
COMMENSURATING ACTIONS OF BIRATIONAL GROUPS AND
GROUPS OF PSEUDO-AUTOMORPHISMS

SERGE CANTAT AND YVES DE CORNULIER

ABSTRACT. Pseudo-automorphisms are birational transformations acting as reg-
ular automorphisms in codimension 1. We import ideas from geometric group
theory to study groups of birational transformations, and prove that a group of
birational transformations that satisfies a fixed point property on CAT(0) cubical
complexes is birationally conjugate to a group acting by pseudo-automorphisms
on a non-empty Zariski-open subset. We apply this argument to classify groups of
birational transformations of surfaces with this fixed point property up to birational
conjugacy.

1. INTRODUCTION

1.1. Birational transformations and pseudo-automorphisms. Let X be a quasi-
projective variety, over an algebraically closed field k. Denote by Bir(X) the group
of birational transformations of X and by Aut(X) the subgroup of (regular) auto-
morphisms of X . For the affine space of dimension n, automorphisms are invertible
transformations f : An

k→ An
k such that both f and f−1 are defined by polynomial

formulas in affine coordinates:

f (x1, . . . ,xn) = ( f1, . . . , fn), f−1(x1, . . . ,xn) = (g1, . . . ,gn)

with fi,gi ∈ k[x1, . . . ,xn]. Similarly, birational transformations of An
k are given by

rational formulas, i.e. fi,gi ∈ k(x1, . . . ,xn).
Birational transformations may contract hypersurfaces. Roughly speaking, pseu-

do-automorphisms are birational transformations that act as automorphisms in
codimension 1. Precisely, a birational transformation f : X 99K X is a pseudo-
automorphism if there exist Zariski-open subsets U and V in X such that X rU
and X rV have codimension ≥ 2 and f induces an isomorphism from U to V .
The pseudo-automorphisms of X form a group, which we denote by Psaut(X).
For instance, all birational transformations of Calabi-Yau manifolds are pseudo-
automorphisms; and there are examples of such manifolds for which Psaut(X) is
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infinite while Aut(X) is trivial (see [8]). Pseudo-automorphisms are studied in Sec-
tion 2.

Definition 1.1. Let Γ ⊂ Bir(X) be group of birational transformations of an irre-
ducible projective variety X. We say that Γ is pseudo-regularizable if there exists
a triple (Y,U,ϕ) where

(1) Y is a projective variety and ϕ : Y 99K X is a birational map;
(2) U is a non-empty, Zariski open subset of Y ;
(3) ϕ−1 ◦Γ◦ϕ yields an action of Γ by pseudo-automorphisms on U.

More generally if α : Γ→ Bir(X) is a birational action, we say that it is pseudo-
regularizable if α(Γ) is pseudo-regularizable.

One goal of this article is to exhibit a class of groups Γ for which every action of
Γ by birational transformations on a projective variety M is pseudo-regularizable.

1.2. Property (FW). The class of groups we shall be interested in is characterized
by a fixed point property; this property appears in several related situations, for
instance for actions on CAT(0) cubical complexes. Here, we adopt the viewpoint
of commensurated subsets. Let Γ be a group, and Γ× S→ S an action of Γ on a
set S. Let A be a subset of S. One says that Γ commensurates A if the symmetric
difference

γ(A)∆A = (γ(A)rA) ∪ A(rγ(A))

is finite for every element γ of Γ. One says that Γ transfixes A if there is a subset B
of S such that A∆B is finite and B is Γ-invariant: γ(B) = B, for every γ in Γ.

A group Γ has Property (FW) if, given any action of Γ on a set S, all commen-
surated subsets of S are automatically transfixed. For instance, SL 2(Z[

√
5]) and

SL 3(Z) do have Property (FW), but free groups do not share this property. Property
(FW) is discussed in Section 3.

Let us mention that among various characterizations of Property (FW) (see [9]),
one is: every combinatorial action of Γ on a CAT(0) cube complex fixes some cube.
Another (for Γ finitely generated) is that all its infinite Schreier graphs are one-
ended.

1.3. Pseudo-regularizations. Let X be a projective variety. The group Bir(X) does
not really act on X , because there are indeterminacy points; it does not act on the
set of hypersurfaces either, because some of them may be contracted. As we shall
explain, one can introduce the set H̃yp(X) of all irreducible and reduced hypersur-
faces in all birational models of X (up to a natural identification), and then Bir(X)
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acts on this set by strict transforms; moreover, this action commensurates the subset
Hyp(X) of hypersurfaces of X . This construction leads to the following result.

Theorem A. Let X be a smooth projective variety over an algebraically closed field
of characteristic 0. Let Γ be a subgroup of Bir(X). If Γ has Property (FW), then Γ

is pseudo-regularizable.

There is also a relative version of Property (FW) for pairs of groups Λ≤ Γ, which
leads to a similar pseudo-regularization theorem for the subgroup Λ: this is dis-
cussed in Section 4.5, with applications to distorted birational transformations.

Remark 1.2. There are two extreme cases for the pair (Y,U) in Theorem A, cor-
responding to the size of the boundary Y rU. If this boundary is empty, Γ acts
by pseudo-automorphisms on a projective variety Y . If it is ample, its complement
U is an affine variety, and then Γ acts in fact by regular automorphisms on U (see
Section 2.4). Thus, in the study of groups of birational transformations, pseudo-
automorphisms of projective varieties and regular automorphisms of affine varieties
deserve specific attention.

1.4. Classification in dimension 2. In dimension 2, pseudo-automorphisms do not
differ much from automorphisms; for instance, Psaut(X) coincides with Aut(X) if
X is a smooth projective surface. Thus, for groups with Property (FW), Theo-
rem A can be used to reduce the study of birational transformations to the study of
automorphisms of quasi-projective surfaces, a subject which has been intensively
studied.

Theorem B. Let X be a smooth, projective, and irreducible surface, over an alge-
braically closed field. Let Γ be an infinite subgroup of Bir(X). If Γ has Property
(FW), there is a birational map ϕ : Y 99K X such that

(1) Y is the projective plane P2
k, a Hirzebruch surface Fm with m ≥ 1, or the

product of a curve C by the projective line P1
k;

(2) ϕ−1 ◦Γ◦ϕ is contained in Aut(Y ).

If the characteristic of the field is positive, Y is the projective plane P2
k.

For those surfaces Y , the group Aut(Y ) has finitely many connected components.
Thus, changing Γ into a finite index subgroup Γ0, one gets a subgroup of Aut(Y )0.
Here Aut(Y )0 denotes the connected component of the identity of Aut(Y ). This is
an algebraic group, acting algebraically on Y .
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Example 1.3. Groups with Kazhdan Property (T) satisfy Property (FW). Thus, The-
orem B extends Theorem A of [6]. Moreover, the present article offers a new proof
of this result.

Theorem B may also be applied to the group SL 2(Z[
√

d]), where d ≥ 2 is a non-
square positive integer. Thus, every action of this group on a projective surface by
birational transformations is conjugate to an action by regular automorphisms on
P2

k, the product of a curve C by the projective line P1
k, or a Hirzebruch surface. In

this case, we can make use of Margulis’ superrigidity to get a more precise result,
see §8.

In general, for a variety X one can ask whether Bir(X) transfixes Hyp(X), or
equivalently is pseudo-regularizable. For a surface X , this holds precisely when X
is not birationally equivalent to the product of the projective line with a curve. See
§5 for more precise results.

1.5. Acknowledgement. This work benefited from interesting discussions with
Jérémy Blanc, Vincent Guirardel, and Christian Urech.

2. PSEUDO-AUTOMORPHISMS

2.1. Birational transformations, indeterminacies, strict and total transforms.
Let X and Y be two (irreducible, reduced) algebraic varieties over an algebraically
closed field k. If f : X → Y is a birational map, we denote by Ind( f ) its indetermi-
nacy set. When X and Y are projective and normal, Ind( f ) and Ind( f−1) have codi-
mension ≥ 2. The transformation of the affine plane (x,y) 7→ (x,y/x) is birational,
and its indeterminacy locus is the line {x = 0}: this set of co-dimension 1 is mapped
“to infinity” (if the affine plane is compactified by the projective plane, the transfor-
mation becomes [x : y : z] 7→ [x2 : yz : xz], with two indeterminacy points). The graph
Gr( f ) of f is, by definition, the Zariski closure of {(x, f (x)) : x ∈ X r Ind( f )}.

The jacobian determinant Jac( f )(x) is defined in local coordinates as the de-
terminant of the differential d fx; Jac( f ) depends on the coordinates, but its zero
locus does not. The exceptional set of f is the subset of X along which f is not
a local isomorphism onto its image ; it coincides with the union of Ind( f ) and the
zero locus of Jac( f ).

The total transform of a subset Z ⊂ X is denoted by f∗(Z). If Z is not contained
in Ind( f ), we denote by f◦(Z) its strict transform, defined as the Zariski closure of
f (Z r Ind( f )). We say that a hypersurface W ⊂ Z is contracted if the codimension
of its strict transform is larger than 1.
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2.2. Pseudo-isomorphisms. A birational map f : X 99K Y is a pseudo-isomor-
phism if one can find Zariski open subsets U ⊂ X and V ⊂ Y such that

(i) f realizes a regular isomorphism from U to V and
(ii) X rU and Y rV have codimension ≥ 2.

Pseudo-isomorphisms from X to X are called pseudo-automorphisms (see § 1.2).
For an example, start with the standard birational involution σn : Pn

k 99K P
n
k which

is defined in homogeneous coordinates by

σn[x0 : . . . : xn] = [x−1
0 : . . . : x−1

n ].

Blow-up the (n+ 1) vertices of the simplex ∆n = {[x0 : . . . : xn]; ∏xi = 0}; this
provides a smooth rational variety Xn together with a birational morphism π : Xn→
Pn

k. Then, π−1 ◦σn ◦π is a pseudo-automorphism of Xn, and is an automorphism if
n≤ 2.

Proposition 2.1. Let f : X 99K Y be a birational map between two (irreducible,
reduced) algebraic varieties. Assume that the codimension of the indeterminacy
sets of f and f−1 is at least 2. Then, the following properties are equivalent:

(1) f and f−1 do not contract any hypersurface.
(2) The jacobian determinant of f (resp. of f−1) does not vanish on X r Ind( f )

(resp. on Y r Ind( f−1)).
(3) For every q ∈ X r Ind( f ) (resp. q ∈ Y r Ind( f−1)), f (resp. f−1) is a local

isomorphism from a neighborhood of q to a neighborhood of f (q) (resp.
f−1(q)).

(4) f is a pseudo-isomorphism from X to Y .

The proof of this proposition is straightforward. As a corollary, the set of pseudo-
automorphisms of X is a subgroup Psaut(X) of Bir(X).

Example 2.2. Let X be a smooth projective variety with trivial canonical bundle KX .
Let Ω be a non-vanishing section of KX , and let f be a birational transformation of
X . Then, f ∗Ω extends from X r Ind( f ) to X and determines a new section of KX ;
this section does not vanish identically because f is dominant, hence it does not
vanish at all because KX is trivial. As a consequence, Jac( f ) does not vanish, f is a
pseudo-automorphism of X , and Bir(X) = Psaut(X). We refer to [8] for families of
Calabi-Yau varieties with an infinite group of pseudo-automorphisms.

2.3. Projective varieties.

Proposition 2.3 (see [4]). Let f : X 99K Y be a pseudo-isomorphism between two
projective varieties. Then
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(1) the total transform of Ind( f ) by f is equal to Ind( f−1);
(2) f has no isolated indeterminacy point;
(3) if dim(X) = 2, then f is a regular isomorphism.

Proof. Let p∈X be an indeterminacy point of the pseudo-isomorphism f : X 99KY .
Then f−1 contracts a subset C⊂Y of positive dimension on p. Since f and f−1 are
local isomorphisms on the complement of their indeterminacy sets, C is contained
in Ind( f−1). The total transform of a point q ∈C by f−1 is a connected subset of X
that contains p and has dimension ≥ 1. This set D is contained in Ind( f ) because
f is a local isomorphism on the complement of Ind( f ); since p ∈ D ⊂ Ind( f ),
p is not an isolated indeterminacy point. This proves Assertions (1) and (2). The
third assertion follows from the second one because indeterminacy sets of birational
transformations of projective surfaces are finite sets. �

Let W be a hypersurface of X , and let f : X → Y be a pseudo-isomorphism.
The divisorial part of the total transform f∗(W ) coincides with the strict transform
f◦(W ). Indeed, f∗(W ) and f◦(W ) coincide on the open subset of Y on which f−1 is
a local isomorphism, and this open subset has codimension ≥ 2.

Theorem 2.4. The action of pseudo-isomorphisms on Néron-Severi groups is func-
torial: (g ◦ f )∗ = g∗ ◦ f∗ for all pairs of pseudo-isomorphisms f : X 99K Y and
g : Y 99K Z. If X is a smooth projective variety, the group Psaut(X) acts linearly on
the Néron-Severi group NS(X); this provides a morphism

Psaut(X)→ GL(NS(X)).

The kernel of this morphism is contained in Aut(X) and contains Aut(X)0 as a finite
index subgroup.

As a consequence, if X is projective the group Psaut(X) is an extension of a
discrete linear subgroup of GL(NS(X)) by an algebraic group.

Proof. The first statement follows from the equality f∗ = f◦ on divisors. The sec-
ond follows from the first. To study the kernel K of the linear representation
Psaut(X)→ GL(NS(X)), fix an embedding ϕ : X → Pm

k and denote by H the po-
larization given by hyperplane sections in Pm

k . For every f in K, f∗(H) is an ample
divisor, because its class in NS(X) coincides with the class of H. From Matsusaka-
Mumford theorem, we deduce that f is an automorphism of X (see [24], and [18]
exercise 5.6). To conclude, note that Aut(X)0 has finite index in the kernel of the
action of Aut(X) on NS(X) (see [20]). �
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2.4. Affine varieties. The group Psaut(An
k) coincides with the group Aut(An

k) of
polynomial automorphisms of the affine space An

k: this is a special case of the
following proposition.

Proposition 2.5. If Z is a smooth affine variety, the group Psaut(Z) coincides with
the group Aut(Z).

Proof. Fix an embedding Z → Am
k . Rational functions on Z are restrictions of ra-

tional functions on Am
k . Thus, every birational transformation f : Z→ Z is given by

rational formulas f (x1, . . . ,xm) = ( f1, . . . , fm) where each fi is a rational function

fi =
pi

qi
∈ k(x1, . . . ,xm);

here, pi and qi are relatively prime polynomial functions. Since the local rings OZ,x

are unique factorization domains, we may assume that the hypersurfaces WZ(pi) =

{x ∈ Z; pi(z) = 0} and WZ(qi) = {x ∈ Z; qi(z) = 0} have no common components.
Then, the generic point of WZ(qi) is mapped to infinity by f . Since f is a pseudo-
isomorphism, WZ(qi) is in fact empty; but if qi does not vanish on Z, f is a regular
map. �

3. GROUPS WITH PROPERTY (FW)

3.1. Commensurated subsets and cardinal definite length functions (see [9]).
Let G be a group, and G× S→ S an action of G on a set S. Let A be a subset of
S. One says that G commensurates A if the symmetric difference g(A)∆A is finite
for every element g of G. One says that G transfixes A if there is a subset B of
S such that A∆B is finite and B is G-invariant: g(B) = B, for every g in G. If A
is transfixed, then it is commensurated. Actually, A is transfixed if and only if the
function g 7→ #(A∆gA) is bounded on G.

A group G has Property (FW) if, given any action of G on a set S, all commen-
surated subsets of S are automatically transfixed. More generally, if H is a subgroup
of G, then (G,H) has relative Property (FW) if every commensurating action of G
is transfixing in restriction to H. This means that, if G acts on a set S and commen-
surates a subset A, then H transfixes automatically A. The case H = G is Property
(FW) for G.

We refer to [9] for a detailed study of Property (FW). For instance, if G0 is a finite
index subgroup of G, then G has Property (FW) if, and only if G0 has it ([9], Prop.
5.B.1). The two main known sources of Property (FW) and its relative version are,
on the one hand, Kazhdan’s Property (T), and, on the other hand, distorted elements,
as explained in the next paragraphs.
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Remark 3.1. Property (FW) should be thought of as a rigidity property. For in-
stance, suppose that K is a group with and action on a set S that commensurates a
subset A ⊂ S without transfixing it; then, if G has Property (FW), there are restric-
tions on the homomorphisms G→ K. To illustrate this idea, one shall say that a
group K has Property (PW) if it admits a commensurating action on a set S, with
a commensurating subset C such that the function g 7→ #(C ∆gC) has finite fibers.
For such a group, the only subgroups H such that (K,H) has relative Property (FW)
are the finite subgroups.

3.2. Property (FW) and Property (T). One can rephrase Property (FW) as fol-
lows: G has Property (FW) if and only if every isometric action on an “integral
Hilbert space” `2(X ,Z) (X any discrete set) has bounded orbits. A group has Prop-
erty (FH) if all its isometric actions on Hilbert spaces have fixed points. More
generally, if G is a group and H a subgroup, the pair (G,H) has relative Property
(FH) if every isometric G-action on a Hilbert space has an H-fixed point. Thus, the
relative Property (FH) implies the relative Property (FW).

By a theorem of Delorme and Guichardet, Property (FH) is equivalent to Kazh-
dan’s Property (T) for countable groups (see [11]). Thus, (T) implies (FW).

Kazhdan’s Property (T) is satisfied by lattices in semisimple Lie groups all of
whose simple factors have Property (T), for instance if all simple factors have real
rank ≥ 2. For example, SL 3(Z) satisfies Property (T).

Property (FW) is actually conjectured to hold for all irreducible lattices in semisim-
ple Lie groups of real rank ≥ 2, such as SL 2(R)k for k ≥ 2. (Recall that irreducible
means that the projection of the lattice modulo every simple factor is dense.) This is
known in the case of a semisimple Lie group admitting at least one noncompact sim-
ple factor with Kazhdan’s Property (T), for instance in SO(2,3)×SO(1,4), which
admits irreducible lattices (see [10]).

3.3. Distortion. Let G be a group. An element g of G is distorted in G if there
exists a finite subset Σ of G generating a subgroup 〈Σ〉 containing g, such that
limn→∞

1
n |g

n|Σ = 0; here, |g|Σ is the length of g with respect to the set Σ. If G is
finitely generated, this condition holds for some Σ if and only if it holds for every
finite generating subset of G. For example, every finite order element is distorted.

Example 3.2. Let K be a field. The distorted elements of SL n(K) are exactly the
virtually unipotent elements, that is, those elements whose eigenvalues are all roots
of unity (in positive characteristic, these are elements of finite order). By results
of Lubotzky, Mozes, and Raghunathan (see [22, 21]), the same characterization
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holds in the group SL n(Z), as soon as n ≥ 3; it also holds in SL n(Z[
√

d]) for n ≥
2 and non-square d ≥ 2. However, in SL 2(Z), every element of infinite order is
undistorted.

Lemma 3.3 (see [9]). Let G be a group, and H a finitely generated abelian subgroup
of G consisting of distorted elements. Then, the pair (G,H) has relative Property
(FW).

This fact can be used to get many examples. For instance, if G is any finitely
generated nilpotent group and G′ is its derived subgroup, then (G,G′) has relative
Property (FH); this result is due to Houghton, in a more general formulation en-
compassing polycyclic groups (see [9]). Bounded generation by distorted unipotent
elements can also be used to obtain nontrivial examples of groups with Property
(FW), including the above examples SL n(Z) for n≥ 3, and SL n(Z[

√
d]). The case

of SL 2(Z[
√

d]) is particularly interesting because it does not have Property (T).

3.4. Subgroups of PGL 2(k) with Property (FW). If a group G acts on a tree T
by graph automorphisms, then G acts on the set E of directed edges of T (T is non-
oriented, so each edge gives rise to a pair of opposite directed edges). Let Ev be the
set of directed edges pointing towards a vertex v. Then Ev ∆Ew is the set of directed
edges lying in the segment between v and w; in particular it is finite of cardinality
2d(v,w), where d is the graph distance. Thus G commensurates the subset Ev for
every v, and #(Ev ∆gEv) = 2d(v,gv). As a consequence, if G has Property (FW),
then it has Property (FA) in the sense that every action of G on a tree has bounded
orbits. A similar statement holds for relative properties.

Lemma 3.4 (See [9]). Let Γ be a group with Property (FW), then all finite index
subgroups of Γ have Property (FW), and hence have Property (FA).

In what follows, we denote by Z ⊂ Q the ring of algebraic integers (in an alge-
braic closure of Q). If k is an algebraically closed field of positive characteristic,
algebraic integers are roots of unity.

Theorem 3.5. Let k be an algebraically closed field. Let Γ be a countable subgroup
of GL 2(k). Assume that all finite index subgroups of Γ have Property (FA). Then, Γ

is conjugate, by a matrix B ∈ GL 2(k), to a subgroup of GL 2(A), where A is the ring
of algebraic integers:

• if the characteristic of k is positive, Γ is conjugate to a subgroup of GL 2(k′),
for some finite subfield k′ of k;
• if the characteristic of k is 0, Γ is conjugate to a subgroup of GL 2(Z).
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The same result applies if we replace GL 2(k) by PGL 2(k) or SL 2(k), and we
shall refer to it several times for PGL 2(k).

Lemma 3.6. Let Λ be a subgroup of GL 2(k). Assume that all finite index subgroups
of Λ have Property (FA). If the action of Λ on the projective line preserves a non-
empty, finite set, then Λ is finite.

Proof of the Lemma. A finite index subgroup Λ0 of Λ fixes each point of the finite
invariant subset of P1(k). By a projective change of coordinates, we may assume
that the point ∞ = [1 : 0] is fixed. This means that Λ0 is contained in the group of
upper triangular matrices. The diagonal coefficients determine a morphism from Λ0

to k∗×k∗. Since Λ0 has Property (FA), a finite index subgroup Λ1 of Λ0 is made of
upper triangular matrices with diagonal coefficients equal to 1. By assumption, Λ1

inherits Property (FA). Being abelian, Λ1 is finite, and Λ is finite too. �

Proof of Theorem 3.5. This directly follows from the GL 2-subgroup theorem of Hy-
man Bass (see [2, 1]). First, note that Property (FA) is equivalent to the conjunction
of the following three properties: Γ is finitely generated, Γ is not a non-trivial amal-
gam, and the abelianization Γ/[Γ,Γ] is finite. This is proved in [26], Theorem 15,
Section 6. Then, apply Corollary 2 of [2], as well as Remark (2) on the same page.
Either Γ is contained in a conjugate of GL 2(A), with A the ring of algebraic integers,
or in a conjugate of the group of matrices(

a b
0 d

)
with a and d roots of unity. In this last case, Lemma 3.6 shows that Γ is finite; as
such, it is conjugate to a subgroup of GL 2(A). �

Remark 3.7. Let K ⊂ k be a field extension, with k algebraically closed and of
characteristic 0. In Theorem 3.5, assume that the group Γ is contained in GL 2(K)

(or PGL 2(K)), and that Γ is infinite. If K contains Q, then one can choose the
conjugacy matrix B in GL 2(K).

To prove this result, we first note that Γ is absolutely irreducible. Otherwise, Γ

would be finite, by Lemma 3.6. Thus, Γ generates the vector space of 2×2 matrices
Mat2(K). Write

B =

(
a b
c d

)
with coefficients a, b, c, and d in k, and multiply B by a non-zero element of k
to assume that a = 1 or a = 0 and b = 1. Then, consider the conjugacy relation
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BΓB−1 ⊂ GL 2(Z) and form a linear combination, with coefficients in K, to obtain

B
(

1 0
0 0

)
B−1 ∈ GL 2(K);

this is possible because Γ generates Mat2(K) and K contains Z. A direct computa-
tion implies that b/d is in K (if d 6= 0). Performing similar computations with the
other elementary matrices, one obtains that all coefficients of B are in K.

Corollary 3.8. Let k be an algebraically closed field. Let C be a projective curve
over k, and let k(C) be the field of rational functions on the curve C. Let Γ be an
infinite subgroup of PGL 2(k(C)). If Γ has Property (FW), then

(1) the field k has characteristic 0;
(2) there is an element of PGL 2(k(C)) that conjugates Γ to a subgroup of

PGL 2(Z)⊂ PGL 2(k(C)).

The proof is a direct consequence of Theorem 3.5 and the previous remark.

4. FROM BIRATIONAL TRANSFORMATIONS TO PSEUDO-AUTOMORPHISMS

4.1. An example. Consider the birational transformation f (x,y) = (x+ 1,xy) of
P1

k×P1
k. The vertical curves Ci = {x = −i}, i ∈ Z, are exceptional curves for the

cyclic group Γ = 〈 f 〉: each of these curves is contracted by an element of Γ onto a
point, namely f i+1

◦ (Ci) = (1,0).
Let ϕ : Y 99K P1

k×P1
k be a birational map, and let U be a non-empty open subset

of Y . Consider the subgroup ΓY := ϕ−1 ◦ Γ ◦ ϕ of Bir(Y ). If i is large enough,
ϕ−1
◦ (Ci) is an irreducible curve C′i ⊂Y , and these curves C′i are pairwise distinct, so

that most of them intersect U. For positive integers m, f i+m maps Ci onto (m,0),
and (m,0) is not an indeterminacy point of ϕ−1 if m is large. Thus, ϕ−1 ◦ f m ◦ϕ

contracts C′i , and ϕ−1 ◦ f m ◦ϕ is not a pseudo-automorphism of U. This argument
proves the following lemma.

Lemma 4.1. Let X be the surface P1
k×P1

k. Let f : X 99K X be defined by f (x,y) =
(x+ 1,xy), and let Γ be the subgroup generated by f `, for some ` ≥ 1. Then the
cyclic group Γ is not pseudo-regularizable.

This shows that Theorem A requires an assumption on the groups Γ. More gen-
erally, assume that Γ⊂ Bir(X)

(a) contracts a family of hypersurfaces Wi ⊂ X whose union is Zariski dense
(b) the union of the family of strict transforms f◦(Wi), for f ∈ Γ contracting Wi,

form a subset of X whose Zariski closure has codimension at most 1.
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Then, Γ cannot be pseudo-regularized.

4.2. The space of hypersurfaces H̃yp(X). Let X be a smooth projective variety,
over an algebraically closed field k; we assume that the characteristic of k is 0 (we
make use of the resolution of singularities), but in dimension 2 such an assumption
is not necessary. Let Hyp(X) be the set of irreducible and reduced hypersurfaces
of X .

Let π1 : X1 → X be a birational morphism between smooth projective varieties.
The strict transform π◦1(W ) of every irreducible hypersurface W ∈ Hyp(X) is a an
irreducible hypersurface of X1; this determines an injective map

π
◦
1 : Hyp(X)→ Hyp(X1)

and Hyp(X1) = π◦1(Hyp(X))∪{E1, . . . ,E`} where the Ei are the irreducible hyper-
surfaces that are contracted by π1 (i.e. the components of the zero locus of Jac(π1)).

Let π2 : X2 → X be another birational morphism and denote by τ21 : X1 99K X2

the birational map π
−1
2 ◦π1. Let Gr(τ21)⊂ X1×X2 be the graph of τ21 and η : X3→

Gr(τ21) be a desingularization; the projective variety X3 is smooth and the maps
ηi : X3 → Xi, i = 1,2, ηi = proji ◦ η are two birational morphisms such that the
following diagram commutes:

π1

X3

X1

X

π2

τ21 X2

η2η1

For W ∈ Hyp(X), we have η◦1π◦1W = η◦2π◦2W ; this shows that the embeddings of
Hyp(X) in Hyp(X3) via π◦1 and η◦1 and via π◦2 and η◦2 coincide. Thus, one can define
the set H̃yp(X) of all irreducible hypersurfaces in all birational models of X as the
injective limit

H̃yp(X) = lim
π : Y→X

H̃yp(Y )

where π : Y → X runs over the set of birational morphisms from a smooth projective
variety Y to X . In [23], Manin proposes a similar construction for surfaces.
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4.3. Action of Bir(X) on H̃yp(X). Let g : X ′ 99KX be a birational map. Let Gr(g)⊂
X ′×X be its graph, and let Y → Gr(g) be a desingularization. This provides two
morphisms ε : Y → X ′ and π : Y → X such that g = π◦ ε−1.

Since ε is a birational morphism, Hyp(Y ) is naturally identified to a subset of
H̃yp(X ′) containing Hyp(X ′). Since π is a birational morphism, π◦ determines an
embedding of Hyp(X) into Hyp(Y ), hence an embedding into H̃yp(X ′) via the in-
clusion Hyp(Y )⊂ H̃yp(X ′). We define g• on Hyp(X) by

g•(W ) = π
◦(W ) ∈ H̃yp(X ′).

This provides an injection g• : Hyp(X)→ H̃yp(X ′).
Given another resolution of the indeterminacies of g by two birational morphisms

ε : Y ′ → X ′ and π′ : Y ′ → X , one can find a smooth variety Z and two birational
morphisms τ : Z→ Y and τ′ : Z→ Y ′ such that

(a) Z is a desingularization of the graph of the birational transformation

µ = ε
′−1 ◦ ε = π

′−1 ◦π = τ
′ ◦ τ
−1.

(b) (π◦ τ)◦(W ) = (π′ ◦ τ′)◦(W ) for every W ∈ Hyp(X) because

(π◦ τ)−1 ◦ (π′ ◦ τ
′) = τ

−1 ◦π
−1 ◦π

′ ◦ τ
′ = τ

−1 ◦µ−1 ◦ τ
′ = idX ′.

From property (b) we deduce that the strict transforms π◦(W )∈Hyp(Y ) and (π′)◦(W )∈
Hyp(Y ′) coincide in H̃yp(X ′); this shows that g•(W ) = π◦(W ) = (π′)◦(W ) does not
depend on the resolution of its indeterminacies.

Next, we want to define g• as an embedding of H̃yp(X) (instead of just Hyp(X))
into H̃yp(X ′). Consider a birational morphism π1 : X1→ X and lift g to a birational
map g1 : X ′ 99K X1 with π◦g1 = g. Then, g•1 : Hyp(X1)→ H̃yp(X ′) coincides with
g• : Hyp(X)→ H̃yp(X ′) on Hyp(X) via the identification π◦1 : Hyp(X) ↪→ Hyp(X1)

because π1 ◦ g1 = g. Thus, one can extend g• to Hyp(X1) by g•1. These extensions
are compatible and determine an injective map

g• : H̃yp(X)→ H̃yp(X ′).

Since g is a birational transformation, one checks that g• is a bijection whose inverse
map is g• := (g−1)•. Similarly, if f : X ′′ 99K X ′ is another birational map, then
(g◦ f )• = f • ◦g•.

Proposition 4.2. The group Bir(X) acts faithfully by permutations on the set H̃yp(X)

via the homomorphism

Bir(X) → Perm(H̃yp(X))

g 7→ g•
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Proof. We already proved that this action is well-defined. To show it is faithful,
remark that g• = idX implies g◦(W ) =W for every irreducible hypersurface W ⊂ X ;
this implies that g = idX . �

In the following statement, we denote by excX(g) the number of hypersurfaces
W ∈ Hyp(X) that are contracted by the birational transformation g.

Lemma 4.3. The subset Hyp(X) of H̃yp(X) is commensurated by the action of
Bir(X) on H̃yp(X): For every g in Bir(X),

|g•(Hyp(X))∆Hyp(X)| ≤ excX(g)+ excX(g−1).

Proof. Let W ⊂ X be an irreducible hypersurface. If there exists a point x ∈W
around which g is a local isomorphism then g•(W ) = g◦(W ) is an irreducible hyper-
surface in X . If not, W is contracted by g and g•(W ) corresponds to a hypersurface
in H̃yp(X)rHyp(X) coming from a resolution π1 : X1→ X of the indeterminacies
of g−1. This shows that

|g•(Hyp(X))rHyp(X)| ≤ excX(g).

Similarly, |Hyp(X)rg•(Hyp(X))|= |(g−1)•(Hyp(X))rHyp(X)| is bounded by the
number excX(g−1). �

Example 4.4. Let g be a birational transformation of Pn
k of degree d, meaning

that g∗(H) ' dH where H denotes a hyperplane of Pn
k, or equivalently that g is

defined by n+1 homogeneous polynomials of the same degree d without common
factor of positive degree. The exceptional set of g has degree (n+ 1)(d− 1); as a
consequence, excPn

k
(g)≤ (n+1)(d−1). More generally, if H is a polarization of X ,

then excX(g) is bounded from above by a function that depends only on the degree
degH(g) := (g∗H) ·Hdim(X)−1.

4.4. Pseudo-regularization. Let X be a smooth projective variety. Let Γ be a sub-
group of Bir(X). Assume that the action of Γ on H̃yp(X) fixes (globally) a subset
A⊂ H̃yp(X) such that

|A∆Hyp(X)|<+∞.

In other words, A is obtained from Hyp(X) by removing finitely many hypersurfaces
Wi ∈Hyp(X) and adding finitely many hypersurfaces W ′j ∈ H̃yp(X)rHyp(X). Each
W ′j comes from an irreducible hypersurface in some model π j : X j → X , and there
is a model π : Y → X that covers all of them (i.e. π ◦π

−1
j is a morphism from Y to

X j for every j). Then, π◦(A) is a subset of Hyp(Y ). Changing X into Y and Γ into
π−1 ◦Γ◦π, we may assume that
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(1) A = Hyp(X)r{E1, . . . ,E`} where the Ei are ` distinct irreducible hypersur-
faces of X ,

(2) the action of Γ on H̃yp(X) fixes the set A.

In what follows, we denote by U the non-empty Zariski open subset X r∪iEi and
by ∂X the boundary X rU = E1∪·· ·∪E`; ∂X is considered as the boundary of the
compactification X of U.

Lemma 4.5. The group Γ acts by pseudo-automorphisms on the open set U. If
there is an ample divisor D whose support coincides with ∂X, then Γ acts by auto-
morphisms on U.

In this statement, we say that the support of a divisor D coincides with ∂X if
D = ∑i aiEi with ai > 0 for every 1≤ i≤ `.

Proof. Let g be an element of Γ. Let W be a hypersurface of X that intersects
U. Since g•(W ) is an element of A ⊂ Hyp(X), g does not contract W ; since A is
g-invariant, g•(W ) is not one of the Ei and it must intersect U. In particular, no
hypersurface of U is mapped to the boundary ∂X and the set

E(g) = {x ∈U ; x ∈ Ind(g) or Jac(g)(x) = 0}

has codimension ≥ 2. Moreover, if x is in U rE(g), then g is a local isomorphism
from a neighborhood V of x in U to a neighborhood V ′ of g(x) in X ; if g(x) is
in ∂X and Ei contains g(x), then g−1 maps Ei to a hypersurface Zi that contains
x, in contradiction with the first argument because Zi intersects U and is mapped
to Ei by g. We have shown that g is a local isomorphism from U rE(g) to U.
The same argument applies to g−1, and Proposition 2.1 implies that g determines a
pseudo-automorphism of U.

If D is an ample divisor, some positive multiple mD is very ample, and the com-
plete linear system |mD| provides an embedding of X in a projective space. The
divisor mD corresponds to a hyperplane section of X in this embedding, and the
open set U is an affine variety if the support of D is equal to ∂X . Proposition 2.5
concludes the proof of the lemma. �

Every subgroup of Bir(X) acts on H̃yp(X) and commensurates Hyp(X). If Γ

transfixes Hyp(X), there is an invariant subset A of H̃yp(X) for which A∆Hyp(X) is
finite. Thus, one gets the following characterization (the converse being immediate).

Theorem 4.6. Let X be a smooth projective variety over an algebraically closed
field of characteristic 0. Let Γ be a subgroup of Bir(X). Then Γ transfixes the subset
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Hyp(X) of H̃yp(X) if and only if Γ is pseudo-regularizable (in the sense of Definition
1.1).

Remark 4.7. As explained in Remark 1.2, there are two extreme cases, correspond-
ing to an empty or an ample boundary B = ∪iEi.

• If U = Y , Γ acts by pseudo-automorphisms on the projective variety Y . As
explained in Theorem 2.4, Γ is an extension of a subgroup of GL(NS(Y ))
by an algebraic group (which is almost contained in Aut(Y )0).
• If U is affine, Γ acts by automorphisms on U. The group Aut(U) may be

huge (for instance if U is the affine space), but there are techniques to study
groups of automorphisms that are not available for birational transforma-
tions. For instance Γ is residually finite and virtually torsion free if Γ is a
group of automorphisms generated by finitely many elements (see [3]).

4.5. Distorted elements. Theorem 4.6 may be applied when Γ has Property (FW),
or for pairs (Λ,Γ) with relative Property (FW) such that Λ acts on X by birational
transformations. In particular, we obtain the following corollary.

Corollary 4.8. Let X be a smooth projective variety over an algebraically closed
field of characteristic 0. Let Γ be a distorted cyclic subgroup of Bir(X). Then Γ is
pseudo-regularizable.

5. BIRATIONAL GROUPS OF SURFACES

Theorem 5.1. Let X be an irreducible projective surface over an algebraically
closed field. The following are equivalent:

(1) Bir(X) does not transfix Hyp(X);
(2) the Kodaira dimension of X is −∞;
(3) X is birationally equivalent to the product of the projective line with a curve.

Proof. The equivalence between (2) and (3) is classical.
Suppose that X is a product C×P1. Let Ht be the hypersurface {t}×P1 ⊂ X .

For each τ ∈ P1, choose a meromorphic function fτ on C having a zero at t. Then
the birational map (t,x) 7→ (t, fτ(t)x) contracts Hτ ∈ Hyp(X), hence maps it to an
element H ′τ ∈ H̃yp(X)rHyp(X). The H ′τ, for τ ∈ P1 are pairwise distinct. If by
contradiction Hyp(X) were transfixed, by definition there is an invariant subset A⊂
H̃yp(X) with Hyp(X)4A finite. So for all but finitely many t ∈ P1 we have Ht ∈ A
and H ′t /∈ A. Since for every t we can find f as above, this is a contradiction.
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Conversely, if X has nonnegative Kodaira dimension, then Bir(X) acts by auto-
morphisms on its minimal model Y . Thus it stabilizes Hyp(Y ), and hence transfixes
Hyp(X). �

Theorem 5.2. Let X be an irreducible projective surface over an algebraically
closed field. The following are equivalent:

(1) some finitely generated subgroup of Bir(X) does not transfix Hyp(X);
(2) some cyclic subgroup of Bir(X) does not transfix Hyp(X);
(3) X is birationally equivalent to the product of the projective line with a curve

of genus 0 or 1.

Proof. Trivially (2) implies (1).
Suppose that (3) holds and let us prove (2). The case of P1×P1 is already cov-

ered by Lemma 4.1. The case X = C×P1, where C is an elliptic curve, is simi-
lar. Namely, let s be a translation of infinite order of C. Fix t0 ∈ C. Let f be a
meromorphic function on C vanishing at t0 and with no poles or zero at any other
point of the orbit {sn(t0) : n ∈ Z}. Define a birational self-transformation of X by
u(t,x) = (s(t), f (t)x). Let H be the hypersurface {t0}×C. Then for n ∈ Z, we have
(u•)nH ∈Hyp(X) if and only if n≤ 0. Hence the action of the cyclic group 〈u〉 does
not transfix Hyp(X).

Suppose now that (1) holds and let us prove (3). Applying Theorem 5.1, and
changing X to a birationally equivalent surface if necessary, we have X = C×P1

for some (smooth irreducible) curve C. Assuming that C has genus ≥ 2, we have
to show that every finitely generated group Γ of self-transformations of X trans-
fixes Hyp(X). Since the genus of C is at least 1, the birational action of Bir(X) on
X preserves the fibration X → C, and thus induces a (surjective) homomorphism
Bir(X)→ Aut(C). Since moreover the genus of C is at least 2, Aut(C) is finite. It
follows that replacing Γ by a finite index subgroup (which does not affect its trans-
fixing property) we can assume that every γ ∈ Γ has the form (t,x) 7→ (t,φt(x)),
where t 7→ φt is a morphism C→ PGL 2 defined on an open Zariski-dense subset
Uγ of C. Then if Γ is generated by a finite subset T , we see that Γ acts by au-
tomorphisms on the open Zariski-dense subset

⋂
γ∈T Uγ×P1. Hence Γ transfixes

Hyp(X). �

6. BIRATIONAL TRANSFORMATIONS OF SURFACES I

From now on, we work in dimension 2: X , Y , and Z will be smooth projective
surfaces over the algebraically closed field k.
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6.1. Regularization. In this section, we refine Theorem 4.6, in order to apply re-
sults of Danilov and Gizatullin. Recall that a curve C in a smooth surface Y has
normal crossings if each of its singularities is a simple node with two transverse
tangents. In the complex case, this means that is locally analytically equivalent to
{xy = 0} (two branches intersecting transversally) in a neighborhood of each of its
singularities.

Theorem 6.1. Let X be a smooth projective surface, defined over an algebraically
closed field k. Let Γ be a subgroup of Bir(X) that transfixes the subset Hyp(X) of
H̃yp(X). There exists a smooth projective surface Z, a birational map ϕ : Z 99K X
and an open subset U ⊂ Z such that, writing the boundary ∂Z := Z rU as a finite
union of irreducible components Ei ⊂ Z, 1≤ i≤ `:

(1) The boundary ∂Z is a curve with normal crossings.
(2) The group ΓZ := ϕ−1 ◦Γ◦ϕ acts by automorphisms on U.
(3) ∀1≤ i≤ `, ∀g ∈ ΓZ , the strict transform of Ei under the action of g on Z is

contained in ∂Z: either g◦(Ei) is a point of ∂Z or g◦(Ei) is an irreducible
component E j of ∂Z.

(4) ∀1 ≤ i ≤ `, there exists an element g ∈ ΓZ that contracts Ei onto a point
g◦(Ei) ∈ ∂Z. In particular, Ei is rational.

(5) The pair (Z,U) is minimal for the previous properties: if one contracts a
smooth curve of self-intersection −1 in ∂Z, then the boundary stops to be a
normal crossing divisor.

Proof. We apply Theorem 4.6 (which works in positive characteristic because X is
a surface), and get a birational morphism ϕ0 : Y0 → X and an open subset U0 of
Y0 that satisfy properties (1) and (3), except that we only know that the action of
Γ0 := ϕ

−1
0 ◦Γ◦ϕ0 on U0 is by pseudo-automorphisms (not yet by automorphisms).

We shall progressively modify the triple (Y0,U0,ϕ0) to obtain a surface Z with
properties (1) to (5).

Step 1.– First, we blow-up the singularities of the curve ∂Y0 = Y0 rU0 to get a
boundary that is a normal crossing divisor. This replaces the surface Y0 by a new
one, still denoted Y0. This modification adds new components to the boundary ∂Y0

but does not change the fact that Γ0 acts by pseudo-automorphisms on U0.

Step 2.– Consider a point q in U0, and assume that there is a curve Ei of ∂Y0 that
is contracted to q by an element g ∈ Γ0; fix such a g, and denote by D the union of
the curves E j such that g◦(E j) = q. By construction, g is a pseudo-automorphism of
U0. The curve D does not intersect the indeterminacy set of g, since otherwise there
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would be a curve C containing q that is contracted by g−1. And D is a connected
component of ∂Y0, because otherwise g maps one of the E j to a curve that intersects
U0. Thus, there are small neighborhoods W of D and W ′ of q such that W ∩∂Y0 =

D and g realizes an isomorphism from W rD to W ′r{q}, contracting D onto the
smooth point q ∈Y0. As a consequence, there is a birational morphism π1 : Y0→Y1

such that

(1) Y1 is smooth
(2) π1 contracts D onto a point q1 ∈ Y1

(3) π1 is an isomorphism from Y0 rD to Y1 r{q1}.
In particular, π1(U0) is an open subset of Y1 and U1 = π1(U0)∪{q1} is an open
neighborhood of q1 in Y1.

Then, Γ1 := π1 ◦Γ0 ◦π
−1
1 acts birationally on Y1, and by pseudo-automorphisms

on U1. The boundary ∂Y1 =Y1rU1 contains `1 irreducible components, with `1 <`

(the difference is the number of components of D), and is a normal crossing divisor
because D is a connected component of ∂Y0.

Repeating this process, we construct a sequence of surfaces πk : Yk−1 → Yk and
open subsets πk(Uk−1)⊂Uk ⊂ Yk such that the number of irreducible components
of ∂Yk = Yk rUk decreases. After a finite number of steps (at most `), we may
assume that Γk ⊂ Bir(Yk) does not contract any boundary curve to a point of the
open set Uk. On such a model, Γk acts by automorphisms on Uk.

In what follows, we fix such a model, which we denote by the letters Y , U, ∂Y ,
ϕ . The birational map ϕ : Y 99K X is the composition of ϕ0 with the inverse of
the morphism Y0 → Yk. On such a model, properties (1), (1) and (2) are satisfied.
Moreover, (3) follows from (2). We now modify Y further to get property (4).

Step 3.– Assume that the curve Ei is not contracted by Γ. Let F be the orbit of
Ei: F = ∪g∈Γg◦(Ei); this curve is contained in the boundary ∂Y of the open subset
U. Changing U into

U′ = U∪ (F r∂Y rF),

the group Γ also acts by pseudo-automorphisms on U′. This operation decreases
the number ` of irreducible components of the boundary. Thus, combining steps 2
and 3 finitely many times, we reach a model that satisfies Properties (1) to (4).

Step 4.– If the boundary ∂Y contains a smooth (rational) curve Ei of self-intersec-
tion−1, it can be blown down to a smooth point q by a birational morphism π : Y →
Y ′; the open set U is not affected, but the boundary ∂Y ′ has one component less.
If Ei was a connected component of ∂Y , then U′ = π(U)∪{q} is a neighborhood
of q and one replaces U by U′, as in step 2. Now, two cases may happen. If the
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boundary ∂Y ′ ceases to be a normal crossing divisor, we come back to Y and do not
apply this surgery. If ∂Y ′ has normal crossings, we replace Y by this new model. In
a finite number of steps, looking successively at all (−1)-curves and iterating the
process, we reach a new surface Z on which all six properties are satisfied. �

Remark 6.2. One may also remove property (5) and replace property (1) by

(2’) The Ei are rational curves, and none of them is a smooth rational curve with
self-intersection −1.

But doing so, we may lose the normal crossing property. To get property (2’), apply
the theorem and argue as in step 4.

6.2. Constraints on the boundary. We now work on the new surface Z given by
Theorem 6.1. Thus, Z is the surface, Γ the subgroup of Bir(Z), U the open subset
on which Γ acts by automorphisms, and ∂Z the boundary of U.

Proposition 6.3 (Gizatullin, [13] § 4). There are four possibilities for the geometry
of the boundary ∂Z = Z rU.

(1) ∂Z is empty.
(2) ∂Z is a cycle of rational curves.
(3) ∂Z is a chain of rational curves.
(4) ∂Z is not connected; it is the disjoint union of finitely many smooth rational

curves of self-intersection 0.

Moreover, in cases (2) and (3), the open set U is the blow-up of an affine surface.

Thus, there are four possibilities for ∂Z, which we study successively. We shall
start with (1) and (4) in sections 6.3 and 6.4. Then case (3) is dealt with in Sec-
tion 6.5. Case (2) is slightly more involved: it is treated in Section 7.

Before that, let us explain how Proposition 6.3 follows from Section 5 of [13].
First, we describe the precise meaning of the statement, and then we explain how
the original results of [13] apply to our situation.

The boundary and its dual graph .– Consider the dual graph GZ of the bound-
ary ∂Z. The vertices of GZ are in one to one correspondence with the irreducible
components Ei of ∂Z. The edges correspond to singularities of ∂Z: each singular
point q gives rise to an edge connecting the components Ei that determine the two
local branches of ∂Z at q. When the two branches correspond to the same irreducible
component, one gets a loop of the graph GZ .
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We say that ∂Z is a chain of rational curves if the dual graph is of type A`: ` is
the number of components, and the graph is linear, with ` vertices. Chains are also
called zigzags by Gizatullin and Danilov.

We say that ∂Z is a cycle if the dual graph is isomorphic to a regular polygon with
` vertices. There are two special cases: when ∂Z is reduced to one component, this
curve is a rational curve with one singular point and the dual graph is a loop (one
vertex, one edge); when ∂Z is made of two components, these components intersect
in two distinct points, and the dual graph is made of two vertices with two edges
between them. For `= 3,4, . . ., the graph is a triangle, a square, ...

Gizatullin’s original statement.– To describe Gizatullin’s article, let us intro-
duce some useful vocabulary. Let S be a projective surface, and C ⊂ S be a curve;
C is a union of irreducible components, which may have singularities. Assume that
S is smooth in a neighborhood of C. Let S0 be the complement of C in S, and let
ι : S0 → S be the natural embedding of S0 in S. Then, S is a completion of S0:
this completion is marked by the embedding ι : S0 → S, and its boundary is the
curve C. Following [13] and [14, 15], we only consider completions of S0 by curves
(i.e. Sr ι(S0) is of pure dimension 1), and we always assume S to be smooth in a
neighborhood of the boundary. Such a completion is

(i) simple if the boundary C has normal crossings;
(ii) minimal if it is simple and minimal for this property: if Ci ⊂C is an excep-

tional divisor of the first kind then, contracting Ci, the image of C is not a
simple normal crossing divisor anymore. Equivalently, Ci intersects at least
three other components of C. Equivalently, if ι′ : S0→ S′ is another simple
completion, and π : S→ S′ is a birational morphism such that π◦ ι = ι′, then
π is an isomorphism.

If S is a completion of S0, one can blow-up boundary points to obtain a simple
completion, and then blow-down some of the boundary components Ci to reach a
minimal completion.

Now, consider the group of automorphisms of the open surface S0. This group
Aut(S0) acts by birational transformations on S. An irreducible component Ei of
the boundary C is contracted if there is an element g of Aut(S0) that contracts Ei:
g◦(Ei) is a point of C. Let E be the union of the contracted components. In [13],
Gizatullin proves that E satisfies one of the four properties stated in Proposition 6.3;
moreover, in cases (2) and (3), E contains an irreducible component Ei with E2

i > 0
(see Corollary 4, Section 5 of [13]).
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Thus, Proposition 6.3 follows from the properties of the pair (Z,U,Γ): the open
set U plays the role of S0, and Z is the completion S; the boundary ∂Z is the curve
C: it is a normal crossing divisor, and it is minimal by construction. Since every
component of ∂Z is contracted by at least one element of Γ⊂ Aut(U), ∂Z coincides
with Gizatullin’s curve E. The only thing we have to prove is the last sentence of
the Proposition concerning the structure of the open set U.

First, let us show that E = ∂Z supports an effective divisor D such that D2 > 0 and
D ·F ≥ 0 for every irreducible curve. To do so, fix an irreducible component E0 of
∂Z with positive self-intersection. Assume that ∂Z is a cycle, and list cyclically the
other irreducible components: E1, E2, ..., up to Em, with E1 and Em intersecting E0.
Then, one defines a1 = 1, then one chooses a2 > 0 such that a1E1 +a2E2 intersects
positively E1, then a3 > 0 such that a1E1+a2E2+a3E3 intersects positively E1 and
E2, ..., up to ∑

m
i=1 aiEi that intersects all components Ei, 1 ≤ i ≤ m− 1 positively.

Since E2
0 > 0 and E0 intersects Em, one can find a coefficient a0 for which the divisor

D =
m

∑
i=0

aiEi

satisfies D2 > 0 and D ·Ei > 0 for all Ei, 0 ≤ i ≤ m. This implies that D inter-
sects every irreducible curve F non-negatively. Thus, D is big and nef (see [19],
Section 2.2). A similar proof applies when ∂Z is a zigzag.

Let W be the subspace of NS(X) spanned by classes of curves F with D ·F = 0.
Since D2 > 0, Hodge index theorem implies that the intersection form is negative
definite on W . Thus, Mumford-Grauert contraction theorem provides a birational
morphism τ : Z→ Z′ that contracts simultaneously all curves F with [F ] ∈W and is
an isomorphism on Z rF ; in particular, τ is an isomorphism from a neighborhood
V of ∂Z onto its image τ(V )⊂ Z′. In other words, the modification τ may contract
curves that are contained in U, and may create singularities for the new open set
U′ = τ(U), but does not modify Z near the boundary ∂Z. Now, on Z′, the divisor
D′= τ∗(D) intersects every effecitve curve positively and satisfies (D′)2 > 0. Nakai-
Moishezon criterion shows that D′ is ample (see [19], Section 1.2.B); consequently,
there is an embedding of Z′ into a projective space and a hyperplane section H of Z′

for which Z′rH coincides with U′. This proves that U is a blow-up of the affine
(singular) surface U′.
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6.3. Projective surfaces and automorphisms. In this section, we (almost always)
assume that Γ acts by regular automorphisms on a projective surface X . This cor-
responds to case (1) in Proposition 6.3. Our goal is the special case of Theorem B
which is stated below as Theorem 6.8.

6.3.1. Action on the Néron-Severi group. The intersection form is a non-degenerate
quadratic form qX on the Néron-Severi group NS(X), and Hodge index theorem
asserts that its signature is (1,ρ(X)− 1), where ρ(X) denotes the Picard number,
i.e. the rank of the lattice NS(X)' Zρ.

The action of Aut(X) on the Néron-Severi group NS(X) provides a linear repre-
sentation preserving the intersection form qX . This gives a morphism

Aut(X)→ O(NS(X);qX).

Fix an ample class a in NS(X) and consider the hyperboloid

HX = {u ∈ NS(X)⊗Z R; qX(u,u) = 1 and qX(u,a)> 0}.

This set is one of the two connected components of {u;qX(u,u) = 1}. With the rie-
mannian metric induced by (−qX), it is a copy of the hyperbolic space of dimension
ρ(X)−1; the group Aut(X) acts by isometries on this space (see [7]).

Proposition 6.4. Let X be a smooth projective surface. Let Γ be a subgroup of
Aut(X). If Γ has Property (FW), its action on NS(X) fixes a very ample class, the
image of Γ in O(NS(X);qX) is finite, and a finite index subgroup of Γ is contained
in Aut(X)0.

Proof. The image Γ∗ of Γ is contained in the arithmetic group O(NS(X);qX). The
Néron-Severi group NS(X) is a lattice Zρ and qX is defined over Z. Thus, O(NS(X);
qX) is a standard arithmetic group in the sense of [5], § 1.1. The main results of [5]
imply that the action of Γ∗ on the hyperbolic space HX has a fixed point. Let u
be such a fixed point. Since qX is negative definite on the orthogonal complement
u⊥ of u in NS(X), and Γ∗ is a discrete group acting by isometries on it, we deduce
that Γ∗ is finite. If a is a very ample class, the sum ∑γ∈Γ∗ γ∗(a) is an invariant, very
ample class.

The kernel K ⊂Aut(X) of the action on NS(X) contains Aut(X)0 as a finite index
subgroup. Thus, if Γ has Property (FW), it contains a finite index subgroup that is
contained in Aut(X)0. �
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6.3.2. Non-rational surfaces. In this paragraph, we assume that the surface X is not
rational. The following proposition classifies subgroups of Bir(X) with Property
(FW); in particular, such a group is finite if the Kodaira dimension of X is non-
negative (resp. if the characteristic of k is positive).

Proposition 6.5. Let X be a smooth, projective, and non-rational surface, over the
algebraically closed field k. Let Γ be an infinite subgroup of Bir(X) with Property
(FW). Then k has characteristic 0, and there is a birational map ϕ : X 99KC×P1

k
that conjugates Γ to a subgroup of Aut(C×P1

k). Moreover, there is a finite index
subgroup Γ0 of Γ such that ϕ◦Γ0◦ϕ−1, is a subgroup of PGL 2(Z), acting on C×P1

k
by linear projective transformations on the second factor.

Proof. Assume, first, that the Kodaira dimension of X is non-negative. Let π : X →
X0 be the projection of X on its (unique) minimal model (see [16], Thm. V.5.8).
The group Bir(X0) coincides with Aut(X0); thus, after conjugacy by π, Γ becomes a
subgroup of Aut(X0), and Proposition 6.4 provides a finite index subgroup Γ0 ≤ Γ

that is contained in Aut(X0)
0. Note that Γ0 inherits Property (FW) from Γ.

If the Kodaira dimension of X is equal to 2, the group Aut(X0)
0 is trivial; hence

Γ0 = {IdX0} and Γ is finite. If the Kodaira dimension is equal to 1, Aut(X0)
0 is either

trivial, or isomorphic to an elliptic curve, acting by translations on the fibers of the
Kodaira-Iitaka fibration of X0 (this occurs, for instance, when X0 is the product
of an elliptic curve with a curve of higher genus). If the Kodaira dimension is 0,
then Aut(X0)

0 is also an abelian group (either trivial, or isomorphic to an abelian
surface). Since abelian groups with Property (FW) are finite, the group Γ0 is finite,
and so is Γ.

We may now assume that the Kodaira dimension kod(X) is negative. Since X is
not rational, then X is birationally equivalent to a product S =C×P1

k, where C is a
curve of genus g(C)≥ 1. Denote by k(C) the field of rational functions on the curve
C. We fix a local coordinate x on C and denote the elements of k(C) as functions
a(x) of x. The semi-direct product Aut(C)nPGL 2(k(C)) acts on S by birational
transformations of the form

(x,y) ∈C×P1
k 7→

(
f (x),

a(x)y+b(x)
c(x)y+d(x)

)
,

and Bir(S) coincides with this group Aut(C)nPGL 2(k(C)); indeed, the first pro-
jection π : S→ C is equivariant under the action of Bir(S) because every rational
map P1

k→C is constant.
Since Aut(C) is virtually abelian and Γ has Property (FW), there is a finite in-

dex, normal subgroup Γ0 ≤ Γ that is contained in PGL 2(k(C)). By Corollary 3.8,
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every subgroup of PGL 2(k(C)) with Property (FW) is conjugate to a subgroup of
PGL 2(Z) or a finite group if the characteristic of the field k is positive.

We may assume now that the characteristic of k is 0 and that Γ0 ⊂ PGL 2(Z) is
infinite. Consider an element g of Γ; it acts as a birational transformation on the
surface S =C×P1

k, and it normalizes Γ0:

g◦Γ0 = Γ0 ◦g.

Since Γ0 acts by automorphisms on S, the finite set Ind(g) is Γ0-invariant. But a
subgroup of PGL 2(k) with Property (FW) preserving a non-empty, finite subset of
P1(k) is a finite group. Thus, Ind(g) must be empty. This shows that Γ is contained
in Aut(S). �

6.3.3. Rational surfaces. We now assume that X is rational, that Γ ≤ Bir(X) is an
infinite subgroup with Property (FW), and that Γ contains a finite index, normal
subgroup Γ0 that is contained in Aut(X)0. Every exceptional curve of the first kind
E ⊂X is determined by its class in NS(X) and is therefore invariant under the action
of Aut(X)0. Contracting (−1)-curves one by one, we obtain the following lemma.

Lemma 6.6. There is a birational morphism π : X→Y onto a minimal rational sur-
face Y that is equivariant under the action of Γ0; Y does not contain any exceptional
curve of the first kind and Γ0 becomes a subgroup of Aut(Y )0.

Let us recall the classification of minimal rational surfaces and describe their
groups of automorphisms. First, we have the projective plane P2

k, with Aut(P2
k) =

PGL 3(k) acting by linear projective transformations. Then comes the quadric P1
k×

P1
k, with

Aut(P1
k×P1

k)
0 = PGL 2(k)×PGL 2(k)

acting by linear projective transformations on each factor; the group of automor-
phisms is the semi-direct product of PGL 2(k)× PGL 2(k) with the group of or-
der 2 generated by the permutation of the two factors, η(x,y) = (y,x). Then, for
each integer m ≥ 1, we have the Hirzebruch surface Fm; this is the projectiviza-
tion of the rank 2 bundle O⊕O(m) over P1

k; it may be characterized as the unique
ruled surface Z → P1

k with a section C of self-intersection −m. Its group of auto-
morphisms is connected and preserves the ruling. This provides a homomorphism
Aut(Fm)→ PGL 2(k) that describes the action on the base of the ruling, and it turns
out that this homomorphism is surjective. If we choose coordinates for which the
section C intersects each fiber at infinity, the kernel Jm of this homomorphism acts
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by transformations of type

(x,y) 7→ (x,αy+β(x))

where β(x) is a polynomial function of degree ≤ m. In particular, Jm is solvable. In
other words, Aut(Fm) is isomorphic to the group

(GL 2(k)/µm)nWm

where Wm is the linear representation of GL 2(k) on homogeneous polynomials of
degree m in two variables, and µm is the kernel of this representation: it is the sub-
group of GL 2(k) given by scalar multiplications by roots of unity of order dividing
m.

Lemma 6.7. The group Γ is also contained, after conjugacy by π : X → Y , in the
group of automorphisms of the minimal, rational surface Y .

Proof. Assume that the surface Y is the quadric P1
k×P1

k. Then, according to Theo-
rem 3.5, Γ0 is conjugate to a subgroup of PGL 2(Z)×PGL 2(Z). If g is an element
of Γ, its indeterminacy locus is a finite subset Ind(g) of P1

k×P1
k that is invariant un-

der the action of Γ0, because g normalizes Γ0. Since Γ0 is infinite and has Property
(FW), this set Ind(g) is empty (Lemma 3.6). Thus, Γ is contained in Aut(P1

k×P1
k).

The same argument applies for Hirzebruch surfaces. Indeed, Γ0 is an infinite
subgroup of Aut(Fm) with Property (FW). Thus, up to conjugacy, its projection in
PGL 2(k) is contained in PGL 2(Z). If it is finite, a finite index subgroup of Γ0 is
contained in the solvable group Jm, and must therefore be finite too by Property
(FW); this contradicts |Γ0| = ∞. Thus, the projection of Γ0 in PGL(Z) is infinite.
If g is an element of Γ, Ind(g) is a finite, Γ0-invariant subset, and by looking at the
projection of this set in P1

k one deduces that it is empty (Lemma 3.6). This proves
that Γ is contained in Aut(Fm).

Let us now assume that Y is the projective plane. Fix an element g of Γ, and
assume that g is not an automorphism; the indeterminacy and exceptional sets of g
are Γ0 invariant. Consider an irreducible curve C in the exceptional set of g, together
with an indeterminacy point q of g on C. Changing Γ0 in a finite index subgroup,
we may assume that Γ0 fixes C and q; in particular, Γ0 fixes q, and permutes the
tangent lines of C through q. But the algebraic subgroup of PGL 3(k) preserving a
point q and a line through q does not contain any infinite group with Property (FW)
(Lemma 3.6). Thus, again, Γ is contained in Aut(P2

k). �

6.3.4. Conclusion, in case (1). Putting everything together, we obtain the following
particular case of Theorem B.
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Theorem 6.8. Let X be a smooth projective surface over an algebraically closed
field k. Let Γ be an infinite subgroup of Bir(X) with Property (FW). If a finite index
subgroup of Γ is contained in Aut(X), there is a birational morphism ϕ : X → Y
that conjugates Γ to a subgroup ΓY of Aut(Y ), with Y in the following list:

(1) Y is the product of a curve C by P1
k, the field k has characteristic 0, and a

finite index subgroup Γ′Y of ΓY is contained in PGL 2(Z), acting by linear
projective transformations on the second factor;

(2) Y is P1
k×P1

k, the field k has characteristic 0, and ΓY is contained in PGL 2(Z)×
PGL 2(Z);

(3) Y is a Hirzebruch surface Fm and k has characteristic 0;
(4) Y is the projective plane P2

k.

In particular, Y = P2
k if the characteristic of k is positive.

Remark 6.9. Denote by ϕ : X→Y the birational map given by the theorem. Chang-
ing Γ in a finite index subgroup, we may assume that it acts by automorphisms on
both X and Y .

If Y =C×P1, then ϕ is in fact an isomorphism. To prove this fact, denote by ψ

the inverse of ϕ. The indeterminacy set Ind(ψ) is ΓY invariant because both Γ and
ΓY act by automorphisms. From Lemma 3.6, applied to Γ′Y ⊂ PGL 2(k), we deduce
that Ind(ψ) is empty and ψ is an isomorphism. The same argument implies that the
conjugacy is an isomorphism if Y = P1

k×P1
k or a Hirzebruch surface Fm, m≥ 1.

Now, if Y is P2
k, ϕ is not always an isomorphism. For instance, SL 2(C) acts on

P2
k with a fixed point, and one may blow up this point to get a new surface with an

action of groups with Property (FW). But this is the only possible example, i.e. X is
either P2

k, or a single blow-up of P2
k (because Γ⊂ PGL 3(C) can not preserve more

than one base point for ϕ−1 without loosing Property (FW)).

6.4. Invariant fibrations. We now assume that Γ acts by automorphisms on U ⊂
X , and that the boundary ∂X = X rU is the union of `≥ 2 pairwise disjoint rational
curves Ei; each of them has self-intersection E2

i = 0 and is contracted by at least one
element of Γ. This corresponds to the fourth possibility in Gizatullin’s result. Since
Ei ·E j = 0, the Hodge index theorem implies that the classes ei = [Ei] span a line in
NS(X).

From Section 6.3.2, we may, and do assume that X is a rational surface. In
particular, the Euler characteristic of the structural sheaf is equal to 1: χ(OX) = 1,
and Riemann-Roch formula gives

h0(X ,E1)−h1(X ,E1)+h2(X ,E1) =
E2

1 −KX ·E1

2
+1.
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The genus formula implies KX ·E1 =−2, and Serre duality shows that h2(X ,E1) =

h0(X ,KX −E1) = 0 because otherwise −2 = (KX −E1) ·E1 would be non-negative.
From this, we obtain

h0(X ,E1) = h1(X ,E1)+2≥ 2.

Since E2
1 = 0, we conclude that the space H0(X ,E1) has dimension 2 and determines

a fibration π : X → P1
k; the curve E1, as well as the Ei for i≥ 2, are fibers of π.

If f is an automorphism of U and F ⊂U is a fiber of π, then f (F) is a (complete)
rational curve. Its projection π( f (F)) is contained in P1

k r∪iπ(Ei) and must there-
fore be reduced to a point. Thus, f (F) is a fiber of π and f preserves the fibration.
This proves the following lemma.

Lemma 6.10. There is a fibration π : X → P1
k such that

(1) every component Ei of ∂X is a fiber of π: U = π−1(V ) for an open subset
V ⊂ P1

k;
(2) the generic component of π is a smooth rational curve;
(3) Γ permutes the fibers of π: there is a morphism ρ : Γ→ PGL 2(k) such that

π◦ f = ρ( f )◦π for every f ∈ Γ.

The open subset V ( P1
k is invariant under the action of ρ(Γ); hence ρ(Γ) ρ(Γ)

is finite by Lemma 3.6. Let Γ0 be the kernel of this morphism. Then, denote by
ϕ : X 99K P1

k×P1
k a birational map that conjugates the fibration π to the first pro-

jection τ : P1
k×P1

k→ P1
k. The group Γ0 is conjugate to a subgroup of PGL 2(k(x))

acting on P1
k× P1

k by linear projective transformations of the fibers of τ. From
Corollary 3.8, a new conjugacy by an element of PGL 2(k(x)) changes Γ0 in an in-
finite subgroup of PGL 2(Z). Then, as in Sections 6.3.2 and 6.3.3 we conclude that
Γ becomes a subgroup of PGL 2(Z)×PGL 2(Z), with a finite projection on the first
factor.

Proposition 6.11. Let Γ be an infinite group with Property (FW), with Γ⊂ Aut(U),
and U ⊂ Z as in case (4) of Proposition 6.3. There exists a birational map ψ : Z 99K
P1

k × P1
k that conjugates Γ to a subgroup of PGL 2(Z)× PGL 2(Z), with a finite

projection on the first factor.

6.5. Completions by zigzags. Two cases remain to be studied: ∂Z can be a chain
of rational curves (a zigzag in Gizatullin’s terminology) or a cycle of rational curves
(a loop in Gizatullin’s terminology). Cycles are considered in Section 7. In this
section, we rely on difficult results of Danilov and Gizatullin to treat the case of
chains of rational curves (case (3) in Proposition 6.3). Thus, in this section
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(i) ∂X is a chain of smooth rational curves Ei

(ii) U = X r∂X is an affine surface (singularities are allowed)
(iii) every irreducible component Ei is contracted to a point of ∂X by at least one

element of Γ⊂ Aut(U)⊂ Bir(X).

In [14, 15], Danilov and Gizatullin introduce a set of “standard completions" of
the affine surface U. As in Section 6.2, a completion (or more precisely a “marked
completion") is an embedding ι : U → Y into a complete surface such that ∂Y =

Y r ι(U) is a curve (this boundary curve may be reducible). Danilov and Gizatullin
only consider completions for which ∂Y is a chain of smooth rational curves and
Y is smooth in a neighborhood of ∂Y ; the surface X provides such a completion.
Two completions ι : U → Y and ι′ : U → Y ′ are isomorphic if the birational map
ι′ ◦ ι−1 : Y →Y ′ is an isomorphism; in particular, the boundary curves are identified
by this isomorphism. The group Aut(U) acts by pre-composition on the set of
isomorphism classes of (marked) completions.

Among all possible completions, Danilov and Gizatullin distinguish a class of
“standard (marked) completions”. We refer to [14] for a definition. There are el-
ementary links (corresponding to certain birational mappings Y 99K Y ′) between
standard completions, and one can construct a graph ∆U whose vertices are stan-
dard completions and there is an edge between two completions if one can pass
from one to the other by an elementary link.

Example 6.12. A completion is m-standard, for some m ∈ Z, if the boundary curve
∂Y is a chain of n+1 consecutive rational curves E0, E1, . . ., En (n≥ 1) such that

E2
0 = 0, E2

1 =−m, and E2
i =−2 if i≥ 2.

Blowing-up the intersection point q = E0 ∩ E1, one creates a new chain starting
by E ′0 with (E ′0)

2 = −1; blowing down E ′0, one creates a new (m + 1)-standard
completion. This is one of the elementary links.

Standard completions are defined by constraints on the self-intersections of the
components Ei. Thus, the action of Aut(U) on completions permutes the stan-
dard completions; this action determines a morphism from Aut(U) to the group of
isometries (or automorphisms) of the graph ∆U (see [14]):

Aut(U)→ Iso(∆U).

Theorem 6.13 (Danilov and Gizatullin, [14, 15]). The graph ∆U of all isomorphism
classes of standard completions of U is a tree. The group Aut(U) acts by isometries
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of this tree. The stabilizer of a vertex ι : U → Y is the subgroup G(ι) of automor-
phisms of the complete surface Y that fix the curve ∂Y . This group is an algebraic
subgroup of Aut(Y ).

The last property means that G(ι) is an algebraic group that acts algebraically on
Y . It coincides with the subgroup of Aut(Y ) fixing the boundary ∂Y ; the fact that
it is algebraic follows from the existence of a G(ι)-invariant, big and nef divisor
which is supported on ∂Y (see the last sentence of Proposition 6.3).

The crucial assertion in this theorem is that ∆U is a simplicial tree (typically,
infinitely many edges emanate from each vertex). There are sufficiently many links
to assure connectedness, but not too many in order to prevent the existence of cycles
in the graph ∆U .

Corollary 6.14. If Γ is a subgroup of Aut(U) that has the fixed point property on
trees, then Γ is contained in G(ι)⊂ Aut(Y ) for some completion ι : U→ Y .

If Γ has Property (FW), it has Property (FA) (see Section 3.4). Thus, if it acts
by automorphisms on U, Γ is conjugate to the subgroup G(ι) of Aut(Y ), for some
zigzag-completion Y of U. Theorem 6.8 of Section 6.3.3 implies that the action of
Γ on the initial surface X is conjugate to a regular action on P2

k, P1
k×P1

k or Fm, for
some Hirzebruch surface Fm. This action preserves a curve, namely the image of
the zigzag into the surface Y .

Example 6.15. Consider the projective plane P2
k, together with a subgroup Γ ⊂

Aut(P2
k) that preserves a curve C and has Property (FW). Then, C must be a smooth

rational curve: either a line, or a smooth conic. If C is the line “at infinity”, then Γ

acts by affine transformations on the affine plane P2
k rC. If the curve is the conic

x2 + y2 + z2 = 0, Γ becomes a subgroup of PO3(k).

Example 6.16. When Γ is a subgroup of Aut(P1
k×P1

k) that preserves a curve C
and has Property (FW), then C must be a smooth curve because Γ has no finite
orbit. Similarly, the two projections C→ P1

k being equivariant with respect to the
morphisms Γ→ PGL 2(k), they have no ramification points. Thus, C is a smooth
rational curve, and its projections onto each factor are isomorphisms. Thus, the
action of Γ on C and on each factor are conjugate. From these conjugacies, one
deduces that the action of Γ on P1

k×P1
k is conjugate to a diagonal embedding

γ ∈ Γ 7→ (ρ(γ),ρ(γ)) ∈ PGL 2(k)×PGL 2(k)

preserving the diagonal.
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Example 6.17. Similarly, the group SL 2(C) acts on the Hirzebruch surface Fm,
preserving the zero section of the fibration π : Fm → P1

k. This gives examples of
groups with Property (FW) acting on Fm and preserving a big and nef curve C.

Starting with one of the above examples, one can blow-up points on the invariant
curve C, and then contract C, to get examples of zigzag completions Y on which Γ

acts and contracts the boundary ∂Y .

7. BIRATIONAL TRANSFORMATIONS OF SURFACES II

In this section, U is a (singular) affine surface with a completion X by a cycle of
` rational curves. Every irreducible component Ei of the boundary ∂X = X rU is
contracted by at least one automorphism of U. Our goal is to classify subgroups Γ

of Aut(U)⊂ Bir(X) that are infinite and have Property (FW): in fact, we shall show
that no such group exists.

Example 7.1. Let (A1
k)
∗ denote the complement of the origin in the affine line A1

k;
it is isomorphic to the multiplicative group Gm over k. The surface (A1

k)
∗× (A1

k)
∗

is an open subset in P2
k whose boundary is the triangle of coordinate lines {[x :

y : z]; xyz = 0}. Thus, the boundary is a cycle (of length ` = 3). The group of
automorphisms of (A1

k)
∗× (A1

k)
∗ is the semi-direct product

GL 2(Z)n (Gm(k)×Gm(k));

it does not contain any infinite group with Property (FW).

7.1. Resolution of indeterminacies. Let us order cyclically the irreducible com-
ponents Ei of ∂X , so that Ei ∩E j 6= /0 if and only if i− j = ±1(mod`). Blowing
up finitely many singularities of ∂X , we may assume that ` = 2m for some integer
m ≥ 1; in particular, every curve Ei is smooth. (with such a modification, one may
a priori create irreducible components of ∂X that are not contracted by the group Γ)

Lemma 7.2. Let f be an automorphism of U and let fX be the birational extension
of f to the surface X. Then

(1) Every indeterminacy point of fX is a singular point of ∂X, i.e. one of the
intersection points Ei∩Ei+1.

(2) Indeterminacies of fX are resolved by inserting chains of rational curves.

Property (2) means that there exists a resolution of the indeterminacies of fX ,
given by two birational morphisms ε : Y → X and π : Y → X with f ◦ ε = π, such
that π−1(∂X) = ε−1(X) is a cycle of rational curves. Some of the singularities of
∂X have been blown-up into chains of rational curves to construct Y .
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ε π

f

FIGURE 1. A blow-up sequence creating two (red) branches. No branch
of this type appears for minimal resolution.

Proof. Consider a minimal resolution of the indeterminacies of fX . It is given by a
finite sequence of blow-ups of the base points of fX , producing a surface Y and two
birational morphisms ε : Y → X and π : Y → X such that fX = π ◦ ε−1. Since the
indeterminacy points of fX are contained in ∂X , all necessary blow-ups are centered
on ∂X .

The total transform F = ε∗(∂X) is a union of rational curves: it is made of a cycle,
together with branches emanating from it. One of the assertions (1) and (2) fails if
and only if F is not a cycle; in that case, there is at least one branch.

Each branch is a tree of smooth rational curves, which may be blown-down onto
a smooth point; indeed, these branches come from smooth points of the main cycle
that have been blown-up finitely many times. Thus, there is a birational morphism
η : Y →Y0 onto a smooth surface Y0 that contracts the branches (and nothing more).

The morphism π maps F onto the cycle ∂X , so that all branches of F are con-
tracted by π. Thus, both ε and π induce (regular) birational morphisms ε0 : Y0→ X
and π0 : Y0→ X . This contradicts the minimality of the resolution. �

Let us introduce a family of surfaces

πk : Xk→ X .

First, X1 = X and π1 is just the identity map. Then, X2 is obtained by blowing-up
the ` singularities of ∂X1; X2 is a compactification of U by a cycle ∂X2 of 2`= 2m+1
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smooth rational curves. Then, X3 is obtained by blowing up the singularities of ∂X2,
and so on. In particular, ∂Xk is a cycle of 2k−1` curves.

Denote by Dk the dual graph of ∂Xk: vertices of Dk correspond to irreducible
components Ei of ∂Xk and edges to intersection points Ei ∩E j. A simple blow-up
modifies both ∂Xk and Dk locally as follows

FIGURE 2. Blowing-up one point.

The group Aut(U) acts on H̃yp(X) and Lemma 7.2 shows that its action stabilizes
the following subset B of H̃yp(X):

B =
{

C ∈ H̃yp(X); ∃k ≥ 1,C is an irreducible component of ∂Xk

}
7.2. Farey and dyadic parametrizations. Consider an edge of the graph D1, and
identify this edge with the unit interval [0,1]. Its endpoints correspond to two ad-
jacent components Ei and Ei+1 of ∂X1, and the edge corresponds to their intersec-
tion q. Blowing-up q creates a new vertex (see Figure 2). The edge is replaced
by two adjacent edges of D2 with a common vertex corresponding to the excep-
tional divisor and the other vertices corresponding to (the strict transforms of) Ei

and Ei+1; we may identify this part of D2 with the segment [0,1], the three vertices
with {0,1/2,1}, and the two edges with [0,1/2] and [1/2,1].

Subsequent blow-ups may be organized in two different ways by using either a
dyadic or a Farey algorithm (see Figure 3).

In the dyadic algorithm, the vertices are labelled by dyadic numbers m/2k. The
vertices of Dk+1 coming from an initial edge [0,1] of D1 are the points {n/2k; 0≤
n ≤ 2k} of the segment [0,1]. We denote by Dyad(k) the set of dyadic numbers
n/2k ∈ [0,1]; thus, Dyad(k) ⊂ Dyad(k+ 1). We shall say that an interval [a,b] is
a standard dyadic interval if a and b are two consecutive numbers in Dyad(k) for
some k.

In the Farey algorithm, the vertices correspond to rational numbers p/q. Adjacent
vertices of Dk coming from the initial segment [0,1] correspond to pairs of rational
numbers (p/q,r/s) with ps− qr = ±1; two adjacent vertices of Dk give birth to
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a new, middle vertex in Dk+1: this middle vertex is (p+ r)/(q+ s) (in the dyadic
algorithm, the middle vertex is the “usual” euclidean middle). We shall say that an
interval [a,b] is a standard Farey interval if a= p/q and b= r/s with ps−qr =−1.
We denote by Far(k) the finite set of rational numbers p/q ∈ [0,1] that is given by
the k-th step of Farey algorithm; thus, Far(1) = {0,1} and Far(k) is a set of 2k+1

rational numbers p/q with 0 ≤ p ≤ q. (One can check that 1 ≤ q ≤ Fib(k), with
Fib(k) the k-th Fibonacci number.)

0/1

0/1

0/1

0/1

1/4 2/5 3/5 3/4

1/1

1/1

1/1

1/1

1/2

1/2

1/21/3

1/3 1/3

1/3

1/1

1/1

1/1

1/1

0/1

0/1

0/1

0/1

1/2

1/2

1/2

1/4

1/4
1/8

3/4

3/4

3/8 5/8 7/8

FIGURE 3. On the left, the Farey algorithm. On the right, the dyadic one.

By construction, the graph D1 has `= 2m edges. Recall that the edges of D1 are
in one to one correspondance with the singularities q j of ∂X1. Each edge determines
a subset B j of B; the elements of B j are the curves C⊂ ∂Xk (k≥ 1) such that πk(C)

contains the singularity q j determined by the edge. Using the dyadic algorithm
(resp. Farey algorithm), the elements of B j are in one-to-one correspondence with
dyadic (resp. rational) numbers in [0,1]. Gluing these segments cyclically together
one gets a circle S1, together with a nested sequence of subdivisions in `, 2`, . . .,
2k−1`, . . . intervals; each interval is a standard dyadic interval (resp. standard Farey
interval) of one of the initial edges .

Since there are `= 2m initial edges, we may identify the graph D1 with the circle
S1 = R/Z = [0,1]/0'1 and the initial vertices with the dyadic numbers in Dyad(m)

modulo 1 (resp. with the elements of Far(m) modulo 1). Doing this, the vertices of
Dk are in one to one correspondence with the dyadic numbers in Dyad(k+m− 1)
(resp. in Far(k+m−1)).

Remark 7.3. (a).– By construction, the interval [p/q,r/s] ⊂ [0,1] is a standard
Farey interval if and only if ps−qr =−1, iff it is delimited by two adjacent elements
of Far(m) for some m.
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(b).– If h : [x,y]→ [x′,y′] is a homeomorphism between two standard Farey intervals
mapping rational numbers to rational numbers and standard Farey intervals to stan-
dard Farey intervals, then h is the restriction to [x,y] of a unique linear projective
transformation with integer coefficients:

h(t) =
at +b
ct +d

, for an element
(

a b
c d

)
of PGL 2(Z).

(c).– Similarly, if h is a homeomorphism mapping standard dyadic intervals to in-
tervals of the same type, then h is the restriction of an affine dyadic map

h(t) = 2mt +
u
2n , with m,n ∈ Z.

In what follows, we denote by GFar the group of self-homeomorphisms of S1 =

R/Z that are piecewise PGL 2(Z) mapping with respect to a finite decomposition of
the circle in standard Farey intervals [p/q,r/s]. In other words, if f is an element
of GFar, there are two partitions of the circle into consecutive intervals Ii and Ji such
that the Ii are intervals with rational endpoints, h maps Ii to Ji, and the restriction
f : Ii→ Ji is the restriction of an element of PGL 2(Z).

Theorem 7.4. Let U be an affine surface with a compactification U ⊂ X such that
∂X := X rU is a cycle of smooth rational curves. In the Farey parametrization of
the set B ⊂ H̃yp(X) of boundary curves, the group Aut(U) acts on B as a subgroup
of GFar.

Remark 7.5. There is a unique orientation preserving self-homeomorphism of the
circle that maps Dyad(k) to Far(k) for every k. This self-homeomorphism conju-
gates GFar to the group GDya of self-homeomorphisms of the circle that are piece-
wise affine with respect to a dyadic decomposition of the circle, with slopes in±2Z,
and with translation parts in Z[1/2]. Using the parametrization of B by dyadic num-
bers, the image of Aut(U) becomes a subgroup of GDya.

Remark 7.6. The reason why we keep in parallel the dyadic and Farey viewpoints
is the following: the Farey viewpoint is more natural for algebraic geometers (this is
related to toric –i.e. monomial– maps and appears clearly in [17]), while the dyadic
viewpoint is more natural to geometric group theorists, because this is the classical
setting used in the study of Thompson groups.

Proof. Lemma 7.2 is the main ingredient. Consider the action of the group Aut(U)

on the set B . Let f be an element of Aut(U) ⊂ Bir(X). Consider an irreducible
curve E ∈B , and denote by F its image: F = f•(E) is an element of B by Lemma 7.2.
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There are integers k and l such that E ⊂ ∂Xk and F ⊂ ∂Xl . Replacing Xk by a higher
blow-up Xm→ X , we may assume that flm := π

−1
l ◦ f ◦πm is regular on a neighbor-

hood of the curve E. Let qk be one of the two singularities of ∂Xm that are contained
in E, and let E ′ be the second irreducible component of ∂Xm containing q. If E ′

is blown down by flm, its image is one of the two singularities of ∂Xl contained in
F (by Lemma 7.2). Consider the smallest integer n ≥ l such that ∂Xn contains the
strict transform F ′ = f•(E ′); in Xn, the curve F ′ is adjacent to the strict transform of
F (still denoted F), and f is a local isomorphism from a neighborhood of q in Xm

to a neighborhood of q′ := F ∩F ′ in Xn.
Now, if one blows-up q, the exceptional divisor D is mapped by f• to the excep-

tional divisor D′ obtained by a simple blow-up of q: f lifts to a local isomorphism
from a neighborhood of D to a neighborhood of D′, the action from D to D′ be-
ing given by the differential d fq. The curve D contains two singularities of ∂Xm+1,
which can be blown-up too: again, f lifts to a local isomorphism if one blow-ups
the singularities of ∂Xn+1∩D′. We can repeat this process indefinitely. Let us now
phrase this remark differently. The point q determines an edge of Dm, hence a
standard Farey interval I(q). The point q′ determines an edge of Dn, hence another
standard Farey interval I(q′). Then, the points of B that are parametrized by rational
numbers in I(q) are mapped by f• to rational numbers in I(q′) and this map respects
the Farey order: if we identify I(q) and I(q′) to [0,1], f• is the restriction of a mono-
tone map that sends Far(k) to Far(k) for every k. Thus, on I(q), f• is the restriction
of a linear projective transformation with integer coefficients (see Remark 7.3-(b)).
This shows that f• is an element of GFar. �

7.3. Conclusion. The following result is proved in Section 9.

Theorem 7.7 (Farley, Navas [12, 25]). Every subgroup of GFar with Property (FW)
is a finite cyclic group.

Thus, if Γ is a subgroup of Aut(U) with Property (FW), it contains a finite index
subgroup Γ0 that acts trivially on the set B ⊂ H̃yp(X). This means that Γ0 extends
as a group of automorphisms of X fixing the boundary ∂X . Since ∂X supports a big
and nef divisor, Γ0 contains a finite index subgroup Γ1 that is contained in Aut(X)0.

Note that Γ1 has Property (FW) because it is a finite index subgroup of Γ. It
preserves every irreducible component of the boundary curve ∂X , as well as its
singularities. As such, it must act trivially on ∂X . When we apply Theorem 6.8 to
Γ1, the conjugacy ϕ : X → Y cab not contract ∂X , because the boundary supports
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an ample divisor. Thus, Γ1 is conjugate to a subgroup of Aut(Y ) that fixes a curve
pointwise. This is not possible if Γ1 is infinite (Lemma 3.6).

We conclude that Γ is finite in case (2) of Proposition 6.3.

8. BIRATIONAL ACTIONS OF SL 2(Z[
√

d])

We develop here Example 1.3. Let σ1,σ2 be the distinct embeddings of Q(
√

d)
into k. Let j1, j2 the resulting embeddings of SL 2(Z[

√
d]) into SL 2(k), and j =

j1× j2 the resulting embedding into

G = SL 2(k)×SL 2(k).

Theorem 8.1. Let Γ be a finite index subgroup of of SL 2(Z[
√

d]). Let X be an
irreducible projective surface over an algebraically closed field k. Let α : Γ→
Bir(X) be a homomorphism with infinite image. Then k has characteristic zero, and
there exists a birational map ϕ : Y 99K X such that

(1) Y is the projective plane P2, a Hirzebruch surface Fm, or C×P1 for some
curve C;

(2) ϕ−1α(Γ)ϕ⊂ Aut(Y );
(3) There is a unique algebraic homomorphism β : G→ Aut(Y ) such that, for

some finite index subgroup Γ′ of Γ, we have ϕ−1α(γ)ϕ = β( j(γ)) for every
γ ∈ Γ′.

Using Theorem B ensures (1) and (2). If Y is P2 or a Hirzebruch surface Fm, then
Aut(Y ) is a linear algebraic group. If Y is a product C×P1, a finite index subgroup
of Γ preserves the projection onto P1, so that it acts via an embedding into the linear
algebraic group Aut(P1) = PGL 2(k).

When k has positive characteristic, Y is the projective plane, and the Γ-action
is given by a homomorphism Γ→ PGL 3(k). Then we use the fact that for any n,
every homomorphism f : Γ→ GL n(k) has finite image. Indeed, it is well-known
that GL n(k) has no infinite order distorted elements: elements of infinite order have
some transcendental eigenvalue and the conclusion easily follows. Since Γ has an
exponentially distorted cyclic subgroup, f has infinite kernel, and infinite normal
subgroups of Γ have finite index.

On the other hand, in characteristic zero we conclude the proof of Theorem 8.1
with the following lemma.

Lemma 8.2. Let k be any field extension of Q(
√

2). Consider the embedding j of
SL 2(Z[

√
d]) into G = SL 2(k)×SL 2(k) given by the standard embedding into the
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left-hand SL 2 and its Galois conjugate in the right-hand SL 2. Then for every lin-
ear algebraic group H and homomorphism f : SL 2(Z[

√
d])→ H(k), there exists a

unique homomorphism f̄ : G→ H of k-algebraic groups such that the homomor-
phisms f and f̃ ◦ j coincide on some finite index subgroup of Γ.

Proof. The uniqueness is a consequence of Zariski density of the image of j. Let
us prove the existence. Zariski density allows to reduce to the case when H = SL n.
First, the case k = R is given by Margulis’ superrigidity, along with the fact that
every continuous real representation of SL n(R) is algebraic. The case of fields
containing R immediately follows, and in turn it follows for subfields of overfields
of R (as soon as they contain Q(

√
d)). �

9. APPENDIX: SUBGROUPS OF GFar AND GDya

Consider the group G∗Dya of self-homeomorphisms of the circle S1 = R/Z that are piece-
wise affine with respect to a finite partition of R/Z into dyadic intervals [xi,xi+1[ with xi in
Z[1/2]/Z for every i, and satisfy

h(t) = 2mit +ai

with mi ∈ Z and ai ∈ Z[1/2] for every i. This group is known as the Thompson group of the
circle, and is isomorphic to the group G∗Far of orientation preserving self-homeomorphisms
in GFar (defined in §7.2). We want to prove Theorem 7.7, which we state here as follows:
Every subgroup of G∗Dya with Property (FW) is a finite cyclic group.

In [12, 25], Farley and Navas study subgroups of G∗Dya with Kazhdan Property (T), but
their proof applies to groups with Property (FW). We follow [25] to provide a proof of
Theorem 7.7.1

9.1. The space of standard dyadic intervals. Again, refer to §7.2 for the notion of stan-
dard dyadic interval. Consider the subgroup H of G∗Dya defined by

h ∈ H iff h = identity on [0,1/2].

Let Q be the quotient space G∗Dya/H; this is a countable set on which G∗Dya acts by left
translations. Define A⊂ Q by

A = {g ·H; g[0,1/2] is affine and g[0,1/2] is a standard dyadic interval }.

This means that g(t) = 2mt + a for some m ∈ Z and a ∈ Z[1/2], and that g[0,1/2] =
[b/2k,(b+ 1)/2k] for some k ≥ 1 and 0 ≤ b ≤ 2k− 1. For instance, g(t) = t/2+ 1/8 is
affine but g[0,1/2] = [1/8,3/8] is not standard.

Remark 9.1. Let h be an element of G∗Dya.

1There is a little gap in Farley’s argument, namely in Prop. 2.3 and Thm. 2.4 of [12], but besides
that, the proof is exactly the one of Farley.
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(a).– Assume that h is affine on the interval J, with h|J(t) = t/2N +a/2M, 1 ≤ a ≤ 2M−1.
Let I ⊂ J be a standard dyadic interval of length 2−L: I = [b/2L,(b+1)/2L]. Then h(I) is
the interval [

b
2N+L +

a
2M ,

b+1
2N+L +

a
2M

]
.

If M ≤ N +L, h(I) is a standard interval. Thus, if the length of I is less than 2−M+N , h(I) is
a standard interval.
(b).– There exists only finitely many standard intervals J such that hJ is not affine, or is
affine but h(J) is not standard.
(c).– If g ∈ G∗Dya is affine on [0,1/2], with g(t) = t/2L +a/2M on this interval, then L ≥ 0
because g is a self-homeomorphism of the circle.
(d).– If I = [b/2L,(b + 1)/2L] is standard, then h(t) = t/2L−1 + b/2L maps the interval
[0,1/2] onto I, and h is the unique affine map of type 2mt + c/2n mapping [0,1/2] onto I.
Thus the elements g ·H of A are in one to one correspondance with standard dyadic intervals
g[0,1/2].

Lemma 9.2. The action of G∗Dya on Q by left translations commensurates the subset A⊂Q:
∀h ∈ G∗Dya,

|h(A)∆A| ≤M(h)+M(h−1)

where M(h) is the number of standard dyadic intervals I ⊂ S1 such that h is not affine on I,
or h is affine on I and h(I) is not standard.

The proof follows directly from the definition of A and the previous remarks: the map
g ·H ∈ A → hg ·H ∈ Q corresponds to the action of h on standard dyadic intervals by
Remark 9.1 (d), and M(h) is finite by Remarks 9.1 (a) and (b).

9.2. Conclusion. Now, consider a subgroup Γ of G∗Dya with Property (FW). Since Γ com-
mensurates A⊂ Q. There exists a subset B⊂ Q such that

(i) |B∆A|<+∞

(ii) ∀γ ∈ Γ, γ(B) = B.
From (i), we know that there exists a finite set {g1 ·H, . . . ,gm ·H} ⊂ QrA and a finite set
{h1 ·H, . . . ,hn ·H} ⊂ A such that

B = A∪{g1 ·H, . . . ,gm ·H}r{h1 ·H, . . . ,hn ·H}.

The set A corresponds to standard dyadic intervals, and the invariance of B means that
there are only finitely many standard intervals I on which at least one of the elements of
Γ is not affine, or is affine but does not map I to a standard interval. Let 2−N+1 be the
minimum of the lengths of these intervals. By construction, every element of Γ is affine
on every interval J of length ≤ 2−N ; in particular, the slopes are bounded from above by
2N and every γ ∈ Γ is of type t 7→ 2mt + a with −N ≤ m ≤ N on such intervals J. Then,
the translation part a ∈ Z[1/2] satisfies |a| ≥ 2−2N because otherwise γ(J) would not be
standard (see Remark 9.1 (a) above). Since there are only finitely many choices for the
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pieces J of length 2−N , the slopes 2m, and the translation parts a, the group Γ is finite. Since
Γ acts faithfully on the circle by orientation preserving self-homeomorphisms, Γ is cyclic.
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