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1. SUMMARY OF RESULTS

The aim of these lectures is to describe an infinite family of
finitely presented infinite simple groups. R. Thompson discovered one
of these groups in the course of research on the A-calculus; the
construction to be used heve is based on work done following a report
of Thompscon's work by B. Jénsson.

We begin by introducing a formulation in terms of universal algebra
for the mathematical system consisting simply of a set § and a one to
one mapping from S onto its n-th Cartesian power st (To avoid
trivialities we suppose n » 2.} A mapping S - s” may be described

using n mappings a, ! S~ 5 (i = 1,2,...,n} , where

We view these mappings o se-es® 8BS unaxy operations on §. Because

1
. S . o .
the mapping S - 8§ is one to one and onto, it has an inverse
Ml . , » .
A $ S which we may view as an n-ary operation on S.

The operations Byseeesd and A must satisfy
' L n

act,...80_A = @ (2]
iy o8O 3
8y85...8 M0, = ag (i=1,2,...,n) (3}

s
o

for all 3,8y 500058 €8 : conversely if & i

. ny set on which

operations ql,.*.,aﬂgk are defined and satisfy {(2) and (3}, the mapping
(1) determines a cne to one correspondence S -+ Sn .

We are therefore led to introduce the variety Un of universal
algebras with n unary operations Gppeeesly and one n-ary operation
A satisfying the laws (2) and (3}. An algebra of Vﬁ that contains
more than one element is infinite, because it is in one to one

correspondence with its n-th Cartesian power.



For each pair of integers n > 2 , v > 1, let V__ be the

2 &

algebra of V_ with r f£ree generators. Any free algebra in

o
e
o
[ d
et
£
by

‘reely gemerated by a set X is also freely generated by

X\ {x} U ‘xmlya&.,xa }

for each x € X . Hence Vq i whenever v = § {n-1) . Less
triviaily, the condition ¥ = s {n-1) is also g necessary condition

that "*.f? =y )

¥ n,s
For n>2, % >1, wewrite Gn - for the autcemorphism group
) b k -
of V. _ . Bach of the groups Gn - is a finitely presented infinite
T, ¥ ' B s 4 o
group. If n 1is even, then Gq . +3 simple; and if n is odd,
idp

, o . o - e o
them G has a simple subgroup Gy of index 2. (Clearly G .

Iy % g _?L;,u‘
will also be finitely presented.) For wniformity we shall set
- .
G = G when n 1is even.
n, T n,T

e - P,

It G @ then m = n ; from this it follows that there

W, T n, T
s gme . . P
are infinitely many non-isomorphic groups among the groups G, 5 -
3
. . .

However for a fixed n the groups G, » corvesponding to different

values of r can be isoworphic even when the corresponding algebras
are not. To decide exactly when this is so a complicated matter,
and we give only partial results.

Let P denote the set of residue classes of integers modulo

n-1 . When © = ¢ (n-1) we know that Vr r%§ Vﬁ < » and hence also
ks E
o s . A . .
ﬁn L F 6 ., so we may think of the second suffix here as ranging over
s .

P Let ¢ be the set of residue classes in P  that are prime to
n-1 : this is a multiplicative group of order ¢{n-1} (where ¢ is
Euler's function) and acts on P by multiplication. Denote the

subgroup of ¢ generated by the divisors of n by ¢ A necessary

o

,

. + . . » .
condition for Gn - hﬂ . 1s that r and s belong to the same orbit
, ;




under the action of ¢ on P . A sufficient condition is that v

o the same orbit of & . Notice that it follows

ot

and 5 belong

from this that Gﬁ . and Qn . can be isomorphic when V_ . and
1 “e <7 iy

¥ o are not.
1,5

To illustrate the gap left by the above results, take n = 40 .

Here |¢] = 24 whereas |¢ ! = 12 , and the ¢-orbit containing I,

(namely ¢ itself) splits into two orbits under the action of @G
. {namely the cosets of éﬂ in &) . Thus we cannot decide from the
‘ above conditions whether, for example, G, , =6, . because 1 and
4(3, i ‘3@; 7
é 7 are in the same ¢-orbit but in different @ngrhits,
; The proofs of the aboeve results rely on arguments that establish
non-isomorphisms between o by counting conjugacy
3
classes of embeddings in particular, of cyclic
P i y et . .
groups).,  Similar arguments show that each G contains an isomoxrphic
: N, *
' copy of every countable locally finite group.  The words "locally
{
“ finite" are certainly neot redundant here, as theve are guite strong
> o gt e - + < - . £ ,m“F" 5 o o
! restrictions on the torsion-free subgroups of the groups G . For
{ S T, T
; instance, if H is a torsion-free abelian group of finite rank
f R e ) L ;
z contained in G = G (ovx G, _} . then
( T 0,17
%
(i) H is free abelian,

-~
f
s

S
1
o,
e
o
-
e
fad
{n
s

-
-
oo
)
o
[§2
d
]
[a¥s
jod
b
e
o
pee
-
&

o) has finite index in N (H)
; (1ii) there exists a direct factor B of ﬁciﬂ) and a free
| 3

abelian subgroup € of B of finite rank such that C

From (ii) it follows, for example, that every torsion-free

nilpotent subgroup of G , is abelian. {(Recall that in a torsion-free
n, v

nilpotent group R the centralizer of a subgroup is always isolated

that is, X" e QP{H) implies x € Cp(ﬁ} for any n » 0 - so that

NR(H)fCR(H) is torsion-free [Kurosh, Vol. II, 8566])}.




The "smallest' of these ETOouUDPSs GZ , can he generated by

i
4 generators, subject to 16 defining vela tions, all of which can

e

vetably written on & single sheet of paper. Though we do 6o

a4
(%

prove it here, there 15 a COommOn Uppey bound to the number of elements

needed to generalte @ Gt pro obably & would be enough. It is

s

the minimal number of defining

-

generated &

. .
has o S0t

Let © be such a group. £ 0§ = 1 the resuit is tyivial, so

we may suppese that some word u defines & non-trivial

J
Let W o be any word.

simultansously compile two lists.

defining relations of © and

that these form

relations of G do. The se 5
of the defining relations of G and the additional relation v = 1 ﬁ
again this is a TECUr s enumerable set, fox similar reasons.
sventually either W will appear on tne first list, and SO
w=1 in G, or u will appear on the second list, and w # 13 in
G For if w# 1 in ¢ the relations on she second list arve those

of a proper homomorphic

erivial group, 50 those will certainly include uw = 1 .




SR

B.M. Hurley is considering a variation from the approach here.

in it the one to one correspondence between the sets S and " is

replaced by an isomorphism between elementary abelian p-groups 8
4] o . PR T ) 1 n
and 5 . One could alse look at isomorphisms between § and 8

for m#n . Bo

th of these variations were suggested by P.M. Neumann.
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for 1= 1,2,...,n and

o™
=
-
w
=
)
f-—
e
i¥
&
x5
@
.
«
b3
-
~~
(&3]
e

unless there is a standard form v such that wi = umi for

io= 1,2,...,n in which case we define

!
*

(4

{ngfqyﬁaﬂywm}X = (umly,.u,uaﬁ}h

A dls

9 A 4% % b P U e v o g £ o - £ s A 7 v e
LEMMA 2.1.  The algebra of stondard forms defined above is a
{ - ke s H %, - z 2 3
Free aigebra of V_ , freely generated by X .

From the way the operations Bgsoeea®s were defined it is
. &

clear that everyv standard form can be obtained by applying these

> f=c

operations successively to elements of X . Thus X generates the

aloehra.

&

To prove that the

V. we need to check that
£33

the laws

{w?ﬁwﬁ&“'°ﬁww}}m“ = W, (1= 1,2,...,n) (&)
9 . ). & P

hold. If w is a standard form involving no X then (5} is a direct

consequence of

b s
S
o

On the othey hand if w  has the form w = ujﬁwﬁun

then, by {23,
(wulﬁ,,a?wanjh = ui”‘”unk = W o,

so {5} holds in this case tno. Thus

L)
a1

is a law. Similarly (6) is

a direct consequence of (2) except in the case where there exists a

standard form uw  wiih wj = uuj for 3= 1,2,...,0n . In this case

{4) shows that

A




i

(wlﬁ,ue,wn)k

whence {[{w,,...,¥" YR e, = {ula, =
1 n i 1

W for each i

» a8

bt
H
2}

required.

So (6) is a law, and hence the algebra is in Vn .

show that X is 2

s

~

free generating set, suppose O °

into an algebra

e,
¥
o

§ in V. We extend this

i

o

from the algebra of standard forms by defining

(X, «..0, }J& = x@mj ce Oy (7}
1 k 1 “k
{wj,u“wnk}4 = w, B.,,.w OA {8)

~

(This defines © by induction

standard form.)

82

To prove that ©

on the number of A

invoelved in &

is a homomorphism we need to check

)
wu,ﬁé?) = wha, (1= 1.2,... L1} {(2)
Wo . W 20 = w,8...W _8A {10}
i i . n
for all standard forms WoWy e s W o
B A 2

it ow
On the other hand if w

left-hand side of (9}

~ ~

we.0 = v.0 (1
i i
whereas, by
who, =
i

ﬂ ~
v.0...v_BAd.
3 iy 1

so that (9) holds in all cases.

involves no A then (9) follows from tThe definition (7).

2%

o §

vl"‘vwh then by the

= 1,2,...,7)

(8}, the right-hand side i3

= vie {

1,2,...,0)

et
4




Similarly (106) follows directly from {8) unless there is a standard

1 form u such that w, =uc, for i = 1,2,...,n in which case the left~
: i £
: hand side of (10) is
i
A8 = ub
WyoooW = ul .
1 n

By (9) we have wié = u0x, for each i , so the right-hand side of

(10) is
1 w.G...w 8k = uba,...u0a A = ud .
; 1 n 1 ]
i Thus (10} holds in all cases.
: Therefore O is a homomorphism extending © . It is the unique
2 homomorphism with this property, because a homomorphism extending © wmust
i satisfy equations analogous to (7} and (8) and so will coincide with ©
: Consequently X 1is a free generating set and the proof is complete.
: If we need to think concretely sbout the free algebra of V_
: freely generated by a set § , it will be this algebra of standard

! forms that we have in wind. This makes it clear what we mean when we
speak, for instance, of the "number of A" in an element of such an

algebra.

Pas
o
S

For a subset X of an algebra § in Un we shall write X
a

3 for the A-subalgebra of § generated by X , and X (i) for the

i-subalgebra generated by X .

LEMMA 2.2. If a set X generates an algebra S in Vn then

S=X{(A)Y{r). Also, foreach y in S, the set y (AY \V X (A

It is sufficient to consider the case where § is free on X .
Then S is isomorphic to the algebra of standard forms on X , so the

first part holds, by the definition of standard forms.




10

For the second part, note that

involved in v

YO, ... €

11 T

y{ar v xd{a

are ¢clearl

LEMMA 2.3.

X (A

'}

{(in a standard form)

whenever

are those of

(1) Weite ¥ = X &

o, oo o PR
ORI B - T &1
*

a

mapping O

Because X 1
A "

F (X into
o
extending ©

a

mapping

. \/ s » 1.
[ A R ¢
o
]\)
x&

5 a free

N

'}«“ =
Kol B
i

y €

is mwm,
r>om .
the form yo,

1

v finite in numnber.

Hence the only elements

S and the number of X

then we have

pads
o

NN with T <m and these

T

x € X, then Fv{X} 8 alsec freely generated ‘
{x} U {xa, | 1 <i<n} .
P i s
e r w 4
of X, B
i § .ooq )
1X, ,eew X F U 1,002 A .
i? T L i)
[t [V vy P
{xt U "A\j’:i geo sy A{;,_n }' N and SUppOne that 4
from Y intc an algebra & in V befine

that extends © .

, as we have

it

i

= yg fer y € X
= Ko, @, . Ko GA .

1 I
s, there is a unig

3 But ©
* .
= ¥ for y ¢
~ *
X*Bo., = X6 o.
3 i

X, 10, . JAO DAL,
i i1} 1

for =

i

Xu. 8
i

8 from

homomorphism

s¢ a homomorphism

1,2,...,n .
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This shows that every mapping from Y into an algebra in Vﬁ can be
5
extended to g homomorphism from FR(K) . Since Y generates EF(X)

it follows that Y is a free basis of FH(X} .
(i1} 1is proved similarly.
The operation described in (Z} will be called a simple expansion.

The operation cobtained by composing d simple expansions will be

(4]

alled a d-fold expansion, and an expansion will mean a d-fold

X

<0
3
<

snsion for some d > 0 . The operation described in (27) is the
inverse of a simple expansion and will be called a simple contraction.
We shall also say that a basis Y is a d-fold expansion of X,

meaning that it is the result of applying a d-fold expansion to % .

S

Observe that X (A is the set of 211 elements of FW{X} that occur
in expansions of X . Alsc 1f Y is a d-fold expansion of a finite

basis X , th

e

- s (g O e . 2 TR L P e g NSRRI
LEMMA 2.4. If X & a finite set, then the following conditions

{

on a subset U of ﬁﬁ(X} comtained in X (A} ave equivalent :
i

fa

(i) U =XCAMN Y (A) , for some set Y generating F LX),
(14} U is A-closed and X (A} \ U s finite,

I Y 3

(it} U= Z (A} fFor some expansion Z of X .

4 o

[(1) = (12)] Assume that U =X (A} N Y (A) , where Y

]

[

generates FH(X) . As it is an intersection of A-closed sets, U
itself A-closed. For each x € X, the set x (A VY (A} is
finite, by Lemma 2.2 (with X vreplaced by Y}. Since X is finite,

this implies X {A}> V Y{A) = X{(A) \ U is finite.
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Assume that

is finite We prove ({11) by induction on
X {ad b Ul = 0 then (447) holds with
Y %
1 of great

A}

iz A-closed and that X (A ? \V U

Ix ¢ar» VoL I

Z =X . Otherwise, choose

W 1s to

is,

set U = U U {w}

=

Y < e i K E o 1 IR ST S
Ay Vel o= jxdar vul -1 S0 by induction
7% of % such that U* = >, The element
w belongs to Z* ; for i€ not w would have the form w = Zda, ...0:

-1 Ty

where =2 © Z%¥ and 1 > U and hence 1z € But U is

at

— % . -
7w 2N Lwp o v,
i
P P o . e ey ¢ Ty
+his is an expansion ot A anag, Oy
for each i , and thevefore U = 2
[(iit) = (1)} 1is trivial

CORCLLARY 1.

e

.5 Fo e b
Ll i Le

Ay

- . Y s
w € U, Take
i1l < i <nyog
.. T ~ - 2 , T H
the choice of w , we have i
{a " L |
(A7 as reguirea.
i PR N Ay P
L, X o) tne guame

algebra have a common expansion L .
(Note that Z (&) determines 2 : for 2 is the set of elements
[vd & . 3 PR Ad . . o A k
of 7 (A that do not have the form 20 for some z € Z AAD.)

CORCLLARY 2. if and only 1f v £ 3 (n-1} .
For if © = 8 £ by Lemma 2.3. Conversely.
n,T n,s

e ¥ , i . e e . W . Pl N P
if Y v then there are sets X , Y with [X| = v and

Y n,5 : i
|Y] = s which freely generate the same algebra in VU ; these have a

H

common expansion, I say, and for some non- -negative integers d and

£ wWe have

whence 1

s {n-1} .

{’ﬂ -{)t; 3
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Sh AR

LEMMA 2.5. Let X be a set and V a subset of F_(X)

contained in X LA T

S Sl

(2}  If X and V are finite, then V <is contained in an expansion

.

of % if and only if the following condition is satiefied :
no element of V is an initial segment of another. (%)

(i1) If X and V are finite, then V <s an expansion of X <if and

only 1f (*) 1s satisfied and for each u € X (&7 there exists

v € V. guch that one of v , v ig an initial segment of the other.

(ii1) V 48 a set of free generators for the subalgebra it generates if
and only if (*) is satisfied. {Here neither X mnor V ig assumed

finite. )}

fiv}) Let Y and I be d-fold expansions of X, fovr some d > 1 .

5] E¥d

If Y # 7 then some clement of Y is a proper iniitial segment of

@
4

{2} "Omliy if" is obvicus.

Suppose V satisfies (*) and write
U= X{a} \ {proper initial segments of VI |

Then (*) implies that V C U . Also U is A-ciosed, and X (A} \ U

{ consists of the initial segments of the elements of the finite set V |
; so it is finite.  Thus by Lemma 2.4 there is an expansion I of X
such that U= 2 (A ). Therefore V € Z (A7, and this implies that

V€7 (for an element of Z (&) \ Z has a proper initial segment in

¥

13

7«

$0 it cannot be in V , by the definition of U}, Hence V 1is
contained in an expansion of X .
(i7) “0Only if' is again obvious.

Suppose V satisties (*) and the additional condition in (i2).

§ By (i), V 1is contained in an expansion Z of X . If V# 72 , then




i4

there is an element z € Z \ V , and hence by hypothesis there exists

v € V such that one of v , z 1s an initial segment of the other.

But no element of Z can be an initial segment of another, so this

i5 & contradiction. Hence V = 2 .

{1ii) "Only i#" is again obvious.
Suppose  (*) is satisfied. If V is not a free generating set
then the same is true of some finite subset VQ , and clearly ([¥*)

replaced by V, . However V, C X (A

sy

is also satisfied with

for some finite subset XO of X, This contradicts (44},

(2w}  1f no element of Y 1is g proper initial segment of an

element of 2 , then we must have Y €2 (A} and hence Y YA C Z {A),
This implies that Y 1is an expansion of Z . But Y , Z are both
d-fold expansions of X , 3o it follows that Y = Z

o 4 i 4 )

{X| > 1, then all elements of X (A} arve

ey s TNy Tper on T Y L §hy
2quL automorpalem growp of F_{&) .
a & by & o n- e
ki : £ N 2
atl patrs of in which neither member is an

LTy e di ) ‘ P P y s it i BTy e e g g T
THE otner greé qGL80 egul UICL2 TAE OGOl

Let uw € X(AJ) : then u belongs to some expansion of X . %4
we assume that [X] » 1, then any expansion of ¥ containing u will
contain other elements also, so we can apply a further simple expansion

ch still contains u . As each

=l

to it to obtain a larger basis wh:

simple expansion increases the size of a basis by n-1 , this shows

Sott
&
£
=
¢
e
f

that each element of X (A} belongs to a basis of size
for all sufficiently large d . Therefore, given any two elements of
X {A?Y , we can find two bases of the same size, each of which contains

one of the given elements.  Every one to one mapping from one basis

onto the other exiends vu an automorphism of F“{X} :  hence there is

an automorphism mapping one of the given elements onto to the other.
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Similarly given any pair of elements of X (A ) , neither of
them an initial segment of the other, we know by Lemma 2.5 that there
is a basis of FH(X} containing both the elements. Moreover, by the

Corollary 1 to Lemma 2.4, we may assume that this basis is an expansion

£ » 2, then any such basis must contain

of X . 1f we assume that

clements other than the given tweo, so it can be expanded to a larger

basis also centaining the given elements. The result now follows

LEMMA 2.7. (1) A subalgebra of F_(X) is generated by <ts

.\ ;
intersection with X (A}

s . . e w ‘ .
{22} §% 18 a Schreier varic - gubalgebras of free algebras in
}
V.  are free.
E o
(; A t‘ 9 4“ NEVLE teld & Fymbrga ot Fwvopn AT vehvera S V v
A L e Py Jenel ated gub CALCIEOYQE OF Jree ALgenitas v n aqie

free factors.

A % iy 2% T - e A g : ~ 7
{tv} Fn(X) has trivial characteristic subalgebras.
PR T o4 y T s o3 @ -3 £ Y ared amm st 3 A e, A Yy
{v/ Let & be a subalgebra of F_{X} and write & for the

n G

subalgebra generated by S 0 X (A} . We prove that an arbitrary v

in & belongs to S@ by induction on the number of 2 in v . If
this number is zero, then v € X (A} and so v € S, - If this number
is positive, then v has the form v = wi,u*wﬁl , where each Wy
involves fewer A than v . But then w. o= vy £ 5 for each 1,

so by induction w. € S, , and hence v € %, ,  as required.

.
)

{74} Suppose that S 1is a2 subalgebra of Fﬂ{X} . By (i), S
i

o3

is generated by S 1t X {A) ; moreover, if we omit from S 1 X (A)
those elements that have a proper initial segment also in S , then
the resulting set alsc clearly generates S . In this set no element

is a proper initial segment of another, so by Lemma 2.5 the set is a

free basis for S . Hence § is free
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(iii) Suppose that S is a finitely generated subalgebra of F (Xj .

') shows that S has a finite free basis,

N

Then the argument used for (1

and this is contained in X, {A )  for some finite set Xﬁ <X .

als0 in a free Therefore S 1is a free factor of :
B4y . ;
(fp)  Let S be a non-cmpty characteristic subalgebra of Fﬂ{%} .
- e e oo w4 i@ R v s Ll
Yhen, by {Z), we have S 1 X 4A Y E B We may assume that [X] > 1,
oo Lemma 2.6 shows that any two elements of X (A )  are equivalent
under the automorphism group of ?w{K} . Therefore X (A? ¢ S and
50 & =
A on  F_ (XK} is an aguivalence relation such that
2 4
if a then b, i and if &, = by for 1= 1,2,...,0
3 g1 - . B T - P N R ax A% aw o f o h PR
then a,...3_ 4 = b,...b & . Its intersecticn with X (A7 set
13 1 i i
“ y N V. N " . 7 3
of congruent pairs {a,b) with both 2 boodn AL VA .
(7} e on F_{X) s by
LR
with X (AD .
1) F_{AY has no ohavaoteristic CONGTY ?
12 S "
(iii) ¥V ie a wminimal variety, for each n ?
1l c ;
(i) Let £ be any F{xy a z. be the
T i)
oy g IRTRURPUR B FUN {7 i~ P vy of w b ‘ fa %0 T o, §
congruence genevated by {{a,b) la=b and a,b € XIA/ ) . e :
show that ;
;

Aoodnvelved in o ou o oand v .

If this number is zevo then u , v € X{A} , so u E,v by definition

of =,. . So suppose one of thesg elements, say u , involves at least




one A @ then it can be expressed in the form u = Uy ..

Uy p.ee,U  3TE elements invelving fewer A than u .

compatible with the operatiors in A we have

for each 3 , and u. dinvolves fewer A than u and

-

no more A than v o, So by induction

g EO Vi {i = 1,2,...,n) ,

WHENCE U = U, ...l A

1 ~ :@ vml,,,vumk =Y,

is a characteristic congruenc

other than = .

il
el
[

o
f;
!’7
L

LIRS
assume that |X

ume that a,b € X (a7 .

&
.
%

e

[N

e

we may ass

17

A%%y whers

Since = is

V&j involves

ce on F (X},

2 by an expansion if necessary, we may

> 2. Let a , b be elements with a2 = b but a # b ;

We claim that we may €further assume that neither of these elements

is an initial segment of the other. For suppose, for example, that a

is an initial segment of b . Then b has the form
b o= aai B T
- &
1 T

1

where v > 0 , and so by applying to a and b an operation o, with

suffix 3§ not equal to il »
of which is an initial segment of the other.

satisfy ao, = baj . because I 1is compatible with A

may be used in place of

3

we obtain clemsnts aaj s bmj , neither

wese elements also

, and therefore

the elements a,b originally chosen.

As = was taken to be a characteristic congruence, it now follows

from Lemma 2.6 that n = v for gvery pair of clements

which neither member is an initial segment of the other.

w,v € X{A) in

In particular,

2
3
]
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y for all x,y € X , so that the quotient algebra modulo = is

generated by the equivalence class [x] for every x € X . Further,

[}

if x,y € X and x #y then in the same way we have x = yo, for

1= 1,2,...,00 Therafore
Ixjo, = [vle, = {yo.] = [x] (4= 1,2,...,1) :
and 1. Ixix = {yql},*”{y@nik

This shows that the guotient algebra is a one-element algebra, so that

= is the triviazl congruence under which all elements are congruent.

oy b

Thus Pﬁ(X} has no non-trivial characteristic congruences
1
{111} Suppose Wp is not az minimal variety. Then there exists a

variety W properly contained in ?ﬁ and not consisting only of

b

algebras with at most one element, For a sufficiently large set X ,

3

Fete

the free algebra of U freely generated by X 15 a quotient of the

algebra Fn(x) modulo 3 non~tyivial congrusnce. This congruence must

be fully invariant and g fortiori characteristic.  But this contradicts
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3. ALGEBRAS OF Uﬂ AS ALGEBRAS OF VN FOR N > n

If a set § 1is in one to one correspondence with its Cartesian

Aadsiiinr e

square §7 , then this correspondence can be used to define a one to
one correspondence between S and 357 . There are the following twe

sssentially different natural ways

correspondence S - 5 sepciates & in 5 with (b,c} in

suppoese that b,c are in turn assccisted with (d,e) ,

; (.8} spectively. Then either of the mappings a s

g ar {d,e,c) determines a one to one correspondencs between S5 and 33 .
This means that be viewed, in two essentially

/ 3 natural ways this formally,

ine new opera

STES

of the operations o, ,o.,,4 by
:\ 1 S
alk, = an af, = as., = 50,0, 8. 8.8, RN B B WY
e Bl W ) ’ I R BN R b SO Rtk

b =S .- 2 Pl ” ; ) . 3

‘ ag, = ao,a. , ab, = ac,0, , &, = aw, ., &.A8.80,0 = doa ka,h .
‘ j is i Z A P Lo i A o } da "

,

‘é

5
7

In either case this ma

: B Y

i in V, , because the laws

‘

: af a0 an g = - . (3 I

1 dti\%uﬂd‘ﬁiz“ a4 4 = 3] L= L,a,5)

|
are consequences of the laws of V,

1 This situation, and the obvious generalizations that we now
consider, will later provide the setting for cur discussion of the
isomorphisms G = G automorphism groups of certain

, - N, n,5

! Adpe of ri-1ig0 } free alpet 3 ;
pairs of non-isomorphic free algebras V s ¥ .

g n,r’ n,s
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In general, algebraic coperations that are defined in terms of some i
given set of operations by formulas of the sort used above to define ‘
61,8295%,p are We shall not attempt to give
a formal definition of this term as we only need it to describe obvious
generalizations of the operations already defined. We write Der C
for the set of all derived operations associated with a given set € of .

| belong to Der A :

operations.  Thus in the above examples £.,3,.

A= {a,,...,0_} consists of unary cperations for any n , the set Der A

will alsc always consist of unary operations.

A set B = {8 .8 .+ of unary operations in Der A will be called

17 TN

if for any element x of an algebra in Vr the set
i

xR} is a proper expansion of {x} . It follows from what has

>
hed
N
o
—w
=
oin
&
L

is a fundamental set of

cach integer N of the form N = 1 + (n-1)}d , where d > 1 . in

N for

particular if n = 2 then there is a

every N > 2 . 3

k4

o.a.,a

oy e o
cos By Y is a fundamental
N

then there exists an N~ary operation uw 4mn Der {A} such that

are lows of every

G ey

By the remarks preceding the lemma, there is a positive iunteger ¢
such that N = 1 + (n-1}d . We prove the lemma by induction on d .

then N =1n and #,,...,8. are a permutation of
i

£E d= 1,

Gysenesly

Zy0..,nn , where w £ & .




It is easy to check that the above laws hold.

Suppose next that 4 > 1 . Then there is a fundamental set

such that the set xB is 2 simple expansion of xC for everv element x

1"““”7N~n+i} . By rearranging elements if necessary

we may assume that B has the form

B o= {v. ,....v.. Voo Gy s v s e s Vs o b,
1 PIN-n? INen+171? ’Yhmn+l T’

s¢ by induction there is an (N-n+l)-ary

By oy VY T A (i= 1,2,....0-n+1) ,

for all elements a,a,,...,a, nel If we define u by

; then it is again easy to check that u has the required properties.

? This lemma shows that if § is an algebra of Un under the operations
@i,.%u,mn,k then, for any fundamental set B = {81;3».;ﬁN} .

% 5 into an algebra of UN under new operations 81""*6N*“ .

% denote the algebra obtained from & in this way by SB . (It is not

! necessary to specify u , as B determines p  uniquely.)
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LEMMA 3.2, The subalgebra cof (F (R}}L generated by X 18 a

free algebra of VN Freely generated by X .

We may suppose that X 1s non-empty, for if X = # then FH(X} = §

and the result is trivial.

note the subsalgebr f 1y
€ gebra of (rn(x,;g

show first that S is relatively free. Let

i
o
@
o
=
et
3
=
o)
3
e
Goad ¢
o
i
4
V\.l
9
3
s

into S . If we think of ¢ as a2 mapping from X into F_{X} then

o
)
e

because Pn{x} is free we can extend € tc an endomorphism, € sa

[ex

of Fr{X} . The mapping is also an endomorphism of (F_{X)}
H %1 J

because Bwﬁa,v,fwsp are derived operations; morécver since AR
ko %

the restyriction of 6 to S is an endomorphism of § . Thus an

arbitrary map X - § can be extended to an endomorphism of 8 @ hence

2 velatively free slgebra, freely generated by X .

B

1

-
5.
pots
[

However S belongs to V, ,  which i3 a winimal varisety by
Lemma 2.8 ({471}, Therefore, since it is non-empty, 5 wmust be a free

algebra of V, freely generated by X .

o v e e e
Yy X L it ve ard B L&

o 23 P ) £ ‘A ) AN 4yt % o o Hoor e g

a set of elements of X {B} is an expansion of X qua B-basis 1}

o

and only if it is an expansion of X qua A~basis.

A simple B-expansion (that is, a simple expansion using the
operations in B) is an A-expansion by definition, so the "only 1if" part
of the lemma is obvious.

Suppose mow that U is an A-expansion of X such that U < X {(B) .

¥

We apply the criterion of Lemma 2.5 (42 to show that U 1is a B-expansion

of X . Firstly, U cannot contain a pair of elements such that, as

RB-words, one is an initial segment of the cother, otherwise one of these
¥ Lo

would be an initial segment of the other as A-words alsc, which would

contradict the assumption that U 1is an A-expansion of X . Secondly, if
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v is any element of X (B} then by Lemma 2.5 (i<} there is an element

v in U such that, as A-words, one of wu,v is an initial segment of

the other. If

ARG

i i
“1 k
vo= xR, ...B :

where x,x' € X , then it follows that x = x' , and that one of %

Py

products of elements of A . Since B 1s a fundamental set, the latter |
' #

@D

can be tyrue conly if 8. = . Similarly we find that

B, = £. , ... B, = b, where s = min(k,%) ; hence one of wu,v

i 3 T i ,
i 2 2 5 s {
; is an initial segment of the other as B-words also. Lemma 2.5 {(<1) now
| shows that U is a B-expansion of X , as claimed.

FONRAE T4 7L PR N ey T i 2 s
LEMMA 3.4. If B and C are fundamental sets, tren &0 18

YR
Co= {8ylg € B, v €C) .

i

Let x be an element of any algebra in V_ . Since C is a3

fundamental set, x£C = {xfy | v € C} 1is a proper expansion of {xB}

for every B8 € B . 1t follows that xBC 1is a proper expansion of xB .

5
-

But xB is a proper expansion of {x}! because B 1is a fundamental set.

Hence xBC is a proper expansion of {x} , and the result follows.

s
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4. THE GROUPS G,

n this

element

L

£

. : FINITE PRESENTATION

and the following

for a

and 2 will be rese

V(.;'wv minimal e cpar

T o DY R B e
. in other words any other

notation of

The

two mest

dﬁ

B N N
(/J Lhe e

is an element of

V’?

and 7

cees Yyt
1N

stom Y of X

feds

the lemma,

impor

and (i1} when the set cousists

sections G_ _  1s the automorphism

fs
»
=
oty
-

fixed set

rved for

e s .
Finite subset

T
&
[

SUPONSLOT

<y LA

if Y is a

say

D
et
&
3
o
&
U)

this s 5€ We sha

s e
by a sympoi for

wr

such that

PRV 3y IPPN
WwLEn g

N3
by

Converse 1y

whenoe

d-fold expansion of
16, ,0..,8 }
. 5

when the

;
;
i
i
;

of slements

jav)
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ﬁ:
.
',dj’
.

B
(92

s
4
e
w
s
e

v (A Y 1 x{AJ and by Lemma 2.4, Y8 is an expansion of X
Hence by Lemma 4.1, every element has a symbol. If H=171p+ (n-1)d ,

then © has depth at most 4 . If € has depth less than d the

since any expansion whose im

8 isdin X {A} is an expansion

aof the minimal one, the col svibol can be s0 reordered that

it has the form

v
03

L———

i

imilarly, by a symbol fo

7 a4 G O
the e lation I v DR 8 = g
i

A array

IOV

|

bl .

i -

i

s .

;( y A -,N}

]

heve for 1= 1,....,8

is a symbol for O, , and hence

—

] .. :):’ i Y 5
s L S L ,;’\) }
is a symbol for 0 Again, if N =1 + {n-1}d , the relation has

Lo
.
Qs
=
[+9
lad
oy
)
o
Cha
o
]
e
g
-
Lo
9]
‘;’\
)
o
=]
£
s
[
k)
=
o
o]
Tt
<
b
[
fs3)
P
et
o
e

depth at most ¢

4%

the coiumns if necessary, the symbol has the form

o
brdey

parrangement
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LEMMA 4.2. I+ 4 > 4

T N oy 2
con be expressed as a product

& d-fold

(U0 5o, U0 Vs VO, W

be a sywbol for © . Because

~ P

fac, ,...,8¢ § and
i t

§
PR

and

N ¥ 141
it

which is the symbol of a relatic

at most d-1  in view
symbol is defined.

between them occupy at

free columns at least ifeft ovey

necessary to obtain

sen yZN

2 iement

1> 4 , we have {1)

el N

Mmoo oe sy /.4“,'
fivst that
ENTS . Then, rranging the columms

can insert

A, .. BO Y. .
j TR

Vo

Again we rearvange the columns if

At

-

’}5+1,Ev ’

nis of

o » ¢ E Y] - - 3w
= v + {(p-13d > 3n-1 anc
of % of the form

. Let

BETERREY SN a subset
st {bo,,...,bo } . There are

olumn of the symbol contains more than

NeCessary,

row in the symbol to obtain

<]
-
=
4
I
g
&
:
.

3., 9., have depth
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oo ¥

1 “Ch yxg;{»} INen yN—n+1' . .,)«’N

which is a symbol of a relation € = 6. 6,8, , where 6., 8,, 8, have
ER 9

depth at wmost d-1 .

Note that we have defined 8., 8, in the first case and 6., 0,, 6,
1 2 i 2 3
in the second case such that the relation 8 = &8, {respectively
PR
V- [BA 3 « - NS, 3
g = Gld,agg has depth (exactly} d .
REMARK If v » 2, then we can veplace d > 4 in the lemma
by 4 » 3 since {i} and (i1} are still true.
5 COROLLARY G the elements 3.
iy X
t
; We prove next a result which, though it is essentially only a
N i
! restatement of what puts in some technical detail which
; P
than ;
{ will be useful when we come to consider defining relations.
: g
'V} 7
%
£
: LEMMA 4.3. With each element 8 of G
! B n,r
i . o 4 L
) word Wy N the elements of depth at most 3  such that
; () if 98 has d < 3, then Wy £8
i - R y
| (i) 1f ©  has d >4, them w, = 8 <18 a relation of depth d ;

et

; (i21) if 8,6,...6_ = 1 ig a velation of depth d, then w, Wy ...Wy =

ie a relation of depth at most d .

[
el
o

ey

We firs iscuss the meaning condition (i1). If €,...6_ =6

Qe

4 : is a relation of depth d , where is the depth of 6 , we have &

j symbol

% r
() 11 Vi

| R ————

s+¢1,1° " s+l,N
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(S

for the relation, where N =71 + (n-1)d . Then Y, = {y,, ...,y

is an expansion of X such that Y, cX (&) , and so it is an
expansion of the minimal such expansion Y , whose existence is
guaranteed by Lemma 4.1. But since 6 has depth d , we have

iYE = v + (n-1jd = N also, s¢ that Y = Yl . if now

is any symbol for & , then U = {ui"'°’uM} is an expansion of Y, .

£

ot

Applying this expansion to each row of {*), we see that the symbol

can be filled out, by adding more rows, €o 2 symbol for the velation

©....6_ =8 . That is, <f (i1} holds for some eclement 6 , then

Y g JEPYy S S < £ o I m ST A s - e -4 - 2wty 7
gvery symbcl for 8 can be filled out, by adding more rows, to a symbol

2

o A - e ) o
for the rvelation w, = 8

G

We now choose, by induction on d , words Wo satisfying {7/

and (72). Suppose 6 has depth d , and words have been chosen for

ol
t

all o, of depth less than 4 . d < 3 there is ne problem.

So assume d > 4 . Then by the argument in the proof of Lemmz 4.2,

, where each 8, has depth less than d ,

17273 i

o = 6162

and this relation is of depth d . By the argument of the previous
paragraph, a symbol for the relation 8 = 9}62 , Or § = Blﬁqﬁg can

be filled out to a symbol for the relation @ = w, w, or 6 o= w., W, W,
81 82 81 82 63

so that this relation also is of depth d .  So we may define wy = w, w

or we = W w@ w@ and have 44},
1 72 73

Now (777) follows automatically; for any symbol for the relation

<D

6}.”6g = 1 can be filled out to a symbol for the relation we coW = 1
: i

R e S b e s e s e ¢ o
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LEMMA 4.4. If d>7, then any relation 8y...8, = 1 of

depth & between elements 8,,...,8_ of depth less than d is a

consequence of relations of depth less than 4 .

Because d > 7 we have (i) N =71 + (n-1jd > 5n-2 , and
{11} there exists a d-fold expansion of X of the form

; ;- LN . T
{ualsaaosuwﬂ,vai,no.»vun,walﬁo.,,wan,y3ﬁ§i,,o.,yN) . Let

rows, we get a symbol for the relation Qi,hwei@1¢1¢zsi+iﬁw,85 =},

: 4

: Eyii Y5 E
; gﬁl o Sy |
p ¢

E by, e V.

? iy1¢1,1 7i+l,Nj

is a symbol of the relation of ¢l$? = 8, and these two relations are

5 i’
; cbviously equivalent to the original relation. We shall say one set
of symbols is equivalent to another if the relations defined by the first
set are equivalent to those defined by the second set. The symbol above
corresponds to a relation of depth less than d , if possibly after

permuting the columns, it has the fomm

.”5{ $
I
w faalmasaan»,g
[ E
12
ba,...ba ..
i 1

TR N

:
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We shall describe these rows as being linked by the first n columns

and say the linkage between them occupies the first n columns. if

three rows of the new symbol are linked, then the original symbol is
equivalent to the new symbol and a symbol of depth less than d .  Thus
if we insert into the symbol new rows whick are linked to the rows on
either side, or remove such rows, we itransform the symbol of the relaiion
we started with into a symbol for a relation equivalent to it wnder the
relatione of depth less than d . Thus to prove the lemma we have to
show that by a2 sequence of such traﬂsfbrmati@n@ vwe can transform the given
symbol to a symbol for the identical relation : that is, to a symbol
consisting just of two identical rows. We do this by induction on &
so that it is sufficient to produce a symbol with fewer rows than the one
we started with. Notice that since each e, has depth less than d ,
each pair of consecutive rows is linked, and because we are dealing with
a relation Blﬁ,aﬁs = 1 , the first and 1ast rows are the same.

If s =1, we are finished, 30 we may suppose s > 2 . If %

three consecutive rows are linked by the same n  columns, we can remgve
the middie one. This is a type 1 reduction. Because the First
and last rows are identical, a type I vreduction is always possible if

s = 2, S0 We may suppose s » 3. Suppose next that there exist four

e

consecutive rows, such that the 3n columns by which they ave linked !

are all different. Then, using (ii) we can insert a new row between the

second and third, and then delete the original second and third rows
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, .
a0, . . 80 a0, ...ao
1 n i n
bo,...bo  <Co,...CO be,...ba co,...C0
1 3} i n 1 j1] 1 1}
d . e
(& I {4 1 [STe I = 2 A, < 2 o RO Vi, oo o VO ZO, o e & w o
1 n ok n s A R A et | n
5
foo...fu ... da,...do_ €0, ...808 ...
\ 1 n 1 T 1 n
fo....fo ...
L 1 n
m }
{ Y
A, .. <20 i
A n i
I3
: =i X0, v e o B0 Ty o« o ¥ A s SR A s 4 E
‘ 1 R | TTn i ny
VED 3 3
i fo,...fu 1 .
| RRRELN
’ This is a tupe II reduction. Agzin we notice that if s = 3 then because
W 2
ne ;

the first and last rows are ide rows are linked,

aka
&
e
ts
tcde
¢l
[
e
3
=t
jo]
o4
)
ot
Ry
=
&
e}
[«
5
[&]
oW
[¢]
—
=
fad
e
L
s3]

either a type I reduction or a type II reduction is always possible, S0

we may suppose that s > 4 , and that no type I or type Il reduction is

possible.
Then there are 5 consecutive rows, and because a type II reduction
e oo . 5 oy . . -~ o -
i3 impossible, the linkages between them occupy at mest 4n-2 columns; for
there is overlap between the linkages between vow 1 and row 2 and between
row 3 and row 4, and also between the linkages between row 2 and yow 3
r .
and between row 4 and row 5 ¢
he 20y ... a0
Do, ... Do CO. v w GO
i T i n
cen B8 ...80,.. .00 do,...do
i 2 7 i T
50 SRS SRS o/~ SR «/ SIS -1y SRS -/ S
1 2 nc By 888y
ho,...ha,...ha ...
L 1 2 n

Thus by (i) there are n columns not involved in any of these linkages.
3 ¥

Now given any three consecutive rows, we can apply a transformation of the

form
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g 3
- A0, .+ . - 30
ac 1 pe] (}in ; oL 1 T
{
bo....bo CoL...C0 ... ba....ba co....co
RS L S N e Sk T Sl
da, .. .do ,eyg KOy oo e X0 VO, . oLV0 Z0. o020 w..
! 1 n'"C ) 1 R R A s | n
da, .. .40
i n
{an aq }
E «m,].a N -{.,'n\ é
f ;
1}
X ,n,Aﬁ [+ e o VO L0, ... 20
i 1 7 177 I un{
E do....do !
L i E )

to replace the middle

third by the same columns,

given n columns distinct

fourth rows of our original set of five ¢

row by another one,

and has entries

from these,

which is linked to the first and
of the form ze,...zo, in any
i 1t ‘

1f we replace the second, third

onsecutive rows using the

4y
i8]

same n  “"free” columns in each case, we can then delete the new middle row.
So we achieve a reduction in any case, completing the proct of the lemma.
REMARK If v > 2 we can veplace d > 7 by d > 6 and if
r >3, by d>5, since (i) and (ii) still hold.
LEMMA 4.5,  If we take Qﬁ,r to be generated by the elements of
depth at most 3, then as defining velations we may take the relations

batween them of depth

This is not quite a ¢
there described introduces new generators whose depths

obvious means of controlling.

was designed to overcome.

most 6 , between generato

by induction om its depth

there is nothing to prove.

of a number of others, of which

at most 6 .

oroliary of

This is

rs of depth

¢ that any

% is a consequence of R .

if d>7

bye ety

Lemma 4,4 , becas ¢ Process

we have no

the difficulty that Lemma 4.3

the set of relations of depth at

at most 3 , and let us prove

relation 6 = 1 say between

s
1 '

1f d <6

, then the relation is a

CONSequence

= 1 say is typical, of depth




% \gg @

¢

e

less than 4 . Introduce words w

i
d)l,”ﬁpt =1,
consequence of the relations w$ = ¢,
than 3 , and the relations

T

relations between generators of depth at most 3

[er

d , so by the induction hypothesis they are consequences of R .

our original relation is a comsequence of R and

6 as in Lemma 4.4.

33

The relation

and hence our original relation Gi...e =1 is a

s

for generators of depth greater

W¢ .m.w® = 1 . These relations are
1

and have depth less than
Hence

the relations W, = ¢ .
@

But these relations mecely define generators which do not occur in the

relation 8,...6_ =1 . Hence this relation is a ccnsequence of R

required.

I s

, &S

THEQREM 4.6. Each group G i finitely presented,

i,r

b1

For fixed d , the number of ordered base

o~
n

and equal to Kd . say. Thus there arce only a finite number of generators

of depth d . There are an infinity of relations
if a relation of depth d has length greater than
in a symbol for it {apart from the first and last)

is easy to see that this implies that it

[
7

relations (between the same generators}). Thuz as

relations we may take those of depth at most 6 and length at most K

and these are certainly finite in number.

P

a consequence of shorter

of depth 4 is finite,

of depth d . However,
K Seme LWO TOWS
d 2

must coincide, and it

a set of defining

s
6’
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5. THE GROUPS ¢ ¢ SIMPLICITY

We order the finite basisz X arbitrarily and the set A of

operat < ay whenevey 1 <} , and thern any expansion

o

tomi
v

Y of ¥ such that VYe < X (A,

in lewicograrphic ordeyr, then there will be

another expa

Z2 of X, ordered lexicographically, such that Yo

with the order inherited from Y {that is v. <y,
i 4

wtation of 72 . Consider the c¢gse n oqad.

of Ye of 2 ¢ and {a priort
at least) on X , and not on Y . For the permutation cdd or even

et Iy y oo«
rELTec ful\ e b v Y.L LY A Y <Y bt
I M A 71 7Y
v 8 is odd or even. T Y
RS

ana eorres

A here zo= vh . Yhen v < ¥y,

SG

7 are expansions of

sxtends to all such Yo Thus elements of Gr -
3 kg
LT or even and, sing VER

rules for parity the even elements form

of index two in G . A priord, as we have

subgroup depends on X |

whence it is independent of ¥ . (A nomsbelian group cannot have two

a subgroup

I R oy " . O EUL R ,,,,Mt
of index 2, contradilting Thoiy sim

For the sake of a2 uniform notation, we write G =G when n
B, T 0,1

is even.
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LEMMA 5.1. A nontrivial nermal subgroup of ﬁp .. containe a

ig i

nontrivial element of finite ord

Supnose the normal subgroup N contains the element 6 i and
§: ] I 3

that Y and Z ave expansions of X such that Y8 = 7 . if Y =12

then © , being a permutation of Y , is of finite order, and we are
hé
home; so we suppose Y # Z . By Lemma 2.5 we can choogse 24 in Z so
that =z, is a proper initial segment of some element y of Y . Thus
LW
Y c¢ontains an expansion of Zgliye e e 2By and y may be chosen in this
5 iR L
expansion such that y6 # z, ; let z = y& . We now define ¢ by
b } )
. ~ coe % F . - : 4
z'¢ = z' for z' € LV izy , za.$d = za. . foy 1= 1,...,n~1
i R
and
35)“‘4) = ZO’.} o
(If n is odd, ¢ induces an even permulation of
. , ., . ” )
7% = 72\ {z} 1} {20,,...,20_ ) so that & ¢ 45 _) . Cbserve that
i n n,r
Zg® = Iy and, since Z, is an initial segment of vy , yas ¢ o=y, for
‘ ¢ . 1.
. s . . Ce TS D
any 1o We then easily calculate that if ¢ = 846 ¢ .
vig o= yte t for oy YA (v,
: ' yoLp o= o, u'i = yo. , for i=1,...,n-1,
U i R T ?
Ti, X
and ya_ P o= yo o7t = ya, .
‘T 1 771
i
Plainly ¢ is 2 nontrivial element of N . Clearly ¢ and ¢ have
order n .
.7 z o < ® o 5
LEMMA 5.2, 4 nontrivial normal subgroup of G contains all
e et - N,y
- 1 ) e o Y 7
1 : elements of G, . of finite order.
ik y b
Y, PP SO o o8 3 1 )
Let ¢ be an eloment of Ln . of finite order. By Lemma 2.4
-2
1
for every expansion Y of 2 there is an expansion 2 of X such that
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i - .
neye y (ad =2z ar . Recause ¢ computes with the elements of A

b

Lol bt 3 Fag . % i -&‘ a - o
26 = 2 . If n is odd, the fact that ¢ belongs to G implies
n,r

et
e
w
o
=2

3

induces an even permutation on If n is even, then ¢

induces an even permutation on I¥ = {zo0. 1 2 € 2, a, € A} = ZA since

. s
case ¢ induces an even permutation on ZAT  for al

® s

o vy B e B L [ poe g 7 £ 2i2dn bt - P
is an arbitrorily large expansion o of X such that 24 =1 and b

induces an even permutaiion on L . :

Now by Lemma 5.1, & nontrivial normal subgroup N of contains

k)

order. Applying the above arpgument

a nontrivial element 6, of

to 8, , there is an expansion ¥ of X with Y§1 =Y, and (Y| >5 .

the nermality of N, N contains the whole alternating group on ¥ ,
and hence contains a nontrivial element 6, with Yo, =Y &,
v

g

has a fixed point on ¥

example 6. could be a 3-cycle)

ot

. s ” e T S T ard T
iterating @ stabilizes bases of size (Y| + {m-1}d for all non-negative

d . By the normality of N , N contains the aliernating group on each

guch basis. But if two ba

: ; S . ; 1 e .
is5 an element ¥ of u7 with Uy =V , whence if N contains the
&

whole alternating group on one of ., it contains the alternating group
L& & LT £

-

on the other, Thus N contains the alternating group on all sufficiently
- o o

targe bases. Now by the result of the first paragra h of this proof, N

9 % o /'v+ { ey b
contains all elements of G of finite OYder.
n, ¥

Lt . . . s ,
LEMMA 5.1 G is generated by its elements of finite order.

- - n,T

Using an expansion if necessary we can and will

. ; . + - ;
We prove, by induction on d , that an element 8 of G of depth d

Fa

n
belongs to the subgroup generated by the elements of finlte order. if

d =0 then 6 permutes X and so is of finite order. If 4 > 1 then




& has a symbol

1 n 1 k

?w&.t“uo& Wy oW,
%
i

G - T
Z T

£

where k > 2 becaguse ¥ > 3 . Because k > 2 , we can insert a row

R S

I

i %.SWUm e Ul e UL
1ins | 2

E

L

| P ——

PR ¥ o SRR T £ PR Vi 4 A
1 2 n

£
which is an even permutation of the first row, and obtain a symbol for a
K a N " «
relation 8 = ¢y , where ¢ permutes the basis R N ERRRTA
- : and hence is an element of G . of finite order, and ¢ has depth at
mest d-1 .  The lemna follows.
The next theorem is an obvious consequence of the last three lemmas.
ive
w = [ 4 s'q’. L . i
oh THEOREM 5.4. For il n,vr, G e gimple.

hen
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6. FINITE SURGROUPS OF THE G, .0 NON- I SOMORPHISMS

n,T

if H is a fixed finite group, we are interested in this sectlon

in the conjugacy classes of homomorphisms of H into GF . Of course,

1. ™ - - i3 o ol s . - . -~ .
o H-G RS R S S £ are conjugate if, for some & in G
£ n,r ’ 3:(15&? nIUg 1t, oY S0m S 53 h,r

L . , =
and 21l h in H , ho = 8 "hel

Let leaueyx be & set of vepresentatives of the isomorpnism ¢l

be non-negative integ

all zero, such R & nt§XT§ = p (n-1} . Then we can find

a free basis X of Voo cf size Eniixji ¢ we can make X into an
H-space which is split into n,  sets jgomorphic to X, for 3= l,....%
id we can extend this acticn to produce a homomorphism of i ointoe G .

Ouviously the choices involved here 4o not

+

the homomorphl sm

ause there are elements © G . which s

basis te another of the = permute a free basis.
fordered) set (m,,...,n.} a conjugacy < of

OMOmL 1isms aris

homomorphisms . Fach

.

for by an obvious modification of the proct of Lemma 4.1, if a0 H o G

st
(5]
[
.

is a homomorphism then Hu fixes some free ba

question is, which sets of integers correspond to
of homomorphisms?

ion 2 of

!

I£f Ha Ffixes both X and

SOME  CAL

o question
becomes, how do the n. change if we pass Irom ¥ to an expansion also
A - :

fixed by He 7 If X, is an orbit of H in X , then it is clear that

is an expansion of X fixed by Ha , and that every such expansion is the

s sort. But if X corresponds to

result of a sequence of moves of th




0
£

g
=

hat

the

ay
o
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{nlgagg,nt} and X* to (nig.u@,ng} it is clear that, if XG is

isomorphic to Xi as H-space then ni £ 0 and ﬁg = ni + n-1 and

ng = n for j # i since for each k , {xak b x € XQ} is also

isomorphic to XG . If we define a

b >0 tomean that a =b (n-1}) and a =0 if and only if b = 0 ,

b (n-1} for integers a > 0 and

and extend the notation componentwise to sequences, we see that (ml,,eegmt}

and (ﬁgs,g.Pnt} determine the same conjugacy class of embedding if and

g
only if {mi} z {ni) (n-1} . We sum up the discussion in a lemms.

LEMMA 6.1. If Xl,.guyxt 18 a set of representatives of the

a-

omorghasw classes of transitive He-spaces, then the conjugacy classe

o)

of homomorphisms of H into G, , are in one to one corvespondence with
*
- 5.,@1"?_
1! X ET (n-1)

the equivalence classes of solutions of m,|X ! LR
*

under the equivaelence relation

If we are interested in embeddings rather than in homomorphisms, or

. e S . e
in &n - rather than b . this vesult has to be modified; but we deal
@ "3

with such questions when they arise vather than try to state general answers,

LEMMA 6.2. If p 1

o

)

a prime which doss wnot divide n-1 then the

mmber of congugacy classes of elements of order p in G i8 0 .

A cyclicgroup of order p has transitive spaces of 1 and p

elements. Thus by Lemma 6.1 the number of conjugacy classes of

oy

homomorphisms of a cyclic group of order p in G , s the number of
b e &

inequivalent solutions of

TP,

Now n, can take any of the n possible values 0,1,...,n-1 . The

3

1

congruence class of n, mod {(n-1} 1is then uniquely determined, since p

E
does not divide n-1 ; and so the (=)-class is uniquely determined unless
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%
HHE]

r , when we may have n, = g or n, n-1 . S¢ there are n+l

se¢ 135 the trivial homomoyphism,

5508 g

[
-
a3
4]

sothere

n conjugacy classes of clemes

of grder p in G . 1€ n is even we are done. ¥ n is odd
) ity

:
Since p does mot divide mn-1 there is an m such that m = r (n-1) .

and m = 2 (p) by the Chinese Remai nder Theoren An

of G& . fixes two elements in an expansion Y w , and the
£y 4 =
A s . Ly
element O% VoG which simply interchanges il commute

- " 4 - e A P -
with the chosen of order p in G, . fhus elements ol order P
1o 5 4

conjugate in G

Fyte & ey A 91 oy F
1A A o [ u;!&d‘ 12X [
. i
o0 L A B I
T, T o I i

Aoeyelic groeup O £ has., to within isomorthisy pracisaly

I CHLLLG gROU 04 s, Wi o VSOTMON i A5, PIreo AS5SLY 1
one transitive size for each integer b with 0 <b <& . ~

Thus by Lemma 6.1 the comiuy

o
a7}

group into G . are in one-to-one correspondence with the solutions

The embeddings evidently correspond to selut jons with n_ ., # 0 .

s

et { be the set of all equivalence classes {under

el

gverv clement of C s solution of the

Lt
®

(Byseeesly,g) With 1,4, #

a+l’ g+l

above congruence for some value of T . Writing €, for the subset of

G

sgquences (0

ny o= o =, = {3 and Myl £ 0 , we now count the number of elements of
. b 4]

Cb satisfying the congruence, for each choice of 1

b and ¥ . it p



does not divide ~r

On the other hand, £

ions of the form (0,...,0,n_ .,n TS
solutio IO ( ? sV b‘}f*i, b+22 5 a*'lj

each choice of n,

b

n
P Bye1
b 3
has exactly p~ sol

number on the right
cx =d (m} has (c,

Hence, in

R

D¥d

-hand side.

particular,

41

then clearly no element of Cb can be a solutieon.

or each r divisible by pb there are exactly pb

corresponding to

; this is so because the congn

a+1 ? ence

, b+l a
r - (0P o 2:1P ) (n-13
« e b b -
utions for M1 when p = (p ,n-1) divides the

{(Recall that a congruence of the form

m} solutions whenever {c¢.m} divides d .}

the number of solutions of the original congruence

belonging to Cb is the same for every v divisible by p , and is
3 oo vy e Bypa o 43 - B P By ;
therefore equal to p iLh; / (n-1}) . Thu aking ¢ = p (] / (n-1)
for each b, we have the vesult, apart from the fact that we have used
) > g +
G instead of G
n,T n,Tr
To obtain the result in the form required, we first show that
. a . ot . . . .
elements of order p in G .. are conjugate in %ﬁ v whenever they
iz & itg &
are conjugate in G“ - It will be enocugh show that each slement of
N,
T A . + e P . 3 + -
order p- in G computes with an element of G v G . If p
n,T n,T n,T -
is odd, this follows from an argument like that used in the proof of
. , 5 a . +
Lemma 6.2. If p =2, then an element of order p in Gn " induces
L, T
a permutation on a basis of vn .. whose orbits all have length a power
RS
of 2 . Disregarding the vial case where a = (0 , we choose an

element of G th
n,r

$
non
element induces an o

+
o v\ G ) it a
n,r n,r

5o our claim is now verified

If p is odd,

o3

a .. +
lie in G
P n,r

-trivial orbits and

at induces the same cyclic permutation on one cof the

leaves the other basis elements fixed. This
dd permutation on the basis, so it belongs to

1so clearly commutes with the chosen element of Gn
for all p .

Z

then all the conjugacy classes of elements of owder

so the required result follows from the first part of
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the proof. Suppose again therefore that p = 2 . Then the conjugacy

classes of e are in one to one correspondence with

2
[
o}
£
€
=3
reé
%2}
[
bty
[
=
joN
fo]

L

]

the solutions of

spciated with

Under this correspondence a solution {n},,.»yn,

class whose elements each induce a permutation having n.

a Cconj
3

deed
s
et
n
b
fije]
W
e
e
o
:

orbits of length 27 for 1= 1,2,...,a+%L . Since a cyele of even

length is an odd permutation, such an element

pormit L O 18 even. However, the mapping

# (n-1)/2°

a ene-to-one corrvespondence on the set of solutions of the

congruence, and since {(n-] is odd by hypothesis, the numbers
, . a

¥ EN 4 P eTe] y K S oo T N X

L, * ... R,y nd omg b n, ha+1 + (n-13/2

parities Hence exactly half the conjugacy classes of G lie in

In ) have

by taking

the required result

half the value assigned to it in the case of odd p , for every b .

+ L

THEGREM 6.4. conditions for Z80omor Goop G .
e iy J LR AP

L3

are that w=n and {n-1,¢) = {(o-1,8) .

1 B

If m#n we can choose p  to divide neither m-1 nor n-1 ;

A L , o+ o s . .
and then by Lemma 6.2 6 and G_ _  have different numbers of conjugacy

classes of elements of order p . I£f (n-31,v) # (n-1,s} then for some
prime p the powers of p dividing ({(n-1,r} and {(n-1,s) arvre differvent.

+ o+ e 4 . .
G and 0 have different numbers of conjugacy classes

By Lemma 6.3, G {
% n, Tt n,s
of clements of order p~ , for some a .

It may be observed that the present methods can do no move.

:
i
%

e

TovieT s




oy gy

ERYS

LEMMA 6.5. If {(r,m-1} =

of homomorphisms of H into G

We have s = ar {(n-1) for

Lemna 6.1,

sone a

43

the number of conjugac:

and into G ; ave the same ]
£l g -

prime to n-1 . We use

. *
| = v can be mapped into solutions of

AL
£
T by = g iy oa Tachion which 1s on Cn One On uivale classes, by
) ¢ S I = 8 in oA rashion whicn 18 gne 1o one on ».uwﬂ.sl OIS CLasseh;, 3

SR
mapping f{n,,..
inverse of

The

following embedding

its method of procf, which is simila

constructions for locally

finite

theorem belongs 1o

1} . the reverse mapping using the

that used by P, Hall,

London Math. Soo. 34

G contaims on tscmorphic

For any finite group H ,

we mean an embedding  «
fixes
srbits and v fixed peints, or

in fact embeds
is even, and if n  is odd then
embeddings always
4, and any two

conjugate because we are desling

regula
n~1 {n-1} , so that o

Put in the other direciion, this

such that

by a standord ewmbedding of

-

for some free basis X of V .

37

X and

wmhedding o £ 4+ ) .
an embedding conjugate to one of this form.

ndex kK,

T

can be extended to a standard embedding of H (si

n-1 1is even). Of

{this is c¢hvious if n

course, standard

exist since there are expansions of size N = {n-1}d + 1

of the same H

embeddings

with two free

then and so

orbits and v fixed points. But

is in fact a standard embedding of K.

K

/s that if K < H , a standard embedding

Lae

s 211 standard

A
Py
i'v
FK
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embeddings of K arve conjugate, and therefore ‘alike'). But a countable

locally finite group L 1s the union of an ascending chain

- = 5

of finite subgroups. We choose a standard

1 5 Hq .

embedding of H., , extend it to a standard embedding of H, , then

‘2

to 2 standard embedding of H, , efe., finishing up with a standard
3 = ;

N S S PR

£
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7. FEMBEDDINGS AND ISOMORPHISMS OF THE GROUPS G,

In this section we use the ideas o

relationships between different groups

As usual, A = {ajjye.gmn} will d

of Vn , and B = {51,.R¢JB“} will be

&

The operation “inverse' to

Gysenes0 18

f section 3 to study the

G .

n,T

enote the set of unary operations

a fundamental set in Der A4 .

denocted by x , and u will

T
denote the opevation in Der {x} "inverse” to Blpoam,ﬁN ¢ the
existence of p is guaranteed by Lemma 3.1.
For a fixed set X of v elements we now write F (X} = F (X} =V
A n- n,T
for the free algebra of Vr freely gensrated by X . By Lemma 3.2 the
ik
subalgebra of ‘A(X))B generated by X is a free algebra of ﬂN :
we denote this free algebra by FB(X) . Thus the automorphism groups
£ 7 . (Y s 4 g G 0 . (3 =Y e %
of FALX} and LBQh} are the groups bn,r and hﬁ,‘ respectively.
LEMMA 7.1. The group G . has a subgroup teomorphic to G, o
“is Ya s
consieting of those automorphisms 6 of FA{X} such that X8 X}
4 necessary and sufficient condition for an element ¢ in ﬁq . to
JE A
belong to this subgroup is that, for all sufficiently large integers s
(s 3 W o ¥, o b4 b
v Sy v
LEE  J¢ C© ?B(A} s
Let & be an element of G such that X8 € F_ (X} . As in

n, T

the proof of Lemma 3.2, we see that the

FB{X} is an endomorphism of F (X} .

As X6 is a finite set there is

involved in any element.

we have (X8)B¥ ¢ X (B) .

and hence

(x8%)e ¢ x (B

Provided we choose s

Since 9§ is

restriction 8|, ... of & to

a bound on the number of u's
to exceed this bound,

an endomorphism, (XBSBG (Xe}ﬁg

2
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s . . o . .
Now XB~ 1is a B-expansion of X and hence is also an A-expansion.

Since € is an automorphism of FA(K} , 1t follows that (XESEQ is an

A-expansion of X . But by Lemma 3.3 an A-expansion of X contained
. ) . . . o e .
in X {B) is also a B-expansion of X . Hence (XB7)® is a

B-expansion of X , and therefore a free basis of FB{X} . Thus

6| maps one {finite) free basis of F

'FB{X) X} onte snother, so it is

sl
an automorphism of FFQK} .
2
It follows that the elements & such that X8 C F

subgroup of Gn r for the above shows that X¢ i_FE
Ed

elements © .  Alse from the sbove we see that the mapping 6 -+ @

is an isomorphism from this subgroup onto G, _ Thus the first part

o
i
(a3

he lemma is proved.

We have already seen that if 6 belongs to this subgroup then the

(x8%y8 ¢ X {B)

th

is satisfied for all sufficientiy large integers s .  Conversely i

\

an element & satisfies this condition for some s , then since

et

i and

~

b o~ " g B - = e
XB” are both free generating sets for FB(K} ve have X8 :_%BQXJ , and

the proof is therefore complete.

THEQREM 7.72. G ig a subgroup of G whenever N has the

e e N,T n,r

form N =1+ (n-1}d for some d > 1.

By the observation before Lemma 3.1, fundamental sets of size N

exist in Der {al,.h&,an} if and only if N has the form N = 1 + (n-1)d ,

with 4 > 1 . When N Thasthis form we can choose one such fundamental

set B, and we obtain the result by applying Lemma 7.1.

=




7 s M7 T ~ 4‘3 It i]’j,"""h,‘:“’ ] ’-{-h ) ' o ™ .
THEQREM 7.3. If ¢ is a divisor of m , then Ln,r bn}C?

We prove this by embedding both Gn and G in G and

R n,or 2.1

T
showing that the images of the two embeddings coincide. :

Suppose that n = cd , and let (,0 be fundamental sets in

o, are the unary ‘

operations of V., .}  Then by Lemma 3.4 both (D and DC are fundamental

sets of size n .  Using the fundamental set CD we first embed Vn -
¥

in V,_ = F,{X) as in Lemma 3.Z. By Lemma 7.1, G? o = G, 1 contains
dw b 4 oy &y

a subgroup G ) isocmorphic to Gn r e consisting of those elements O
' - i, T - 138

ﬁ‘
o
L—

s0 %G is an expansion of X, and

o
&
2
=
=
e
4]
o
@&
jav]

conseguentiy V,

iy X

. We now embed V. in FZQXC}

using the damental set DO As above, G, ., contains a subgroup
et J,.}‘. - "

G _ disomovphic to G, «consisting of those elements 8§ such that,

T, TC n, re ©
For sufficiently larvge 35 |

fe)
C
e,
Pt
¢
sy
S
[y
-
.
Sy
(o]
oot

However if 6 1is an element for which (1) helds, then

= (D) 78C

cx{cpy ¢ o= xc{ne)y |

30 {2) holds also for this clement. Conversely if 6 is an element such

that (2) holds for some s , then
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s+16

X(CD) XC(DC) *pe

1]

= XC(DC) e
cXcinc? p

= X {(CD? .

=
§
Therefore ¢ belongs to G if and only if it belongs to G s :
n,T n,re @
so0 that € = , and consequently
LT N, TC ’ i
G =G .
n, T n,ro
as claimed.




R g

g. EXPLICIT GENERATORS ARD RELATIONS FOR ¢

2,1

The algebra VZ 1 has two unary operations aiya , which we

2
write as «o,f in this section for simplicity. Elements of V, . are

standard forms over a set X with one element, x say, and we sim

our notation by omitting the x and writing simply a , for example,
in place of xo
The generators that we take for 6 are the elements 1w, A, §, ¥

2,1

defined by the following symbols ¢

s A}
b, o o) 3
¥
! i
(8 o
. J
A foo aB B
‘s
ot g GE
i o Ra BR
}
, "
| Bo ") BHj
s P
Yoo lon o fo
!
i ,
toa Bu 0B .

(Here A 1is a generator, not an operation.) As defining relations

between these generators we have the following, the last two of which,

in brackets, are consequences of the ot
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(8]
8
)
[ )
ek

{1) e = }l’=p = U =
{2} ACUKAVEVEKAKE = 1

i

i

(3} KVAKBCA VI VA VY

2 o :
{4) (Akpan}™ = guxﬂayv}% = 1

P .
(5} (v} “i{pvAate = ]

o
o,
>«'
S
<
p—
1
o

-y

vy D . N
{AevkAv) Tevr{pevenvl Tkuky = 1

W

s
~J
R

. . 52 N oy B
L&) Cueuv) " (ucdvi™) ™ = 1
(9) fAvikpruvivikpc) = 1

(10 5UVPKMK%vuvAKAK}i = 1

o’
(37

(phepkhycve)™ = 1

~~
Beast
By

(113 Gocur)™ = 11
} {
. 4 {
! 14) {kvy = 1 B

shall sketch the methed by which these generaters and

relations were derived.

In section 4 it was shown that each of the groups G is generatad

P
=t
»
o
e
i
s

by its elements of depth at most 3 and that every velation between these

generators is a consequence of relations of depth at most 6 . We shall

show that, in the case of GZ 1 relations of depth a2t most & also
¥

suffice to define the group when we use the generators «, A, ¥, v . A

set of generators fer G v is said to be smooth if, for every olement
iy

e

g in & , there is 2 word w, in these generators such that @ = w,

T

is a relation of the same depth as & .  The proof of Lemma 4.5 shows that

as defining relations between any smooth set of generators we may take the

S S

relations of depth 2t most 6 . A Jdiagram of depth 4 for & is a
graph whose nodes are identified with d-fold expansions of a free

generating set X of Vo . and whose edges are identified with the
]

elements of a specified subset of Gn .. {in practice this will be a
£




generating set), such that an edge between two nodes is an element mapping

one basis onto the other. We shall construct diagrams for G. 1 using

the elements «, x, u, v as edges : because these elements are

B

involutions there will be no need to specify directions on our diagrams,

Observe that the paths on a diagram for Gn , Trepresent elements of

s &

c

G - that are expressible as words in the elements used to label the
edges. An element § is represented by a path associated with a word

w, on a diagram of depth d if and cnly if Gn,r has a relation 6 = w
of depth at most d . Paths that begin and end at the same basis [in
other words, civcuits} correspond te elements that induce permutations

on this basis. In particular paths representing the identity elemsnt ave

circuits, and on a diagram of depth d these correspond to relations

w. = 1 of depth at most d between the elements used to label the edges.

LEMMA 3.1. A otent condition for a set of
elements of Gn . to be o smooth generating set is that, for all 4 < 3,
3
the diagram of depth d be comnected and the permutations corrvesponding
to paths beginning and ending at a fixed basis Y constitute the full

Let 8§ be a set of elements for which the condition on diagrams is

satisfied. Note first that, on a connected diagram, if the permutations

3

corresponding to paths beginning and ending at one basis constitute the
symmetric group, then the same is true of the permutations corresponding
to paths beginning and ending at any other basis.

Now let 6 be an element of depth d < 3 in Gn r - Then there

s &

exist d-fold expansions Y, Z of X such that Y6 = Z . These bases
occur as nodes on the diagram of depth d , and since this diagram is

connected there is a path joining the nodes.  Hence there 1s an element




b

¢ in Gn » mapping Y onte Z which can be expressed as a word w
Y

i

in elements of § so that ¢ = W is a relation of depth at most d .
The element ¢ = 8¢ = induces a permutation on Y so by hypothesis it

£

is represented on the diagram by a path beginning and ending at ¥ .

This path determines a word w,  in elements of § such that ¢ = w
¥

W, T W.W then

g g

is a2 word in elements of & and 6 = e is a relation of depth 4 ,

is a velation of depth at wost d

To complete the proof of the sufficiency we show how to construct

a word W, with these properties when 8 has depth greater than 3 .

By Lemma 4.3 the elements of depth at most 3  form a smocth generating
set, Hence an element & of depth d > 3 can be expressed 2s 3 word,

most 3%  such that the

o]
o
¢

G.an,,eg say, in elements 9. of depth

relation € = 61@7L,.%C has depth 4 . By the first part of the proef
i o - -
we can find words w, of the required type for each 6. , and we can
o :l_ i
therefore take for w, the word wy wy ...wy . This proves that the
) 12 s
condition on diagrams is sufficient.
For the necessity, suppose 8 is a smooth generating set for Gn -
and consider the disgram of depth d , for arbitrary d . if v

and 7 are any two nodes on this diagram, then Y and Z are also

d-fold expansicns of X . Hence theve is an automorphiszm 8 in G

gu
b

mapping ¥ onto I . By hypothesis there is a relation & = W of

f)
"y
()]
=t
[

depth at most d which expresses 8§ as a word in elements o

in the proof of Lemma 4.3 we see that the symbol for € having Y and

|
7 as its rows can be filled out to a symbol for the yvelation 6 = Wy -

.
it follows that there is a path from Y to Z on the diagram. Therefore §

i
the diesgram is connected. o

- . ‘ . 0
Finally, if = i¢ o wermutation belonging to the symmetric group ,§

on 2 basis Y on this diagram, then = extends tc an automorphism of
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Vn - which maps Y onto itself. This automorphism can be expressed

3

as a word in elements of S by means of a relation of depth at most 4 ,
so as above there is a path beginning and ending at Y that corresponds

to the permutation w .

-

Using this lemma we shall verify that «, &, u, v form a smooth
generating set for GZ,I . To do this we construct the diaprams of depths
at most 3 for G2)1 and check that the hypcthesis of the lemma are
fulfilled.

On the diagrams we denote expansions of X by symbols of the form

® ® .

symbol on the diagram of depth 4 , start from the unigque minimal

and so on. To find the basis venresented by such a
b )

expansion containing the circled element and expand it to a d-fold ]
expansion of X , first expanding symmetrically from the circled element :
as far as possible and then carrying out any additional expansions needed

at either o or £ , whichever one has so far been left unexpanded.

Thus, for example,

po . 5 L e m ama
Raoy = {o,Bow, B0/, B2 on the depth 3 diagranm
F] 3 PR i & E)

-t

Ra) = f(oaa,aB,Boa,BaB,BB) on the depth 4 diagram
5 £ 3

@

{:j = (oco,a0B,ofa,aBfR,B) on the depth 4 diagram.

(o0 ,uB, Boca, Bask, Baula, BuRB,88) on the depth & diagram,

i
o
2
j3
DS
<
w
e
o
e

on the depth 2 diagram,

In conformity with this notation a basis obtained by expanding X
symmetrically is denoted simply by (Z} . Later we shall introduce
further symbols for bases not expressible in this way.

The diagram of depth 0 consists of one node (the basis X} and

no edges.  The diagram of depth 1 is

o>




4

o

{Here {%ﬁ stands for {o0 B).) The permutation induced by «  is

full symmetric group (of degree 2}.

non-trivial, so it gené:

The diagram of depth 2 1is

e T i< LN —
L2 - ¢ sy mopremst s %
O (x>

Writing 1, 2, 3 for the elements ou, wh, 8 of the basis (E} .

T 1, 1 ey .t e pw 3 o~ e
the circuits A, kuk  at

we find that the permutations Coyy

and (1354

this node are

v
241G

symmetric group Sﬁ;
A

group, we obtain the following
& *

other relations

pave L the

oy
Ex L= e

The last of these 1s

merely tell us that A and W are involutions, which we know already.

The diagram of depth 3 is
P
¥ ‘n
i
£
\\ )"
3 s .
: G W ¢ W O G ¥
94 ] =y UL 1 AN A S
“‘(\m‘ ./ \».wj ‘\_ M') m,.,,,\,...\,-""’
i
.
V.
o
¥l
" S 4 ' P ~ P % -
we identify the elements oo, off, B, g of L 1,04, %, 4

respectively, we can associate

3
S

AT A (12134

SR e




Since the symmetric group is generated by transpositions of neighbouring
elements, the first, second and fourth of these generate S<:> . Now
Sy has the following defining relations on the generators a = (12)34,
b

1(23)4, ¢ = 12(34), d = (13)(24) :
a2 = b? = ¢2 = (ab)3 = (be)® = (ac)? =1, bdb = ac .

Since every circuit at the node (:} is expressible as a product of
circuits corresponding to these permutations, it follows that every
relation of depth at most 3 in szl 1s a consequence of the following
relations

2 2 o 2
K = A% = opé = ys o= L

5
<

. N 2 .
(AkuxAv}® = (peleuvi® = 1

VIV = AKUKAUKAKE .

These give us relations {2} and (4} on page 50. Also, if we note
that «v corresponds to the permutation (13)(24).(23} = (1234}, we
obtain the relation (xkv)}"* = 1 , which is relation (14) on page 50.

e Y «

The information derived so far tells us that the conditions of
Lemma 8.1 are satisfied, and we conclude that {x,x,u,v} 1is a smocth
generating set.  Thus to obtain defining relations for ngl it would
now be sufficient to construct the diagram of depth 6 and examine all
the circuits. In practice, however, this would mean working with a

diagram having 132 nodes, and it is simpler to use relations at lower

depths first to reduce the size of the diagram.

We therefore next consider the diagram of depth 4, which is




éj,

k&
2

s
(&

()

=
\ms
XELJ

" [ ®

ﬁ;;ﬁ ag Qg%é

,
[ | {
i\J" v J/

A u A U
The relation wvikpvkivpvivp = 1, which is relation (3} on page 50,
corresponds to a circuit at (B%} and may be verified as follows.
e
Identify the elements Bas, BoB, RB. ao, af of ﬁ%& with 1,2,%,4,5
PN ’

in the ordey given and note that the circuits wvicuviry, U, VAV

A

(14)(25)3, (15)(23)4

"

e
¥
“aoe’

o~

k4

correspond te the permutations 1{24)(35

respectively ©  the required relation is obtaimned by meltiplying

permutations.

We use this velation and relation (2}, which was derived sbhove,

to "reduce' the diagram as follows. Write relation {2} in the form

A= KPAKUKAVEVUER

and cbserve that the word on the right-hand side represents a circuit

™ . .
at é;%y , whereas the X on the left-hand side represents a loop at

a;% . As this loop does not occur as part of the circuit represented
p—

by the right-hand side, we can replace any circuit on the diagram that
}, o s g

SN e

involves the loop by one that does not, in such a way that the corresponding -
3

It follows that

permutations induced on any fixed basis are the same.




any relation of depth at most 4 is 2 consequence of relation (2}
together with relations on the diagram that remains when the loop is

deleted. Un the latter diagram the only circuits passing through

N . . . . . .

and Qém@ are those involving s trivial circuit consisting of a path
wt?

followed by its inverse, Hence we may also delete these nodes and the

edges that end at them. In this wayv we remove the whole "tassel' at
& Jd

t‘f

the left-hand side of the diagram. The other !

hree tassels may be

removed exactly

Next we rewrite relation (3} in the form

and wse it in the same

As before, when we have
longer occur in an essential way on any vemaining circuits, so they may
be removed, together with the edges jeining them to the rest of

diagram. We are thus left with the veduced diagram :

g7
cment  Avpy  vepresents a circuit at {aB) ,

n this diagraw the
£r

and if we label the elements ao, oBo, aff, Be, B8R of this bhasis by

1

1,2,3,4,5 respectively, then the permutation corresponding to

turns out to be the cycle (1 2 3 5 4). Hence we obtain the relaticon
{vpv}? = 1,

which is relation (6} on page 50, We could now use defining relations

“ k2

of the syvmmetric group S o to find a basis for the relations of depth
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at most 4, but since we shall Iater find 2 basis for ail the velations

of there iz not much point in doing this. {In fact, relation (&)

[on]

2,1

was derived only because we shall need it to veduce the depth 6 diagram.)

s

The reductions that were carried out above consisted in removing
nodes that occurred as endpoints of only two edges on the diagram of
depth 4 It is easy to see that on every diagram of depth greater

>

than 3 the nodes with this property arve precisely those that represent
bases in which either a or £ 1s unexpanded. By examining the effect

of the generators w«, A, W, v on such bases it is not hard to see that

these nodes will occur in pairs on diagrams of depth greater than 3,

« or §w
i

e 3,
A
o

<~
=

or in the form

These correspond precisely to the sections that we removed frowm the
diagram of depth 4 , and we can use the same relations to remove them
from the diagram of depth 6 .

After applying these reductions we obtain the reduced diagram of

depth 6 shown on page 60. On this diagram we use the following

notatiocn. The bases

i M DR P




e
22 . N . !
{'“’ = {ga, of, Beocs, Socg, BoB, Bfa, B883)
\Bog ’ v
e
etc. are obtained by expanding symmetrically about both the circled |
7 lements, starting from the unique minimal expansion containing both and
1
.\ ) P . % o
proceeding as before.  The symbols jan |, | L Ba |, | 88 | denote
the following basss @ ;
= {aw, ofe, oBB, Ban, Saf, (Bo, ERE) ;
] X
af | o= » vl f8u, £BB)
oy - . Bo, BB, 283}
» ) hY
1% = foo, Rof Rus, 28} .
The remaini: labelled according to the scheme already explained.
i
:
4
%
§
.
.
i
- a
2
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@/

2
N

o
;‘MM
™ -

-

S
e wr%?.iﬁaitii«

(Tt )
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61

We now carry out further reductions on this diagram, beginning by

removing the branches surrounding the areas labelled A - G .  Note first

W

that relations (14} can be written a

LAY G AT

3

which shows that the two branches surrounding each arez are "equivalent”
to one ancther : that is, any relation corresponding to a circuit that
involves one branch is eguivalent to a relation corresponding to a

reuit involving the other. Mext we use the relstion

T‘\?r

{kvgAvuvivpviic = 1

which follows from {(2) and ({3}, to see that the lower branch at C

is equivalent to the upper one at B , and that the upper bran ch at D

is equivalent to the lower one at E . By what we have just said, this

‘,ml B

means that the pair of branches at (€ is equivalent to the pair at B ,
and the pair at D is eguivalent fo the pair at B . We express this
by writing B 5 C and D = E . We now delete the branches st A using

the relation

ARVEA = UMUAVUEAVUVAVERVEY )

]
&
&
N
P,
e
5
%
[¢]
[
=

observe that both sides are represented by circuits ag

be verified by calculating the permutations that this is a velation.)

can be used to delete the branches at E  {consider

o *\,‘ {; N
Circuits at . ,E } and those at B {consider circuits at (ﬁ } .

oy use symmetrv). Also, by writing this relation as

AKVIKALKYKYE = URVAVHEA
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. . . . a3 o e
and considering civcuits at {;Z;> and iSa , we find that C = F
S
and D = G . It now follows that every pair of branches may be deleted,

so we are left with the diagram

AT,
© Ba \}
GOt/

e

] 2y
] Oyt v

It

Using relation {14) @ {ev)¥ = 1 , which was devived from the depth 3

“t
ey PR T e 1. . PR At and S ard Fla g e
agram, we can delete the nodes iﬁﬁﬁj and \ aag/ {and the edges

3

)

L

joining them to the rest of the diagramj. We then use relation  {

L
R~

, relation {13)} ({depth 2} to

{6} {depth 4} to delete the

remaining tassel on the right, and finally velation (14} o delete the
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These reductions leave us with the diagram

~
e

Y>e.

\\‘nn

\/
SAa
7B Y
\aBg/
e
}
|

>
=)

-
To T
&

'e]
S

!.’
A \ o 1 ‘//;.:.2\‘
. Eﬁa - AR foe PR

Lo S | AR (‘,tc{}
\n—.-*'d

It is now easy to see that all circuits on this diagram passing through

the node | Bx | are expressible as products of the six circuits through

&
&

this node representing the elements «ve, AKUKA, VURAKHV, KUVAVHK,

E T PP . ~ ooy g b 3w ¥ oa
VEAVUVIKY, AVUVAVHVA, respectively.

These elements determine the following permutations
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KUK (16} (27)345
UK A {13}
Kuvivug 12(5634(57)

VEAVEVAKY

ot
o,
B
N
N’
s,
e
IS
N
s,
1%y
)
L

AVUVAVIUA {133{(25) (4637

The compiete list Fining relations is obtained by taking those used
80 together with a set of defining relations for the symmetric group

5. on thess Qeneraiors.

7 &




9. A SEMINORMAL FORM FOR ELEMENTS OF G, .

In this section we pick an automorphism 6 of Vn r and construct

-9

a basis for Vo oo which makes the study of 6 easy. We shall then

3
apply the construction to study algorithmic questions, showing that one
can solve the conjugacy problem in Gn r and also recognize when € is
“AE

of infinite order. We shall use the same method to study torsion free

abelian subgroups of Gn - of finite rank.
.
The method is based on a consideration of the orbit structure of
8 on X{A} for any basis X . Since 6 is one to one on V s

n,7T
6 may have orbits in X (A} of any or all of the following five kinds.
. - . . 51
(i} Complete tnfinite ovbits. For y in such an orbit, ¥9° belongs
;¢ . m . . i .
to X LA} for all integers i , and the elements y6  are all
different.

.. L ‘ L., L ) : .
i1y Complete fiwmite orbits. Fer vy in such an orbit, y@ = v for

L)
s

some positive integer n , and vy, ve,..., y%n all belong to
A .

(1ii) Right semi-infinite orbits. For some y in the orbit, y®
belongs to X (A} for all i > 6, but ye"} does not.  The

lements y&° , 1 > 0 , are then, of course, necessarily all

different.

s e e .. , -1 e
(iv) Left semi-infinite orbits. Interchange & and & {iidi}.
(v} Fiwnite incomplete orbits. Here for some y and some non-negative

integer n, y, ¥8,..., yan belong to X (A} but y@“l and

y6n+1

do not.
(In the case of incomplete orbits, several of them may really belong

to the same orbit of & on V_ _ , but we are not concerned about this.)

By Lemma 4.1, for suitable expansion s Y and Z of X we have Y8 = Z ,




&6

so that (Y (A

yia )y vz A

and hence

Thus if u € % ¢
hence u is the
of a right semi-
v 1s the termin

semi-~infini

and the initial
are evidently in
many right semi-

the discussion

cte. wWill be use

(a ) A

glement vy € X 4

contraction of ¥ into X {A? , in which case we see

eve arve nc finite incomplete orbits. The letters T, 4, A,

79 ¢ X{ADY and (Z{AJ)8 E Xx{A Y . Since

is finite and an orbit of type {iiil} must contain an

3

{A? , therc are only a finite number of orbits

Similarly there are only finitely many orbits of type

Furthermore we may assume that Y is chosen so that ©

e

f Lemma 4.1 that

YAy = X4AY X lAaYs

P
L

a9
o
o2

X4a 2

Ay Nz 4Aay then u £ X{AIS , so uﬁ“l £ % (A and

initial element either of an incomplete finite orbit or

s {Aay VY LAY then

T

infinite orbit. Similarly if v

al element either of an incomplete finite orbit or of a

te orbit. But X {Aar N zdlad]sqx{lar Vydladj,

and terminal elements of the finite incomplete orbits
one-to-one correspondence. Therefore there are 3§

infinite orbits as left semi-infinite orbits. We summparize

+ 7/[\6“

There are o

there are as many of type (iii) as of type (iv}.

. form with respect to the

d for sequences, possibly empty, of the form

. §
, and we write [T} = k .




LEMMA 9,Mu For an

automorphism 9

respect to which & <8 in seminormal form

The proef is by induction on k ,

orbits of type (v} for some ¥ . If k= we

o)
o]
=
o}
T
-,

there is element xI , with x € X

crbit containin

~ . :

for some w and n , x%  and x6 are not in
-1 ; ! . o e

xe™™ ang  xI'e" are not, so & is also of type (

o= XV {xd U X b then

.
LA, , o m eyl
1’ Ty

only change in orbits when we pass from X to X¥
reduced by one the number of of
induction we are done.

If 6 dis in seminormal form with o

in semincrmal form

that given g finite set ¢lements there

form.

g 1

S T

to which they are

o i
//L"lz’/?r‘i}'«'a" 0 oQ

. 5 o . . R ’ 3 L - . b
(B} If for some x in X and some U , & with

TR
4 s

Laen

xA  belong to the same orbit,

the orbit cont

(i)

hermore

. 5 .
e P
n o> 0 and (14)

i K (R}

¢y If ox

containz yU , for some y falling

,fz.um; x

.
gsoma T .

g X th

PO T A o
el form w

S by v A ot o
arbit contalning X 18 Left sen

15

abot

7 th

(,'7}57/ L

ragp

. ..
there extsts

aye done,

x &
%
é

{co

e

2aA8E

ba

si8 with

the number of elements in the

Otherwise

.
X

a0t

D L

h:8t

Sy
{3

with respect

the ¢

4

J

4

o

2

fo gy
A/

I P,
Lie

,.
1T

ﬁ?”)\.&

2

3
@&na
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We use repeatedly the principle. that if O is an orbit (complete

or not) then OF (= {yT | y € 0}) 1is at least part of an orbit. In
case (A) this implies immediately that the orbit containing x is
finite, and it is therefore complete, since 8 is in seminormal form.
1f the orbit containing x contains zlso yA , where y 1is in X ,
then it is A0, where U is the orbit containing vy . Since X
belongs to the orbit, this implies 4 = 1, completing case (4.

It follows that if x belongs to a finite orbit, then the orbit

containin

<3

xI' is {x F,..,sxkF} for some set of distinct generators
X5 in X . Thus in case (B) the orbit containing x nmust be at least
semi-infinite since T # A . We may suppose that x4 stands to the
right of =xI' in the orbit that contains them both. If the orbit ¢
containing x is right semi-infinite, then 0T contains xI' and
everything in its orbit te the right of it. In particular, it contains
x4 . Sog for seme A # 1, A=A, and %8" = xA for some n > 0 .
Similarly if € is left semi-infinite then for some & # 1 we have

alt Lo v e . e 0 \ g
and x8 = x4 for some n < 0 . If U were & complete

i
=
[

I

h

infinite orbit, each of [ , A would be a proper final segment of the
other, which is impossible. This completes the proof of (B).

Finally (C) is obvious, for if x does not come under case (4) the

3o

i

inite, so the orbit contains

5

s

orbit containing it is infinite; but X

some yI' and y& , y in X, [ #A , and y falls under case {B}.

COROLLARY . If o <g an element of infinite order in Cor
then there is a bound on the set of integers i such that there is a 9
n bn,r with &7 = 8 .
Since O has infinite order so does every such ¢ and by Lemma 9.3
gach such ¢ has a semi-infinite orbit. For some 1 this orbit 1s a f%




[*3)
e

disjoint union of i semi-infinite orbits for &, and since @& has
only finitely many semi-infinite orbits by Lemma 9.1, there is a bound
on the 1 .

When we apply Lemma 9.3 we shall speak of generators or elements

of X of types (4), (B} and (C}. Following a vector space analogy,

o e , P
we call an element u of kn r such that for some T , ud = wl
3
T s rade i At e T o wivh mbavcstonta e 74 :

a characteristic element, with characteristic multiplier T . The
element and the multiplier A N

An slement & of Gn 3 is of infinite order 1f
A Ty F For sore £ 0 6™ 4oa 0 o Treryarym eyt e
and only 1f for some w# G, U Ads a proper characteristic element.

o g : o~ i . .
T¥ u is a characteristic element of ¢ with multiplier T then

ur”  are all

mi iy . , . . ,
ue™ = urd o= 1,2, . But if I # 1, the glement

s large encugh for uld  to belong to X <A DY

H i
;

different as soon as

sg that 6 has infinite order. Far the converse let € be in seminoimal
. - moo , ,

form with vespect o X . I no @ has a proper characteristi

element, then X has no of type (B} and hence none of type (C).

Thus 21l elements of ¥ are of type (4), whence & 1is a pa gyrmutation of

¥ and has finite order.

o

Next, if & , ¢ are avtomorphisms of two isomorphic free algebras
Vm,r and Vé,r , we write 6 o ¢ if there is an isomorphism
ool Vn;r > Vé,r such that ¢ = p"lep . Ohserve that =~  reduces to
onjugacy in Gnyr if 6 and ¢ are autoworphisms of the same algebra.
For a finitely ¥ ooin Vn with an automorphism
8 , let VP and VRI be the subalgehras generated by elements of V

in finite orbits of © and proper cha racteristic elements of powers of
4 2

8 respectively. By Theorem 9.4, © is periodic if and only it Vg

is empty: if V, is empty we shall say that @ is reqular infinite.
pLy; y

i
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THECREM 9.5. The finitely generated free clgebra Y 1is a free

product of the G-admissible subalgebras Vp and Voy . If 85 =8|,
' P
and o7 = © V then, for two automorphisms 8 and & , B ~ ¢ Zf
RI

1A A o ;£ ) .y
and onty 1f 8y vy and fpy ™ ¢RI .

Let X be 2 basis with respect to which 6§ 1s in seminormal form,

let V] be generated by the elements of X of type (4) of Lemma 9.3

and Vé? by the elements of types (B} and {C). Then V is certainly

the free product of % and ké] £0 we have to show they are @-zdmissible
and VE = Vp s Véi = VRI . We use freguently the fact that an element

u belongs to s subalgebra if and only if there is an integer s such

that all ul' do for all T such that (| = 5 .

I U lies in a finite orbit of 6 then there is an s such that
for all A of length s, ud € X{A) , and ui is in a finite orbit

of 8 . Thus ulA = xI' for some x € X and T € (A , and by
Lemma 9. 3 (4}, x is in a finite orbit so x € V! and ub = xI' € Vi .

Since this is true for all A of length s , u € VI |, Thus V!  contains
= P

all finite orbits of @ . It is generated by these orbits because it is

already generated by the ones which lie in X . Thus vp = v; and

it is clearly ©@-admissible.

We show next that V;l is ©-admissible; that is, if u belongs

A%

a1
to . S0 do uf and ub . Because we can replace u by the

&}
VeI

set of all wi , T} 1large enough, and (ul'}é = udl
£4 £ &y

ok

¢., it is
sufficient to prove this statement in case u, ul, &6_} all belong to

X (A . But then, by assumption, u is xA with x of type (B} or
{C) of Lemma 2.3; and ubd and ue'l, belonging to the same orbit as u ,
are also of the form xI' with x of type (B) or (U, and so belong to
Ve » as required. We show VJ. contains no preper characteristic

elements of powers of § . If u is a proper characteristic element

- mi i . .
for 6 , wd =ul' , where T #1 , and so uf = ul™ . Choose i
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s0 large that ul? belongs to X {A Y . Then ul" belongs to a

semi-infinite orbit {right semi-infinite if mw > 0 , left semi-infinite

if m< 0} and se it is x4 for some x in X of type {B) and some A .

and since VJ is G-admissible, u

belongs to Vp. . That is, V. «contains all proper characteristic
I3 .
elements of powers of O . Now Vi, 1is gemerated by elements x in X

of type (B} or {C}. An element of type (B} is a proper characteristic
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some integer m generator ¥y of type (B), and word A . Then

PP L S ; i Tite P ey jatic el
% o= {y8 )4, and vyo . like ¥y , i3 a proper characteristic element

elements and so Vi, = ¥
~ ’ RI RI

an invariant

sentance of

It is convenient pext to introduce a slight strengthening of the

; > : ‘ s aho o ar P e G e v PR R .
notion of seminormal form /e shall say that § 1s in guasinormal form

in seminormal form with ve

X . #e show

to X , but not with vrespect to any proper
there 1s a basis X with respect to which € is in guasinormal form.
Let Y be a basis with vespect to which ¢ 1is in seminormal form. g
there is a contraction of Y with respect to which 8 is in seminormal
form call it Z ; otherwise take ¥ = ¥ .  Apply the same process 1o

necessary, to get a chain Y, 2,... with [Y| > |Z| > ... .

ket
4

Z,

a finite number of steps

Since Y is

with respect to which © 1is in quasinormal form. The

at & basi

following result shows the usefulness of the quasinormal form.

o

LEMMA form with respect to .

m >0 and u,v belong to X (A}  then u8 belongs

‘>

and ©f v = ub

to X (AY for 1 =1,...,m-1 .

e T R P
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is

is legitimate because the set of all
enumerated. The analogue of the w

two symbols represent the same clements.

=
i

This is clearly soluble for,

symbols of elements can be effectively

rd problem is then the question when

given any symbol for & , we can find a ''shortest possible” such symbol,

and by Lemma 4.1 two such shortest possible symbols differ only by a

permutation of columns.

of our algebra, we can find from a given

to the new basis,

o ) z
a basis with respect to which 8 1g

in V. we can tell whet

Y fo gy .7, ey
8o, what are the integers m

{+) Srtarting with an arbitrary be

we construct the orbit

amd ]
oL X8 T, oxe T, oxg T,

going forward until either we reach

. . . A
not in X (A} , or we reach x&

g -
0 < & <m, we have x8 = y[' and

and going backward similarly until we are stopped, or reach the repet

of a generator. If for some x

& is not in seminormal form with respect
element x as in bLemma 9.7 and start again.

in both directions, 6 is in seminormal form with respect to X

after a finite amcunt of time this

with respect to which 8

=<

basis

similarly all the contractions of

to find a basis with respect to which

2 m g ® “ .
LFMMﬁ . Givern an @Lemen

wWe ayre

must happen.

Equally trivially, if we change the basis X

(1} we can construci
et ey T L i d ALY Loan
quasinormal Form and {(11) for

same ovbit of 6 , and

o

iy

and an element x  of

.
, X6, ...

O . for which za" i

such that for some x6

symbol for © a symbel relative

W,V

(o
e
)

'V

£

k]

for some y € X , T, &,

X : we expand at the

If for no x are we stopped

When we have found a
vinormal form, we test
{there are only a finite number)

is in quasinormal form.

stopped in both dirvections, then

and
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in guasinormal form. Moreover,

(urye™ = vr

for all T
x{ad .

same orbit of 6 in Vﬂ -
e

some mF 0, A# 1, we have

has no initial segment A , and
mi i Ty 3

s T R L

¢ 0 O

u, ; that is, we may suppose I

O

similarly & has no initial seg

fonbs
=y
<
foni s

multiplier of

the orbit

(’v.
R | A 1

again we stop going

element is not in X (A)

¥

°

for which some 2¢ has already

Then, given that we have made
belong to the orbit only if it i
we can see whether we have

what integers m satisfy ud’ =

1f x is or type ({) then
of tvpe (B) and now we apply the

. : . R
determine the m for which ub

THEOREM 9.3.

the

We may assume we have a basis
because

of any fixed length s |

¥ and that v

i)

forward or back if

oy if we rveach a

bee
o
IS

ol

o3
A

The ovder problem and the conjugacy

¥ with respect te which 6 is

8™ = v if and only if
we may assume that
belong to the

By Lemma 9.6, if w,v

they belong to the same orbit in X (ad .

= yA , where x,y belong to X .

ST . . .
x6 = xh . £ T = 4 IG . where Iy
Y, o= %l then

has no segment A,

ent equal to the characteri

is of type (B}. Now construct, as in part (i/,

2
us”

i
Lot

B
W, W,

hene

we Teach a point at which the next

term 29, z in X,

K

enn included in the samse

reductions mentioned above, v will

aiready written down. In this case

finite complete orbit, and hence see
Vo

. ot . e

for some ¢ X8 o= zZA rOor some 2
above process to zA and v to

o iJ .

problem are

half of the orbit.
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If ¢

basis %

the elements of ¥ as in Lemma 9.3,

type {(B), ©

5]

.
s
M

type

is an element of Gn

has infinite order;

= ] 5T o gy £ & s [}
and hence of type (C/,

75

, » We can find (constructively)} a
5T

with respect to which 6 1is in quasinormal form, and classify

if there are slements of X of
if there are no e¢lements of X of

the order of @ is the least common

multivle of the lengths of the cvcles containing elements of tvpe (4).
g < g »P

To deal with the conjugacy problem let automorphisms 8.¢ of
algebras Vn v and V% - be given and we will show whether 8 v ¢ .
2 ¥

By Thecrem 9.5, 06~

metheds of section 6

¢ if and only if 8? ~ogp and QRE %'¢HI . The

enable us to deal with pericdic elements, 50 we can

.
}

and will suppose 2 and ¢ regular infinite (Bp and QR? can be
obtained constructively from 8).
Suppose we have found, as we can, bases X and Y vrespectively

with respect to which ¢ and ¢

how to find a finite
if 8 v b,

o o F_(X) » F_(Y)

(
H n*

can clearly test, fo

homomorphism ¢ @ F

¢ = o

it}

6p , this is

of automorphisms o

if ¢ is an automerphism of FH{X)

for some 1} we can

isomorphism ¢

then for some o
such that p

Toa given Py o

are in quasinormal form.  We shall show

+

set R o of % inteo Fﬂ{Y} such that

of maps

0 in R, there is an isomorphism

R and ¢ = p “9p .  Since we

whether its unique extension to a

Xy - Fn(Y} is an isomorphism, and if so, whether

enough. Note that thevre are, in fact, an infinity

+
= A

such that ¢ = p “8p 1if there are any at all, since

commuting with 9 (e. if ¢ o= 8

=
.

From now on when we speak of an

~1

replace ¢ by Yo .

we shall mean one such that 4 = o "8p .

We shall introduce an equivalence relaticon on the elements of ¥

taking = to be the

some xI' and yb

are in the same orbit of @& .,

least equivalence relation such that x £ y whenever

The method of proof is

as follows. First we pick an x of type (B} in an equivalence class
g - We show that there is a finite set V of elements of V. such
&

s &
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C e . s ~1 . .
that, if it is true that ¢ = p "8p for some isomorphism ¢ , then
it is possible to choose ¢ so that xp is in V . Next we show that

b

if y is another element of type (B} in X, then there are only finitely

0
many possibilities for yp , provided we restrict ourselves to iscmorphisms
© chosen as above. Then we deal separately with elements of type (),

and repeat the whole procedure for the other equivalence classes. Let

Y be defined by x¢ = x6 for x in X, , x¥v =x for x in X not

in K@ and extend ¥ to a map of FH(X} . Then ¥ 1s an automorphism

of FH(X) which commutes with O . By Lemma 9.3 and since § is regular

infinite we can choose an x in X, of type (B). Then x 1is a

0
o . . in L P » T :
characteristic element of 2 power 6 of & with some multiplier T # 1 .
\ . . . . -1 o
We assume an isomorphism o exists with ¢ = p “8p . Then xo must be
c s mo R - :
a characteristic element of ¢ with multiplier T . it must therefore

belong to a semi-infinite orbit of ¢ (right semi-infinite if wm > 0 ,
jeft if m < 0). We can look at each such orbit and see whether or not
its elements are charzcteristic elements with the right multiplier {(if
one is, they all arej. If no orbit of appropriate characteristic exists,
p  does not exist, and we are done. Returning to the assumption that o
exists we have for some initial or terminal element y of a semi-infinite
orbit and some 1 , xp = y$ . We can replace o by o' =49 "p so
that xp' = xw"iﬁ = xf "p =y is the initial or terminal element of the
orbit in which it lies. {Observe that this adjustment does not affect
zo for z in any other equivalence class.) That is, xp may be taken
to be one of a fixed finite set V of elements.

Suppose next that xI' and yA are in the same orbit, say
yA = (x?}%m , where vy 1is also of type (EB). By the argument of the
last paragraph there is a finite set, W say, of elements such that if

. . . . i
p  exists then there is a2 w € W and an integer 1 such that yp = wd™ .

{(We cannot multiply by ¢ again to normalize.) Given the fact that

p is an isomorphism and knowing xp is a specified element of V and




w in W is such that v»

uniquely.

will be & unique i such

1), Hence

a specified element of V

then we show that we can determine i

Yy = (x08% = (xp)reT

in the same orbit of ¢ . Because ¢ 1is

decomposes into a disioint union of infinite

Thus 1if wdA and xpl are in the same orbit therve

"?

{”1..
ot
o id
Qe
bend

that and we can fin

. e . i
we can 1 for which vp = w¢

Thus given that p is an isomorphism and xp is

, Since W is finive there are only a fiaite

number of possibilities for yp . We can test whether in fact there are
any possibilities for yp by using Lemma 9.7(<7) to sec for each w

in W if wi&A and {(xp)7

are in the same orbit of ¢ .

Given that p 1s an isomorphism and xp is in V , since V is

finite and there are only £

trans

{R) we need never go

type (C) then by Lemma 9.3 there is a 2,7

z, of tvpe (B}, and any

1
Finally if 2z Z x and =z

z, of type (B}, ' , and

Since X is finite

Repeating the above argument

that adjustments made for

for others,

nunber of possibilities for the y is finite,
itivity of ¥ to show that x 2y

through

nitely many y of type(B) in X, , the

Nete that in using the
where both x and y are of type
an element of tvpe (¢); for if 2 is of

in the orbit of 2z for some

orbit containing some 24 containsg also ZETA .

is of type (C) then =z = “?;wi for scme

k¥ ., and zp is determined once Ezjw}?ﬁ

there are a finite nuwmber of equivalence classes.

for each equivalence class, and noting again

one equivalence class do not affect those made

we see that we have constructsd 8 .
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We conclude with the proef of the following theorenm.

THECREM 9.9. Let A be a torsicn free abelian group of finite
rank contoined in G = G_ . Then (1} A 48 a free abelian group of

finite rank, (11} the centralizer Celh) s of finite index in the
A) and (241} N (A} has q dirvect factor B which has
(&) ""

a free abelian subgroup C such that C i3 of finite index in AB .

A characteristic of A is an infinite segquence

i u Ve
i

At A e &

of elements of V . such that for some € in A and T # 1 ,

“}.

uie = ujf =5 for all 1 . If ¢ dis an element of NG(A) then

. ; C e e ol 3 : :
{u}éd is a characteristic for ¢ 6¢ : the theorem is proved by studying
W

4
b
the action of NF(A} on the characteristics.
hY
We begin by showing that if an element of Vn - belongs to a
N,

characteristic at all then there is a unique maximal characteristic

o - ; g Iy e
containing it. Suppose u  belongs to a characteristic {ue™} where

. PP i SR e .. L1 s
ub = ul' . I {u¢1} and {u¢,} are characteristics containing {ué7}
- s

5 L A

with w15¢2 € A and u$, =ups, for i = 1,2 then &, and b, are

initial segments of I . Also

so that for some word L we have &4, = LA , 4, = 4 where & and
£ Fa

. v . " @ s N e
b are positive integers. Replacing A by a power A if necessary,

we may assume that a and b are relatively prime, so for seme c¢,d,

<
i

e . , i i, - -
characteristic containing both {u@l} and {u¢?1 . Since T has only

. . { ¢, d. i .
ac + bd = 1 . Therefore u¢ = gd , and thus {u(@i¢)} } is a

d
¢,

e A B RS SR 8 R T
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.. . s . iy .
a finite number of initial segments it follows that {u8 } is contained
in a unique maximal charvacteristic as required. By Lemmz 9.3 a maximal

characteristic contains a semi-infinite orbit and there are only z finite

number by Lemma §.1 so for any element 6 of A there are only a finite

o

number of maximal characteristics each fized setwise but not pointwise
by some power of & .
Since A 1is of finite rank there exist elements 81”"’6k such

that for any 8 in A there are integers a, Bysoees By with a # 0

o8

such that 87 = € w‘.@EK . We shall show that for any maximal
characteristic there ave integers i and w such that &, fixes the
maximal characteristic setwise but not pointwise. For if f{a} is
the characteristic and ui@ = vif = U, 41, and if ¢ € CG{A) .
in particular if ¢ € A, then {ﬁ}é is one of the finite numher of

characteristics fixed setwise but not pointwise by & . Thus A has a

subgroup B of finite index, m say, fixing {?} setwise. in
X2
m a 1 %
» " - v n 4 k] . P - . "y Le: . .
particular Ei fixes {ul setwise for each 1 .  Suppose ¢ = 61 By
am A a,m

as above, Since 8% = % e, does not fix {QE pointwise, one
Jm oo g w3 I ey 4 - . + T e
Qi must not fix iy} pointwise, giving the result.

Putting together the results of the last two paragraphs :

in all only a finite wumber of maximal characteristics.  We next show
that if ¢ in  No(A) fixes setwisc the maximal characteristic {ai§
we must have u.¢ = U where e = *1 and t 1s an integer. For

] P PO 1 | R R . , -1,
ui¢ = ugfte = uﬂ@;@ 961 = u, {¢ 6%} for some t . Let ¢ = ¢ "63

and observe that ¢ commutes with § . If wu,¢ = u, then

5% 3 i 4 1 1 4 5
w, o=u e’ = wu 6 ¢ = u, ¢ . Hence there is an n such that wu,¥

IS t t t+s ¢
it ouy - ther u_ = u ¥ -1 o= ou @ o= ou so that u, ¥ -1 = .

‘ T t T i’ S s+ t -n+t
Iinductively we get all integers i u pt = . = U, d . If
Inductively we get for all integers i , u P ua1+t 3¢

. o . -1
Inl # 1 then ¢ .maps tu;} into a proper subset so {u;¢ booo{u} .

Yaet
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properly containing a maximal one,
! ]
i
We regard each characteristic

characteristics @ ¢ preserves the

e

which is impossible. Thus

as giving rise to two criented
oriented characteristics corresponding

to f{u,} if e =1, Since there are only a finite number of oriented
4
maximal characteristics, the clements of N = NG{A} preserving each
oriented characteristics form a normal subgroup M of finite index. An
element ¢ of M acts on the characteristics {y} as w, +u;, . . If
we let the maximal characteristics be {p}i”’°’{%}d and the t's
b2

corresponding to an element ¢ of M be 1,..a,ta , it 1s easy 1o
check that the map ¢ > {t¥9°“"td} is a homomorphism of M into a free
abelian group of finite rank, whose kernel L 1s the set of clements
$ of N which fix each characteristic pointwise. Let 6 be a non-
trivial element of A . Since & has infinite order, by Lemma 9.2
some power of it has a3 proper characteristic multiplier, ' osay. Let

m mi

6 = u. T =3 1.6 = ) .

ugb ~.4OI‘ Uy and 0 :
Then
] JRi L m .5 n
1.6 = 1,8 ¢ u, I'e = 4. [
G { 1
Since © acts nmontrivially on the characteristic {u.} , AN L =1
We thus have the normal series
N.(A) =N & M>L el

with N/M  finite, M/L free abeli

an of finite vank and L T A = 1

We can now easily obtain the first two parts of the theorem. Since
AT M= (AN ML/L is free abelian and A 1M is of finite index in
. ~ N n . no . ., —
there is an n such that A7 M > A" so A is free abelian and
. . . s n o_ . "
22 A" because A is torsion free. Notice A" < AN M <M Now

A

k2




a,M1? = (AT M) < MM T

The third part of

A

6 ,B.  generate A

b Ri
'S 1 3
and ¥V 18 3

remark following the proof

the Gj are in semincrmal

by the = of type (B) oy

;3 Of N,‘ A
N
o
and ¢, = Ply

and L above i3z the

the theorem.

{Note that GL{3,

The subgroup A of

since A is abelian and contains

Fhs ehagaceert sbie oFf 7
e CNATACYerisiic of A

set of ¢ with ¢, = 1}.

index in AB ,  since the factor of elements

g e} Tewr e (03 e S g
generated by a findte set

81

o]

=

A
.
-3
B
-

=1, Thus M < C.{A} ,

rem will be proved by showing that if

is the free product of algebras

as in Theorvem 2.5, where each §. 1is periodic on Vp ,

.

WO T
sy by the

e

with respect to X . Now let Vy

,  and VY,

some  §. . Clearly W is the free

and each 8, i3z periedic on Vp . An element

required dirvect product decomposition,

ition {(that is, the

B is the second factor then M (1 B = C

is free abelian, and of finite index in B . But B is of finite

& Form a group

commuting pericdic elements. This proves

hos a subgroun isomerphic to  GL{3,7).

soluble word problem.)

Z) = ¢ of elements of the form
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is abelian and normalized by elements of the form

1 a b}!
g@ Iy
|

e o6 1

but not centralized by them when ¢ # 0 so C.,(A} has infinite index

3

in &F(A) .
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