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Definitions. X set, A,B C X are commensu-
rable if the symmetric difference AAB is finite.

G group, X G-set. A subset A C X is commen-
surated by G if A and gA are commensurable
for all g € G. We write £4(g) = #(AAgA).

Examples (i) A G-invariant (<= ¢4 =0)

(ii) more generally, A commensurable to G-
invariant subset B (so ¢4 is bounded, namely

by 2#(AAB). These are called the trivial com-
mensurated subsets.

(iii) First non-trivial example: G = X = Z
(action by translation), A = N = {0,1,2,...}.
Here /4(n) = |n|. More generally, if I is a
finitely generated group and X = [ with left
translation action, then there is a non-trivial
commensurated subset if and only if [ has at
least 2 ends.



Converse to (ii): Proposition: if £4 is bounded
then A is commensurable to an invariant subset
B [Brailovsky—Pasechnik—Praeger 1995; P.Neu-
mann 1996: B can be chosen with

#(BAA) < max(0,supfy—1)

(optimal)]. Other proofs (folklore) use Jung’s
circumcenter lemma.

Generalization of the first statement in (iii):
let G act on a tree T' and fix a vertex v. Let X
be the set of oriented edges in T (pairs (x,y)
such that {z,y} is an edge). Let A be the set
of oriented edges pointing towards v. Then G
commensurates A and

l4(g) = d(g,vg).

In particular, A is non-trivial if and only G has
unbounded orbits.



Definition. GG group. A cardinal definite length
on G is a function G — R of the form ¢4 with
X G set, A C commensurated.

Proposition. Every cardinal definite is condi-
tionally negative definite.

Proof. For p > 1 define
P(X)={¢: X >R -1y € P(X)};

this is an affine space over /P(X). The G-
action on R* preserves ¢/, (X). We have

dp(1y4,14)° = #(AAgA) = L4(9).

For p = 2 this shows that Z4 is conditionally
negative definite (with a concrete realization
of the associated affine isometric action). O

Remark: this is a particular case of an obser-
vation by Robertson and Steger (1998).



Definition G has Property PW if there exists
on G a proper cardinal definite function and has
Property FW if every cardinal definite function
on G is bounded (or equivalently if actions of
G have no nontrivial commensurated subsets).

Clearly (PW and FW)<— finite. Also, since
Haagerup Property and Property T have the
same definition replacing ‘cardinal definite” by
“conditionally negative definite”, we have, as
corollary of the proposition

PW —— Haagerup
Property T — FW

Examples of PW groups: free, surface groups.
Coxeter groups. Stable under taking subgroups,
wreath products.



Haglund (2007): Haagerup =~ PW.

Haglund’s lemma. In a finitely generated
group G with Property PW, any infinite cyclic
subgroup (x) is undistorted, i.e. the word length
of ™ has linear growth.

Proof. We present a combinatorial proof. (Hag-
lund’s original proof uses dynamics of isome-
tries in infinite-dimensional cube complexes.)
Let Z act on X commensurating A. Write
n-x = T"x where T is a permutation of X.
Decompose X = |[;c7X; into Z-orbits. Set
A = AN X;. S0 Ly = >ierfa,- Ve have
£(1) < oo SO

J={iel: A,ANT(A;) =0}
is finite. For ¢ ¢ J A; is Z-invariant, so

(=) ¢ (finite sum)
1eJ
For i e J, if X; is finite then £, is bounded.
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Suppose the Z-orbit X; is infinite. So we can
identify x; with Z with T acting as translation
by +1. We thus have

AZA(AZ + 1) finite

and therefore A; is commensurable to one of:
0, Z, N, —N. In the first two cases ly, is
bounded. In the last two cases we get

l4,(n) = |n| + (bounded function).

We conclude

Jdk € N, Vn € Z, £4(n) = kn+(bounded function)

So if k=0, £4 is bounded and otherwise it has
linear growth.

Now if X is a G-set and A a commensurated
subset such that 74 is proper and x has infinite
order, then ¢4 is unbounded on Z = (x) SO
grows linearly on Z. Also ¢4 is sub-additive
on G so is bounded by a multiple of the word
length, whence the conclusion. []



Proposition [C]. FW =& T.

First example: irreducible lattices in G x H,
(G connected Lie group without Property T
and H locally compact group with Property T
(for instance arithmetic lattices in SO(4,1) x
SO(3,2)).

Second example: SL»(Z[+/n]), n positive non-
square integer. Thus these infinite groups are
both Haagerup and FW. Main lines of proof:
As discrete subgroups (actually lattices) in SL»(R)?,
these groups are Haagerup. On the other hand,
elementary matrices are undistorted (consequence
of the existence of infinite order units (Dirich-
let’s unit theorem)). The proof of Haglund’'s
lemma shows that every cardinal definite func-
tion is bounded on these subgroups. By bounded
generation by unipotents (Carter-Keller), Prop-
erty FW follows.

Conjecture. Every irreducible lattice in SL,(R)?
has Property FW.



Proposition [C]. Every central extension

~

1 S/ s [ s [ s 1

with I having Property PW is virtually split, in
the sense that there exists a subgroup K with
KNZ = {e} and KZ has finite index in I".

Example: I, a closed surface group and I its
inverse image in SL,. Then [, does not have
Property PW (although it is Haagerup and has
no distorted cyclic subgroups). Since I:g IS
quasi-isometric to 4 x Z, this shows that PW
is not stable under quasi-isometries (it's un-
known whether Haagerup is closed under quasi-
isometries).

In short, the proposition says that any central
Z is virtually a direct factor. The result ex-
tends (with slightly more complicated proof)
to show that every normal Z% in an PW-group
is virtually a direct factor.



Proof of the proposition. Consider a -set
X with commensurated subset A. Let /24 be
the associated cardinal definite function and
assume it unbounded on Z. Decompose X into
Z-orbits: X =||X; and A; = AN X;. Define

J={i: A; and X, \ A; are infinite}.

Then Y = ;s X; is T-invariant. On Z, we
have

ba= "ty +Y ty.
icJ idJ

The proof of Haglund’s lemma shows that the
second term is bounded on Z (so that the first
term is unbounded) and that J is finite. The
group [ acts by permuting the X;, i € J. So
some finite index subgroup A of I (containing
Z) stabilizes all the X; (i € J). Since Z is
central, it acts by translation on each X,. Fix
7 € J and let K be the kernel of the action of

/\oan. Then AN=7Z x K. []



Definition. V G-set. A walling YW on V is
the data of a G-set X (index set) and a G-
equivariant map X — 2V z — W, such that for
all u,v € V, the set of x such that W, separates
u and v is finite. Its cardinality is denoted by
dyy(u,v); dyy is called the wall pseudo-distance
on V.

This was (up to a minor modification) coined
by Haglund and Paulin (1998) although im-
plicit in Robertson-Steger (1998) and some
other works.

Lemma. f: G — R is cardinal definite if and
only if there exists a G-set V, v € V, and a
G-walling such that f(g) = dy (v, gv) for all g.
(Actually we can pick (V,v) = (G, 1) with the
left translation action.)

Proof: instructive exercisel
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A CAT(0) cube complex is a combinatorial
complex whose cells are cubes satisfying some
further conditions (not written here). Main
example: let X be a set and A a subset. If
B, B’ are commensurable to A, with B C B/,
define c¢(B,B’) to be the set of subsets in-
termediate between B and B’. Consider the
cube complex C(X,A) whose k-cubes are the
c(B,B") when B, B’ range over subsets com-
mensurable to A with B C B’ and #(B'\B) =
k. If cubes are endowed with the /P-metric, its
completion is & (X).

Theorem. A function ¢ : G — R is cardinal
definite if and only if there is CAT(0) a cube
complex C' with a combinatorial GG-action and
a vertex v such that in the ¢l-metric we have
d(v, gv) = £(g) for all g. Actually if £ = ¢4 with
A C X, we can pick C to be ¢4(X) with its
action.
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The last construction is the Niblo-Roller con-

struction (1998). Conversely, it was proved by

Sageev (1995) that CAT(0) cube complexes

have a canonical wall structure, proving the

“if’ part. However, other cubulations are of

interest, especially finite-dimensional cubula-

tions. The origin of CAT(0) cube complexes

are cubulations of 3-dimensional manifolds (Ait-
chison-Rubinstein). A particular class of finite-

dimensional CAT(0) cube complexes, called spe-
cial was introduced by Haglund and Wise and

recently had remarkable applications, notably

to the classification of 3-manifold groups (Wise,
Agol...).

On the other hand, there exist groups with
Property PW not having any proper action
on a finite-dimensional CAT (0) cube complex.
Thompson's group F' and the lamplighter group
over the free group are examples of such groups.
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