was (up to a minor modification) coined

by Haglund and Paulin (1998) although im-

plicit in Robertson-Steger (1998) and some

other works.

Lemma. f : G → R is cardinal definite if and

only if there exists a G-set V , v ∈ V , and a

G-walling such that f(g) = dW(v, gv) for all g.

(Actually we can pick (V, v) = (G,1) with the

left translation action.)

Proof: instructive exercise!
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A CAT(0) cube complex is a combinatorial

complex whose cells are cubes satisfying some

further conditions (not written here). Main

example: let X be a set and A a subset. If

B,B′ are commensurable to A, with B ⊂ B′,
define c(B,B′) to be the set of subsets in-

termediate between B and B′. Consider the

cube complex C(X,A) whose k-cubes are the

c(B,B′) when B,B′ range over subsets com-

mensurable to A with B ⊂ B′ and #(B′rB) =

k. If cubes are endowed with the `p-metric, its

completion is `pA(X).

Theorem. A function ` : G → R is cardinal

definite if and only if there is CAT(0) a cube

complex C with a combinatorial G-action and

a vertex v such that in the `1-metric we have

d(v, gv) = `(g) for all g. Actually if ` = `A with

A ⊂ X, we can pick C to be `1A(X) with its

action.
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The last construction is the Niblo-Roller con-

struction (1998). Conversely, it was proved by

Sageev (1995) that CAT(0) cube complexes

have a canonical wall structure, proving the

“if” part. However, other cubulations are of

interest, especially finite-dimensional cubula-

tions. The origin of CAT(0) cube complexes

are cubulations of 3-dimensional manifolds (Ait-

chison-Rubinstein). A particular class of finite-

dimensional CAT(0) cube complexes, called spe-

cial was introduced by Haglund and Wise and

recently had remarkable applications, notably

to the classification of 3-manifold groups (Wise,

Agol. . . ).

On the other hand, there exist groups with

Property PW not having any proper action

on a finite-dimensional CAT(0) cube complex.

Thompson’s group F and the lamplighter group

over the free group are examples of such groups.
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