
NEAR ACTIONS (LECTURES IN IMPAN, WARSAW, APRIL
2019)

Abstract. Introductory lectures to near actions. The actual lectures (6 hours
+ 1h of Problem session) were given at the Mathematical Institute of the
Polish Academy of Sciences (IMPAN), April 16-18, 2019. Main reference: the
monograph [Cor1].

1. Motivation: Schreier graphs, examples of groups defined as
infinite permutation groups

Let G be a group and S a generating subset. Let X be a G-set. The Schreier
graph of the G-action on X is the graph whose set of vertices is X, and with
an edge from x to sx, labeled by s, for every (s, x) ∈ S ×X. If S is finite, this
is a locally finite graph. It is connected if and only if the G-action is transitive
(or X is empty). Beware that the G-action usually does not preserve the graph
structure (however it does when G is abelian). However, the G-action has the
property of acting as permutations with bounded displacement.

The possibly best known example is when X = G under left action, in which
case it is known as left Cayley graph. In this case, the right-action of G preserves
the graph structure. In general, the Schreier graph can have few automorphisms,
even after forgetting the labeling.
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Let us provide various examples of groups that are naturally defined as per-
mutation groups.

(a) We softly start with the Cayley graph of Z:

· · · // ◦ // ◦ // ◦ // ◦ // · · ·
It can be described as a single infinite cycle. In general, an action of Z can be
described using the cycle decomposition of the generating element.

(b1) Now consider the infinite dihedral group D∞, with its generating subset
consisting of two elements of order 2. Here is the Cayley graph:

· · · ◦ ◦ ◦ ◦ · · ·
(b2) Here is an infinite Schreier graph (with a self-loop on the left):

⊂ ◦ ◦ ◦ ◦ · · ·

(c) The possible earliest use of (non-Cayley) Schreier graphs of infinite groups
was the proof in the 20’s by O. Schreier himself that the free groups are residually
finite. The proof consists in proving that the free productG of 3 copies 〈a〉∗〈b〉∗〈c〉
of Z/2Z is residually finite (the result for finitely generated free groups follows,
since they embed in such a free product). Namely, let w be any nontrivial element
in this free product: its reduced form is a nontrivial word (say of length n) in the
letters a, b and c, with no two consecutive occurrences of the same letter. Consider
a graph Γw consisting of n + 1 vertices written consecutively, each joined to the
next one, the n edges being labeled by the corresponding letters of w. Complete
this to a Schreier graph of G by adding self-loops of the missing letters at every
vertex.

Then w acting (on the left) on the right-hand vertex maps it to the left-hand
vertex, and in particular acts non-trivially.

Γw for w = abacbc :
b,c
◦ a

c◦
b

c◦ a

b◦ c

a◦
b

a◦ c

a,b
◦

(Self-loops are not drawn but indicated as labels on vertices.)
If instead we consider an infinite sequence and choose a labeling of the edges in
{a, b, c} on which any two consecutive edges have distinct labels, and any finite
reduced word occurs somewhere (and again complete the graph using self-loops),
then we obtain a faithful transitive action of G for which the Schreier graph is
isomorphic to a combinatorial half-line (in particular, it has an invariant mean).

For the next examples, we refer to pictures appended at the end.
(d) Houghton’s groups (see (z4) page 21). For n ≥ 2, consider the set Xn =

N×Z/nZ. For i ∈ Z/nZ, define a permutation σi of Xn by σi(n, i) = (n+ 1, i),
σi(n, i−1) = (n−1, i−1), σi(0, i−1) = (0, i), and identity elsewhere. The group
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Hn generated by these permutations is actually an elementary-amenable finitely
generated group, and is known to be finitely presented for n ≥ 3 (but not for
n = 2).

(e) Wreath products (see page 20). This is a rich source of permutation groups.
Let us start with a particular case: given a group G, we consider the set G ×
{−1, 1}, with the action of G on the left g · (h, e) = (gh, e), e = ±1, and the
permutation τ exchanging (1G, 1)↔ (1G,−1) and fixing all other elements. When
G is given as a Cayley graph, the Schreier graph consists of two copies of the
Cayley graph of G, joined by a single edge labeled by τ (page 20: (s1) for G = Z
and (s2) for G = Z2: the first is 4-ended and the second is 2-ended with quadratic
growth).

Write C2 = Z/2Z. This actually defines faithful actions of the lamplighter

group C2 oG = C
(G)
2 oG. Here C

(G)
2 is the subgroup of CG

2 consisting of finitely
supported elements, and G acts by permuting the factors.

In general, the wreath product is naturally defined for permutation groups.
Call permutation group the data of a group G with an action α on a set X. If
we refer to it as α, we write G = Gα and X = Xα. The wreath product β o α
is the permutation group whose underlying group is known as the (restricted)
permutational wreath product

Gβoα = Gβ oXα Gα = G
(Xα)
β oGα,

Xβoα = Xβ ×Xα

with action g · (y, x) = (y, gx) and

f · (y, x) = (f(x)y, x), g ∈ Gα, f ∈ G(Xα)
β , (y, x) ∈ Xβoα.

If α and β are transitive, then so is β o α. If α and β are faithful (and Xβ is
nonempty) then so is β oα. See page 20 (s3) for D∞ oZ and (s4) for (Z∗Z/2Z) oZ.
Notably, they have interesting space of ends: for D∞ oZ the space of ends consists
of a countable space with 2 accumulation points, and in the second case it consists
of a “dusty Cantor space” (this is a space, uniquely defined up to homeomorphism
by the property of being metrizable, compact, totally disconnected, disjoint union
of a Cantor space and a dense set of isolated points).

(f) B.H. Neumann’s groups (see page 20, (s5)). Let (an)n≥0 be an increasing
sequence of integers ≥ 5. Define X[a] as disjoint union of subsets X[a]n, a copy of
Z/anZ. Define two permutations t, s ofX[a] by t(x) = x+1, and s is transposition
exchanging 0 and 1 on each X[a]n. Let Γa be the group generated by u and v.
It acts faithfully on X[a] with finite orbits (namely the X[a]n for n ≥ 0) so it is
residually finite.

It is not hard to check that the intersection of Γa with the group of finitely
supported permutations contains for each n the alternating group on each X[a]n
(acting as the identity outside X[a]n).
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(g) All the Schreier graphs of page 21 are given by 2 generators, say a, b.
Moreover, they all share the property that the two generators commute outside
a finite subset, that is, [a, b] has finite support: this will be interpreted as being
a near action of Z2 (an action would require that [a, b] = 1). In all case, the
resulting faithful permutation group maps onto Z2 (or a quotient thereof), with
a locally finite kernel (acting by finitely supported permutations). Some of them
are known.

• (z1) is just the Cayley graph of Z2.
• (z2) is obtained after removing one vertex and adding two edges to “re-

pair” the action; I do not know if the resulting group is “known”;
• (z3) results in a faithful action of the lamplighter group (Z/2Z) o Z.
• (z4) is the definition of Houghton’s group H3;
• (z5) is obtained by taking a 2-fold covering of the Cayley graph of Z2.

The resulting permutation group is metabelian, a non-split extension of
the abelian group Fp[x

±1, y±1] by Z2 ((n,m) acting by multiplication by
xnym);
• (z6) consists in cutting the Cayley graph of Z2 along the ray {0}× (−N)

and gluing after translating one side by (0,−1), and then adding a copy
of N (the vertical generator acting trivially and the horizontal shifting)
so as to obtain two permutations.

2. Motivation: commensurating actions

For two subsets M,M ′ of a set, we say M ∼M ′ if M ∼M ′ is finite, where 4
denotes symmetric difference.

Let a group G act on a set X. A subset M ⊂ X is G-commensurated if
gM ∼ M is finite for every g ∈ G. We refer to (X,M) as a commensurating
action of G.

The most obvious reason to be G-commensurated is when there exists a G-
invariant subset M ′ such that M ∼ M ′, in which case we say that M is G-
transfixed (and the commensurating action is transfixing).

The simplest example of a non-transfixed commensurated subset for an action
is possibly the case of Z acting on itself by translations, commensurating N.

In general, given a finitely generated groupG andG-setX, thoseG-commensurated
subsets are precisely those subsets M of X whose boundary ∂SM is finite. Here
the boundary ∂SM is taken in the Schreier graph with respect to some finite
symmetric generating subset S of G: ∂SM = {x ∈M : ∃s ∈ S : sx /∈M}.

For a G-set X, define CommG(X) as the set of G-commensurated subsets of
X. It is saturated under the equivalence relation ∼.

We say that X is 0-ended if X is finite: this means that CommG(X)/ ∼ is a
singleton; we say that X is 1-ended if CommG(X)/ ∼ has exactly 2 elements.
This means that X is infinite and CommG(X) is reduced to finite subsets of X and
their complements. Note that this forces the action to consists of a single infinite
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orbit and possibly finitely many additional points. For G finitely generated, this
means that the Schreier graph of this infinite orbit is 1-ended in the “classical”
sense.

Remark 2.1. The set of G-commensurated subsets CommG(X) is a Boolean
algebra of subsets of X, and so is the quotient CommG(X)/ ∼. Stone duality
tells us that there exists a canonically defined compact, totally disconnected space
EG(X) such that one has a natural identification of CommG(X)/ ∼ with the set
of clopen subsets of EG(X). This space EG(X) is called the space of ends of
the G-set X. (We have EG(X) of cardinal 0 or 1 if and only if X is 0-ended or
1-ended.)

Definition 2.2. A group G has Property FW if every commensurating G-action
is transfixing.

Example 2.3. Z does not have Property FW because of the commensurating
action (Z,N). Hence, every group having Z as a quotient also fails to have
Property FW.

Remark 2.4. One can check that a finitely generated group G has Property FW
if and only if all its infinite transitive Schreier graphs are 1-ended.

Example 2.5. Finite groups have Property FW, and in a sense these are the
only trivial examples. Groups with Kazhdan’s Property T have Property FW.
This gives many examples, such as SLd(Z) for d ≥ 3. Examples of groups with

Property FW but not T are SL2(Z[
√
k]) when k is a positive non-square.

3. Balanced near actions

Let S(X) be the symmetric group on a (typically infinite) set X, consisting
of all permutations of X. It has a remarkable normal subgroup, Sfin(X) (or
“fin” for short, when the context is clear), consisting of those finitely supported
permutations, i.e., those permutations that are identity outside a finite subset.

Recall that an action of a group G on a set X is a homomorphism α : G →
S(X). In analogy, we define:

Definition 3.1. A balanced near action of a group G on a set X is a homo-
morphism α : G→ S(X)/fin. When endowed with α, we call X a balanced near
G-set.

The notion of near action will be slightly more general, but many illustrating
examples fit into this setting. The purpose is to treat near actions using intuition
from usual actions. It will turn out that the framework of balanced near action is
inconvenient for this purpose, essentially because we typically need to decompose
balanced near actions into disjoint union of not necessarily balanced near actions:
we come back to this later.
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One main source of balanced near actions is simply actions: every action gives
rise to a near action. Near actions occurring in this way are called realizable.

More examples appear once we observe that the faithful action of a group can
define a near action of a quotient group. This is illustrated on the Schreier graphs
page 21, which all factor through a near action of the group Z2.

A remark is that two actions α, β of the group G on the set X define the same
near action if and only if α(g)−1β(g) ∈ Sfin(X) for every g. That is, for every
g, α(g) and β(g) coincide almost everywhere (here “almost everywhere” means
“outside a finite subset”). We then say that β and α are finite perturbation
of each other.

Example 3.2. Let α be the action of Z on itself by powers of the cycle n 7→ n+1.
Let β be the action on itself by powers of the permutation n 7→ n+1 for n 6= −1, 0,
mapping −1 to 1 and fixing 0: . . . 7→ −2 7→ −1 7→ 1 7→ 2. Since α is transitive
while β has 2 orbits (the singleton {0} and its complement), these actions are
not conjugate at all. However, they are finite perturbations of each other.

Given an action α, the trivial way of defining finite perturbation is to define
another action β by β(g) = σ ◦ α(g) ◦ σ−1 for some σ ∈ fin. It is not the only
one as the above example of the infinite cycle shows: but we will see examples of
nontrivial actions α all of whose finite perturbations are trivial.

4. Examples of balanced near actions from dynamics

4.A. Piecewise continuous self-transformations of the circle.

Definition 4.1. Let P̂C(S1) be the group of piecewise continuous permutations
of S1, that is, those permutations of the circle S1 = R/Z with only finitely
discontinuity points (this condition, in the setting of the circle, is stable under
taking inverses).

Define PC(S1) = P̂C(S1)/fin (here fin = Sfin(S1)).

By definition P̂C(S1) acts faithfully on the circle S1. However, the induced near
action is not faithful: the kernel of the corresponding composite homomorphism

P̂C(S1) → S(S1)/fin is precisely equal to fin. Hence, we get a balanced near
action of the quotient PC(S1) on S1.

We think of PC(S1) as the group of piecewise continuous self-transformations
of the circle. However, it does not really act on the circle, since individual values
are not clearly defined.

If we restrict to piecewise orientation-preserving self-transformations, we de-

fine, in a similar fashion, subgroups P̂C+(S1) ⊂ P̂C(S1) and PC+(S1) ⊂ PC(S1).
The latter by restriction, near acts, and this action is indeed realizable, by map-
ping any f to its unique left-continuous representative.

Nevertheless, this trick does not work in the non-orientation-preserving setting:
the left-continuous representative is not even bijective. And even while individual
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elements always admit a bijective representative, there is no reason that they
should be chosen in a way compatible with multiplication. This is the object of
study of the article [Cor2], in which the following result is established:

Theorem 4.2. The near action of PC(S1) on S1 is not realizable.

4.B. Near automorphism of trees: Neretin groups. Let Td be a regular

tree of finite valency d + 1 ≥ 3, identified with its vertex set. Let N̂erd be the
group of permutations of Td that almost everywhere preserve the graph structure.
It contains the group of finitely supported permutations: let Nerd be the quotient

N̂erd/fin, also called near automorphism group of Td.

For the same reason as the previous example, the action of N̂erd on Td induces
a near action of Nerd on Td.

5. Definition of the near symmetric group and of near actions

5.A. Definition. Let X be a set. Define Icof(X) as the set of partial bijections
f of X with cofinite (=finite complement) domain Df and codomain D′f . In

other words, this is the set of subsets of X2 both of whose projections on X are
injective with cofinite image. This is naturally a monoid: composition is defined
whenever possible, namely g ◦ f is defined on those x ∈ Df such that f(x) ∈ Dg,
and the assigned value is g(f(x)).

For X nonempty, it is not a group, since for every cofinite subset X ′ of X, the
identity of X ′ is an idempotent.

For f, g ∈ Icof(X), say f ∼ g if they coincide on a cofinite subset. Define
S?(X) = Icof(X)/ ∼. Then the monoid structure passes to the quotient (in the
language of semigroup ∼ is called a “semigroup congruence”), and furthermore
this quotient monoid S?(X) is a group, called near symmetric group of X;
its elements are called near permutations of X.

For f ∈ Icof(X) defined as a bijection X r F1 → XrF2, define φ(f) = |F2| −
|F1|. Then φX , called index map, is an additive homomorphism, and furthermore
factors through a group homomorphism S?(X)→ Z.

We have φ(f) = 0 if and only if f can be extended to a permutation. This
shows that the following sequence is exact:

1→ S(X)/fin→ S?(X)
φX−→ Z;

moreover the right-hand map is surjective as soon as X is infinite.
A near action of a group G on X is a homomorphism α : G → S?(X). Its

index character is φX ◦α ∈ Hom(G,Z). A near action is balanced if its index
character is zero; this matches the initial definition.

5.B. Alternative definition: Hilbert’s hostel. Introducing monoids as inter-
mediate step to define groups may sound unusual but it is a natural approach in
this context. Nevertheless, it is useful to be able to define S?(X) while remaining
in the realm of groups.
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Hilbert’s hostel is usually viewed as a way to convey to non-mathematicians
the intuition of infinity. Rooms are indexed by positive integers. The hotel is
full, but you need a room. Well, each person moves to the next room, and the
first room is free!1

The obstruction, given by the index, to realize a near permutation as a per-
mutation is a finiteness phenomenon, which can be fixed in a similar fashion.

Let X be a set. Define Hilb(X) as the group of permutations f of the disjoint
union XtN such that for some integer m = mf ∈ Z and all large enough n ∈ N,
we have f(n) = n − mf (note that m is clearly unique, whence the notation).
Then Hilb(X) is a subgroup of S(XtN), and f 7→ mf is a group homomorphism
Hilb(X)→ Z, surjective as soon as X is infinite. Clearly, Sfin(XtN) ⊂ Hilb(X).
Then one can define S?′(X) = Hilb(X)/fin, and factor f 7→ mf through a ho-
momorphism φ′X : S?′(X) → Z. We leave to the reader to check that there is a
canonical isomorphism S?(X)→ S?′(X), which intertwines the index homomor-
phisms φX and φ′X .

5.C. Isomorphisms between near G-sets. It is important to clarify this, be-
cause there is not just one, but there are two natural non-equivalent ways
of defining isomorphisms between near G-sets.

First, we recall the notion of isomorphism between G-sets given by actions
α : G → S(X), β : G → S(Y ). An isomorphism between two G-sets means a
G-equivariant bijection. In other words, this means a bijection f ∈ S(X, Y ) (set
of bijections from X to Y ) such that, denoting by f∗ the induced isomorphism
S(X)→ S(Y ) (given by f∗(σ) = f ◦ f−1), we have β = f∗ ◦ α.

In the “near” setting, define Icof(X, Y ) as the same of partial bijections between
a cofinite subset of X and a cofinite subset of Y , and similarly define the index
map Icof(X, Y )→ Z, and the cofinite coincidence relation ∼ on Icof(X, Y ), and
S?(X, Y ) = Icof(X, Y )/ ∼ (so S?(X,X) = S?(X)). Then we have a well-defined
composition map S?(X, Y ) × S?(Y, Z) → S?(X,Z), and every f ∈ S?(X, Y )
defines by conjugation an isomorphism S?(X)→ S?(Y ).

Given two near actions α : G → S?(X) and β : G → S?(Y ), a near iso-
morphism (or isomorphism of near G-sets) from the first to the second is
f ∈ S?(X, Y ) such that β = f∗ ∗ α. It is called balanced if f has index 0, i.e.,
can be represented by a bijection X → Y . We say that the near G-sets X and
Y are near isomorphic if there exists such an isomorphism, and balanceably
near isomorphic if furthermore this isomorphism can be chosen to be balanced.

Remark 5.1. Near G-sets X, Y are near isomorphic if and only if there exist
finite sets F, F ′ such that XtF and Y tF ′ are balanceably isomorphic. Moreover,
one can arrange that either F or F ′ is empty.

1This the cheapest Hilbert hostel, and we stick with this one for budget reasons (and possibly
some mathematical motivation, too). In fancier versions we do not consider here, you can ask
people to go from room n to room 2n and thereby get infinitely many free rooms.
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Note that if X is finite, it is a (balanced) near G-set in a unique way (since
S?(X) is then reduced to {1}). All finite near G-sets are near isomorphic. All
finite balanced near G-sets of a given cardinal are balanceably near isomorphic.

Here are two infinite examples:
(a) let C2 = 〈a〉 be a cyclic group of order 2. Let X be an infinite free C2-set.

Then X is balanceably isomorphic to X minus 2n points, but not to X minus
2n+ 1 points.

(b) let D∞ be the infinite dihedral group, with generators a, b of order 2. Then
D∞/〈a〉 and D∞/〈b〉 are near isomorphic, but not balanceably (each one is bal-
anceably isomorphic to the other minus a point). The non-balanced isomorphism
fact actually follows from (a) by restricting to 〈a〉.

5.D. Commensurated subsets of near actions, and completability. Let
α : G→ S?(X) be a near action. A subset M of X is G-commensurated if

∀g ∈ G, ∀?x ∈M, gx ∈M.

Here, ∀? means “for all with finitely many exceptions”, and the finite set of
exception may depend on g. Moreover gx is not defined. However, for each g,
we can lift α(g) to a cofinite partial bijection of X, and thus gx makes sense for
all but finitely many x, and two different choices coincide outside a finite subset,
and hence the given condition does not depend on choices.

If M is a G-commensurated subset of a near G-set, then we obtain, by re-
striction, a near action of G on M , and being G-commensurated is precisely the
condition for which this works. Hence, G-commensurated subsets can be viewed
as the near G-subsets. Note that the analogue for G-sets are just invariant sub-
sets, while commensurated subsets of G-sets implicitly refer to the underlying
near action.

As in the setting of actions, we define CommG(X) as the set ofG-commensurated
subsets of X. It is saturated under ∼.

We say that X is 0-ended, 1-ended, finitely-ended if X is finite, resp. if X
is infinite and CommG(X) consists of only finite and cofinite subsets, resp. if
CommG(X)/ ∼ is finite. A near G-set is 1-ended if and only if it is infinite and
not isomorphic to a disjoint union of two infinite near G-sets.

Being finitely-ended is a strong and convenient finiteness conditions for near
G-sets. Indeed, it means that it can be decomposed into a disjoint union of
1-ended near G-sets, and this decomposition is unique up to ∼.

It is tempting to ask which near G-sets “come from actions”. One interpre-
tation gives rise to the notion of realizability: the near action is induced by an
action on the same set. But from actions we obtain more near actions by passing
to commensurated subsets:

Definition 5.2. A near G-set is completable if it is near isomorphic to a com-
mensurated subset of a G-set. In other words, this means that there exists a near
G-set Y such that X t Y is realizable.
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Let us illustrate this to the Houghton near action.

Proposition 5.3. For every n ≥ 3, the action of Houghton’s group Hn (described
in (d) of §1 and depicted as (z4) page 21 for n = 3) factors through a near action
of Zn−1, which is completable but not realizable.

Proof. We prove the case n = 3, since the general case is similar.
That it factors through a near action of Z2 is just because the commutator of

the two generators has finite support (it is a transposition). That it is completable
is seen as follows: we can split the near action as disjoint union of the three
branches, and each of these branches can be extended to a 2-sided branch, which
is a realizable action.

For a near G-set and g ∈ G, the set X(g) of points fixed by G depends on the
choice of some lift of g as a cofinite-partial bijection, but is uniquely defined mod-
ulo ∼ (finite symmetric difference). In particular, if the near action is given with
a realization, one representative is Xg, the set of fixed points for this realization.

If G is abelian, X(g) is G-commensurated and in particular, defines a near
action of G that is well-defined up to near isomorphism; in particular its index
character is well-defined. In case the near action is realizable, it is realizable as
the sub-action Xg, and hence its index character is zero. Hence, if the index
character of X(g) is nonzero for some g, then the near action is not realizable.

In the present case the set of fixed points of either of the two generators is the
branch on which it “does not act”, and the index character is clearly nonzero
since the other generator acts with index +1 on this branch. �

A similar argument also applies to the near action of Z2 (or Z×Z/2Z) depicted
in (z3) page 21: it is completable and not realizable.

6. Near actions of finitely generated groups

Let G be a group and S a finite generating subset. Let α : G → S?(X) be
a near action. For each s ∈ S, choose a cofinite-partial bijection s̃ representing
α(s), and join each x in its domain to s̃x by an edge labeled by s. Then, for given
S the resulting labeled graph is uniquely defined up to changing finitely many
edges. For each choice, we call it a near Schreier graph of the near action.

In addition to this choice, we have the choice of S, which affects more than
finitely many edges. Some properties of the resulting graph, for instance being
connected, or having a single infinite connected component, are sensitive to the
choices. Some others are independent of the choice, and thus reflect properties
of the near action. One such property is having finitely many components.

Definition 6.1. A near action of a finitely generated group is of finite type if
some/every near Schreier graph has finitely many connected components.

This is the main finiteness property for near actions of finitely generated groups.
A simple verification, left to the reader, is that finitely-ended implies finite type.
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The converse is not true: the left-action of an infinitely-ended group (such as the
free group of rank 2) on itself is infinitely-ended, but of finite type.

The following is not hard, but termed theorem because of the role it plays.

Theorem 6.2. Let G be a finitely generated group and X a near G-set. Suppose
that either

• G is finitely presented, or
• X is a completable near G-set.

Then there is a decomposition X = Y tZ into commensurated subsets, such that
Y is of finite type and Z is realizable.

Sketch. Start with G = Z2 = 〈a, b〉. Use its standard generating subset (including
inverses) and draw a near Schreier graph. Say that a vertex v ∈ X is bad if, for
this choice of near Schreier graph,

• (1) some generator fails to be defined at v, or
• (2) abv 6= bav, or one is not defined.

There are finitely many bad vertices, and thus on any component without bad
vertex, the near Schreier graph is actually Schreier graph of a Z2-action. Defining
Z as the union of components without bad vertex and Y its complement, Y is of
finite type, Z is realizable.

For an arbitrary finitely presented group G, one replaces (2) with a similar
condition stating that every relator indeed acts trivially.

For a completable action of a finitely generated group, we embed it into an
action and thus define the near Schreier graph by intersecting with the given
subset. In this case, all relations between generators are satisfied since they are
satisfied in the larger action. �

Example 6.3. The decomposition of Theorem 6.2 fails for arbitrary near actions
of arbitrary finitely generated groups. Consider the group G = Sfin(Z) o Z: it
is generated by t(n) = n + 1 and s, transposition of 0 and 1, and under these
generators has the infinite presentation

〈t, s | s2, (tst−1s)3, [tnst−n, s], n ≥ 2〉.
Consider the B.H. Neumann action depicted on (s5) 20 ,and described in (f) of
§1), with generators t (blue) and s of order 2 (red). Then we see that for every
n ≥ 2, the relator [tnst−n, s] acts trivially on the cycle Xm for all large m (namely
as soon as Xm has length ≥ n + 2), and hence has finite support. Hence, this
action factors through a near action of G (that is ?-faithful, i.e., faithful as near
action).

This near action of G is locally finite, in the sense that some/every near Schreier
graph has only finite components. If it had a decomposition Y tZ with Y finite
type and Z realizable, then Y would also be locally finite and hence finite, thus
realizable, and so X would be realizable as some action α′. Being locally finite,
the realizing action would be locally finite. Since the near action of Sfin(Z)oZ is
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faithful, so is α′. But having a faithful locally finite action implies being residually
finite. Since G is not residually finite (since it has the alternating group on Z as
a subgroup, which is infinite simple), this is a contradiction.

Given Theorem 6.2, this also shows that this near action of G is not com-
pletable.

7. Rigidity for 1-ended groups

Let G be a group; view it as G-set under left multiplication. If X is a G-set,
it is an exercise to check that the G-equivariant maps G → X are precisely the
maps g 7→ gx, for x ∈ X.

Given G-sets X, Y , we say that map from X to Y is near G-equivariant if it
satisfies:

∀g ∈ G,∀?x ∈ X : f(gx) = gf(x).

(Between near G-sets we should assume that f is finite-to-one for this to make
sense.)

A group is always endowed with its own left action here. We say that G is
1-ended if it is a 1-ended G-set. This matches the usual definition for finitely
generated groups (for arbitrary groups this has been introduced by Specker in
1950 but remains far less known).

Proposition 7.1. Let G be a 1-ended group. Let X be a G-set. Then for every
near G-equivariant map X → Y , there exists x ∈ X (unique) such that ∀?g ∈ G,
f(g) = gx.

Remark 7.2. The existence result is actually trivial (and void) when G is finite,
but uniqueness fails: uniqueness is clear for G infinite. When G has ≥ 2 ends, it
is easy to check that existence fails with X = G.

Proof. Define u(g) = g−1f(g). Then the condition ∀g, ∀?h f(gh) = gf(h) yields
∀g, ∀?h u(gh) = u(h). It follows that for every subset Y of X, u−1(Y ) is G-
commensurated.

If u has an infinite image, we can partition this image into two infinite sub-
sets Y1, Y2, and then u−1(Y1) and u−1(Y2) are disjoint infinite G-commensurated
subsets, contradiction with G being 1-ended.

So fibers of u form a finite partition of G into G-commensurated subsets, which
are finite or cofinite, so exactly one fiber is cofinite: there exists x ∈ X such that
∀?g ∈ G, u(g) = x. This means that ∀?g ∈ G, f(g) = gx. �

Theorem 7.3. Let G be a 1-ended group. Then every finite perturbation of the
left action of G on itself is conjugate, by a unique finitely supported permutation,
to the original left action.

Proof. The centralizer in S(G) of G (acting on the left) is G (acting on the
right) so contains no nontrivial finitely supported permutation. This proves the
uniqueness part.
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Apply Proposition 7.1 to the identity map from (G, λ) to (G, λ′), where λ is
the left action and λ′ is the perturbed action. So there exists g0 ∈ G such that
∀?g ∈ G, g = λ′(g)g0. Hence the orbit λ′(G)g0 is cofinite.

The map g 7→ λ′(g)g0 is G-equivariant from (G, λ) to (G, λ′), hence all its fibers
have the same cardinal; since it coincides outside a finite subset with an injective
map (the identity map) and G is infinite, we deduce that this common cardinal is
1: g 7→ λ′(g)g0 is injective. Its index is equal to the cardinal of Gr λ′(G)g0, but
is also zero since the index is ∼-invariant and the identity map has index zero.
Hence g 7→ λ′(g)g0 is a permutation of G.

So there exists a permutation s of G such that λ′(g)(h) = λs(g)h, where
λs(g)h = s−1(gs(h)) for all g ∈ G and h ∈ H. For every g ∈ G, we have
∀?h, gh = s(gs−1(h)). That is, s(gh) = gs(h). Thus, by Proposition 7.1 applied
to (G, λ) twice now, we see that s coincides with a right translation outside a
finite subset. Hence, conjugating with a finitely supported permutation yields λs
for some right translation s, but this just the same as λ. �

Corollary 7.4. Let G be a 1-ended group. Then the left near action of G on
Gr {1} is not realizable.

Proof. To say that it is realizable would be the same as saying that the left action
of G on itself can be realized as an action fixing 1. This is in contradiction with
Theorem 7.3. �

Another application is a non-completability result.

Proposition 7.5. Let G be a 1-ended group. Let X be a 1-ended completable
near G-set. Let f be a finite-to-one near equivariant map X → G. Then f is a
near isomorphism.

Proof. Write Z = XtY with Z a G-set. For g ∈ G, define Fg = f−1({g}) ⊂ X ⊂
Z. Then g 7→ Fg is a near equivariant map from G to the set of finite subsets of
Z.

By Proposition 7.1, there exists a finite subset F of Z such that ∀?g ∈ G (say
g ∈ Gr T ), we have f−1({g}) = gF .

The gF , for g ∈ G, are pairwise disjoint: indeed, otherwise gF ∩ g′F is
nonempty for some g 6= g′, and then we can choose h ∈ G such that hg, hg′ /∈ T ,
and then hgF ∩ hg′F = f−1({hg}) ∩ f−1({hg′}) is nonempty, a contradiction.

In particular, G acts freely on X ′ =
⊔
g∈G gF , which thus has |F | ends. Also,

X ′ has finite symmetric difference with
⊔
g∈G f

−1({g}) = X, which is 1-ended.
Hence F is a singleton, and f is a near isomorphism. �

Corollary 7.6. The near action of Z2 depicted in (z5) page 21 is not completable.

Proof. Indeed, if X is the set of this near action, it is 1-ended and has a 2-to-1
near equivariant map onto Z2. Assuming it is completable, Proposition 7.5 leads
to a contradiction. �
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8. Kapoudjian 2-cocycle

The index character of a near action is what is inherited from the 1-cohomology
with trivial coefficients of the group S?(X). We can do something similar in
degree 2.

Write S(X) as extension with kernel fin and quotient S(X)/fin. Modding out
by the alternating group (the subgroup fin of even permutations), we deduce a
central extension

1→ Z/2Z→ S(X)/A(X)→ S(X)/fin→ 1.

Let ωX ∈ H2(S(X)/fin,Z/2Z) be the cohomology class of this extension (it is
zero for X finite).

Let α : G→ S(X)/fin be a balanced near action. Then the Kapoudjian class
of the near action is α∗ωX ∈ H2(G,Z/2Z); in particular ωX is the Kapoudjian
class of the near action of S(X)/fin on X.

It is easy to check that central extension Ĝ of a group G with kernel 〈c〉 of
order 2, is non-split if and only if c is a product of squares in G̃ (note that any
commutator is a product of squares).

For X infinite, every element of S(X) is a product of squares (Vitali, 1915)
and thus ωX 6= 0.

The group H2(Z2,Z/2Z) is cyclic of order 2. For a balanced near action of

Z2 = 〈a, b〉, lift a, b as permutations ã, b̃. Then the Kapoudjian class is zero or

nonzero according to whether [ã, b̃] is even or odd.
Kapoudjian notably proved that the Kapoudjian class of the near action of the

Neretin group Nerd on Td is nonzero for every d ≥ 2.
Sergiescu checked that H2(S(X)/fin,Z/2Z) is reduced to {0, ωX}. He actually

proved more generally that for X infinite, H2(S(X)/fin,Z) is cyclic of order 2.
For non-balanced near actions, the Kapoudjian class can still be defined. Namely,

we use the definition of S?(X) using the Hilbert hostel. We get a central exten-
sion

1→ Z/2Z→ Hilb(X)/A(X tN)→ S?(X)→ 1;

denote by ωX ∈ H2(S?(X),Z/2Z) its cohomology class: then its restriction to
S(X)/fin is indeed ωX . Actually, H2(S?(X),Z/2Z) is reduced to {0, ωX}. Given
a near action α : G→ S?(X), its Kapoudjian class is again defined as α∗ωX .

9. Almost/near automorphism groups of relational structures

Let I be a set, called index set, with a function a : I → N called arity function.
An (I, a)-relational structure on a set X is the data, for each i ∈ I, of a subset
Pi ⊂ Xa(i). The latter is encoded in the subset P =

⊔
Pi × {i} ⊂

⊔
Xa(i) × {i}.

For instance, for I = {i} a singleton and a(i) = 2, this encodes an oriented
graph structure. Every incidence relation (non-oriented graph structure) can be
encoded this way, just by defining P as the (symmetric) set of incident pairs.
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For I arbitrary and a = 2, this encodes a colored oriented graph structure, in
the sense that edges are labeled by elements of I.

For each n, the group S(X) naturally acts on Xn (acting on each coordinate).
For an (I, a)-relational structure P on A, one defines its automorphism group

Aut(X,P ) = {σ ∈ S(X) : σ(P ) = P} = {σ ∈ S(X) : ∀ ∈ I, σ(Pi) = Pi}.

An important basic theorem is that every closed subgroup of S(X) is auto-
morphism group of some relational structure (exercise: show it for X finite!).

From now on, for convenience let us suppose that P is locally finite, in the
sense that each x ∈ X occurs as coordinates of only finitely many elements of P .
For instance in the graph setting, it means that each x belongs to only finitely
many edges.

The almost automorphism group of the (I, a)-relational structure is defined
as

AAut(X,P ) = {σ ∈ S(X) : σ(P ) ∼ P} ⊂ S(X).

Note that this means that σ(Pi) = Pi for all but finitely many i, and σ(Pi) ∼
Pi for all i (recall that ∼ means having finite symmetric difference). We have
Sfin(X) ⊂ AAut(X,P ).

If the relational structure encodes a non-oriented regular tree of valency d+ 1,
then its almost automorphism group is by definition equal to the Neretin group

N̂erd.
For n ≥ 1, let T1,n be a tree with one vertex of degree n, and all others having

degree 2. Then the almost automorphism group of T1,n is known as Houghton’s
group Hn.

Recall that S(X) is naturally endowed with the pointwise convergence topol-
ogy, which is a group topology (for X countable, this makes it a Polish group).

The group AAut(X,P ) can be endowed as a dense subgroup of S(X); however
it has a more interesting finer topology. Namely let [P ] be the set of those
relational structures P ′ such that P ′ ∼ P ; by definition AAut(X,P ) preserves
[P ]. We endow it with the topology endowed by its (closed) inclusion into S(X)×
S([P ]). In particular, this makes Aut(X,P ) an open subgroup of AAut(X,P ).

Proposition 9.1 (W. Scott, Bergman-Shelah). Every closed subgroup of S(X)
contained in Sfin(X) is finite.

Definition 9.2. We say that the relational structure P on X is fillable if
Aut(X,P ) ∩ fin is finite, or equivalently if it is closed in Aut(X,P ) (and hence
in AAut(X,P )).

This means that there exists a finite subset F0 such that for every finite subset
F ⊂ XrF0, every element of Aut(X,P ) is determined by its restriction to XrF
(whence the terminology). When Aut(X,P ) ∩ fin is trivial, we can choose F0 to
be empty.
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For instance, P = ∅ on X infinite is not fillable. If P encodes a tree without
(or with finitely many) vertices of valency 1, then P is fillable.

The group S?(X) naturally acts on the power set 2X/ ∼ modulo finite sym-
metric difference. This also induces an action on the set of locally finite (I, a)-
relational structures modulo finite symmetric difference. We thus define

NAut(X,P ) = {σ ∈ S?(X) : σ([P ]) = [P ]} ⊂ S?(X).

The index map NAut(X,P ) → Z is sometimes zero and sometimes not, and
its image is sometimes a nonzero proper subgroup of Z.

The group NAut(X,P ) can be endowed with a natural topology, which makes
AAut(X,P )/fin an open subgroup, endowed with the quotient topology (which is
thus Hausdorff if and only if P is fillable). When the index map is zero, it is just
defined by taking the quotient topology. In general, the trick is to use the “Hilbert
hostel”: add an extra-element j to the index set I with aj = 2, thus defining
I ′ = I t {j}, and define P ′i = Pi for i ∈ I and Pj = {(n, n + 1) : n ∈ N}. This
defines an (I ′, a)-relational structure on X t I, and we can identify NAut(X,P )
to AAut(X tN, P ′)/fin; the topology is thus the quotient topology.

10. Finitely generated abelian groups

Recall that for a finitely presented group, every near action is disjoint union of
a realizable and a finite type one (Theorem 6.2). Therefore, the study essentially
reduces to understanding finite type near actions.

We also use the following (from the problem session): every near action of a
finite group is realizable.

Every group action has a unique decomposition as disjoint union of isotypic
subset: two points are in the same isotypic subset if and only if their stabilizers
are conjugate. For a finite group, this is a finite decomposition. Hence, for a
near action of a finite group, this decomposition, which depends on the choice of
a realization, is unique up to finite symmetric difference.

Hence if we consider a near action of G = H × L, for some finite group H
and group L, then the isotypic decomposition under the near action of H is
commensurated by G. This allows to reduce to the case of near actions that are
isotypic under H.

In the case of G = H×Z with H finite abelian, given a near G-set of finite type
on which H acts isotypically, say with stabilizer L, it is not hard to decompose
it into a finite disjoint union of copies of the 1-ended near G-sets (H/L)×N and
(H/L) × (−N). From all this it follows in particular that every near G-set is
completable.

This handles the case when G is finitely generated abelian of Q-rank ≤ 1.
Next, new phenomena appear, and the most interesting ones appear for Z2. Let
us start with a general result:
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Theorem 10.1. Let G be a finitely generated abelian group. Then every near
G-set of finite type is finitely-ended.

The proof is complicated and involves combinatorial work on the near Schreier
graph. Note that the same result for completable near actions would just follow
from the fact that transitive Schreier graphs of G are ≤ 2-ended, but it is not
clear that the general case follows.

The theorem reduces the classification of near G-sets to 1-ended ones. We call
a near action α : G→ S?(X) is injective.

Theorem 10.2. Let G be a finitely generated abelian group of Q-rank ≥ 3 (i.e.,
Zd × H with d ≥ 3 and H finite abelian). Then every 1-ended, ?-faithful near
G-set is near isomorphic to the simply transitive action of G on itself.

This result is the easiest to state, but is based on the case of rank 2, where all
most remarkable phenomena happen. We just state it in the case of Z2. Define
Xn,v, for n ∈ N≥1 and v ∈ Z2 as follows.
Xn,0 is obtained as a connected n-fold covering of the standard Cayley graph.

Xn,v is obtained similarly, but using a shifting of the gluing by v.

Theorem 10.3. The 1-ended, ?-faithful near Z2-set are, up to isomorphism,
precisely the Xn,v, for n ∈ N≥1 and v ∈ Z2. Among those, only Xn,0 (the simply
connected action) is completable.

11. Problem session

Near actions: problem session (April 18, 2019) Exercises can be made

independently.

1/ Finite groups. Show that every near action of a finite group is realizable.
Deduce that the same holds for any free product of finite groups.

2/ Using transpositions.
a) (Vitali 1915) Let X be infinite. Show that every transposition is a commu-

tator in the infinite symmetric group S(X).
b) Deduce that the surjective homomorphism S(X) → S(X)/fin is not split.

(Hint: argue by contradiction and mod out by the alternating subgroup.)
Note: whether it splits was asked by W. Scott in 1956 and negatively answered

by himself in 1964, using a completely different (and slightly more complicated)
approach, of independent interest however.

3/ Stable realizability. (Fix a group.) A near action X is stably realizable
(resp. finitely stably realizable) if there exists a set (resp. finite set) F with trivial
near action such that X t F is realizable.

(Thus realizable⇒ finitely stably realizable⇒ stably realizable⇒ completable.)
a) Show that X is finitely stably realizable iff it is isomorphic (as near action)

to a realizable near action.



18

b) Suppose that G is finitely generated. Show that stably realizable implies
finitely stably realizable.

4/ Near d-regular trees. Fix d ≥ 2. Call near d-tree an infinite simple graph,
of finite valency, finitely many components, such that all but finitely many vertices
have valency d. Say that two simple graphs of finite valency are near isomorphic
if there exists a bijection between cofinite subsets that is a graph isomorphism.

For a near d-tree T , denoting by δ(v) the valency of a vertex v, define

θ(T ) =
∑
v∈T

(δ(v)− d) + 2#π0(T ).

Show that θ modulo (d−2)Z is a near isomorphism invariant. Deduce an explicit
bijection between the class of near d-trees up to isomorphism, and Z/(d− 2)Z.

(Near automorphism groups of such graphs are known as Higman-Thompson
groups.)

5/ Prüfer group Z[1/p]/Z and p-adic invariant; application to Higman-
Thompson groups. Let G be a group. A near G-action is near free if every
g ∈ Gr {1} has finitely many fixed points.

a) Let F be a finite group. For a near free near action on a set X, choose a
realization. Check that the number of non-free points (points with non-trivial
stabilizer) is finite and modulo |F |, does not depend on the choice of realization.

b) Let G be a locally finite group and X a near free near G-set. For every
finite subgroup F of G, let νF (X) be the previous number (belonging to Z/|F |Z).
Define ν(X) as the resulting element of the projective limit lim←−Z/|F |Z.

Check that ν(X) is well-defined, and is a balanced isomorphism invariant of
X, and is additive under taking disjoint unions of near free near G-sets.

c) For G = Z[1/p]/Z, ν(X) belongs to the group of p-adics Zp. Show that if
X is a near free near G-set and is realizable (resp. finitely stably realizable) then
ν(X) belongs to N = {0, 1, . . . } (resp. to Z). Deduce that the near action of G
on Gr {0} is not realizable.

d) Application: show that for d ≥ 2 the near action of Thompson’s group Vd on
the regular rooted d-tree (in which every vertex has d successors) is not realizable
for d ≥ 2, and not (finitely) stably realizable for d ≥ 3.

6/ Realizability for amalgams of finite groups, SL2(Z).
a) Let F1 ⊇ F ⊆ F2 be finite groups. Suppose that every action of F on any

finite set extends to F1. Show that every near action of the amalgam G = F1∗F F2

is realizable.
Hint: choose realizations α1, α2 for each of F1, F2 (using the result of Exercise 1).

Consider K as the set of x such that α1(g)x 6= α2(g)x for some g ∈ F , and define Y

as the smallest α1(F1)-invariant subset.

b) Deduce that every near action of SL2(Z) ' C6 ∗C2 C4 is realizable.
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c) We now consider a prime p, n ≥ 1 divisible by p, and a near action of the
amalgam

G = Cnp ∗Cp Cp2 = 〈t, u : tpn = up
2

= 1, tn = up〉
on a set X. Choose realizations as above. For Y a finite α1(tn)-invariant subset,
define cY as the number of p-cycles in Y . Show that Y is a large enough α2(u)-
invariant subset, then the value modulo p of cY does not depend on the choice of
Y . Write s(X) ∈ Z/pZ this value. Show that s(X) ∈ Z/pZ is an isomorphism
invariant of the near G-set X. Show that X is realizable if and only if s(X) = 0,
if and only if it is realizable. Check that the disjoint union of p copies of X is
always realizable.

d) Check that every element of Z/pZ is achieved as s(X) for some near G-set
X.
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