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I  sUMMARY 0F REsULTs 

The aim of these lectures is to describe an infinite family of 

finitely presented infinite simple groups.R. Thompson discovered one 

of these groups in the course of research on,theX-calculus; the 

construction to be used here is based on work done following a report 

of ~h~~~~~n ~~ work by B. ~~n~~~n. 

We begin by introducing a formulation in terms of universal algebra 

for the mathematical system consisting simp of a set ' and a one to 

one mapping from S onto its n-th Cartesian power s1 .  (~~~ avoid 

trivialities we suppose n > 2')  f' mapping ~~ Sn may he described 

using n mapoinhs al S 
 

1,2,...,n)  where 

a  (aa.. aun) (1) 

We view th~~~ ~~~~~~g~~ ~~ as unary operations on ~.  Because 

the mapping S ± Srl is one to one and onto,it has an inverse 

:  ' ~~ ± S which we may view as an n-ary operation on S.  

~h~~ operations  , . .. . , ~~1  satisf 

i  rl 

~ » ~~~L = 2  n  , ~) 

for a,a1,...  ~~ ~~ ; conversely if ~~ is any set on which 

operations  are defined and satisfy (2) and (~), the mapping 

(1) determines a one to one correspondence S s1 . 

We are therefore led to introduce the variety Vn 
of universal 

algebras with n unary operations  ,•  
and one n-ary operation 

? satisfying the laws (2) and (3).  An algebra of Vn that contains 

more than one element is infinite, because it is in one to one 

correspondence with its nth Cartesian power.  
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For each pair of integers n > 2 , r  1 , let V  be the 

free algebra of V with r free generators.  Any free algebra in 

vn that is freely generated by a set X is also freely generated by 

the set 

X \ {~] U 

for each x ~~ X .  Hence V ~,~~ 
'~~ 

; ~~ 
whevever r 2 s (n-1).  Less 

trivially,the condition ~~ & (n-1)is also a necessary condition 

that V no: 
‚/ 

For n > 2 . ~~ > 1  we write G 
--  

n,~~ 

nf V  ~~h ~~ the groups G , is  finitely presented infinite 
~,, ~~ ~ i 

group.  If n iseven,the" G  is«  and if n is odd, 

then Gn,r has a simple ~u~ z~~~~ G; ‚ of index 2.  (Clearly G 

will aiso be finitely. presented.)  For uniformity we shall sot 

the automorphism group  

' r 
= G  when n is even. n,r 

‚ -  +  + 
If  G  tien r 

~~~ -l ~~ 
= n ; from this it follows that there 

areinfinitely many non-isomorphic groups among the groups G  . 

HoweVer for a fixed n the oroups 
n,r 

corresponding to different 

valoos of•: ' can be isomorphic even when the corresponding algebras 

are not  To decide exactly when this is so a complicated ratter, 

and we give only partial results. 

Let P denote the set of residue classes of integers modulo 

~®1  When rE s (n-I)we know that V  V  and hence also 

5 un s  so 
we may think of the second suffix here as ranging over 

~~ Let (I) be the set of residue classes in P that are prime to 

~ 1 : this is a multiplicative group of order “n-1) 

Eul r's function) and ~~t on P by eniltiplication.  Denote the 

subgroup of ~~ generated by the divisors of n by ~~ A necessary 

condition for Gn,r  
is that r and s belong to the same orbit 



under the action of ~~ on ~~ .  ~~ ~74ffi~~~t condition is that r 

and s belong to the same orbit of ~~ Notice that it follows 

+  + 
from this that G  and G  can be isomorphic when '  and n.r  n,s 

V  are nit. n, 

Ti illustrate the gap loft by the above results, take n = 46 . 

~~ 

ieri  ~t = 24 whereas - L) and the  ~~b~t containing 1, 

(namely  itself)splits into two orbits under the actiGn of ~0 

(namely the ~~~t of .  in ~) .  Thus we cannot decide from the 

above conditions whether, for ~~a~]~ » G '  G  because i and 4,1 

7 arc Ifl tII same ~~~~~t. but in different ~0-~~ it~. 

~he proofs of the  . : results rely on arguments that establish 

non-isomorphisms between. d ifo~~~t plo4s 
 by counting coniugacy 

classes of embeddings of finitegroups (arid, in particular, of cyclic 

groups).  Sitailar arguments show that each C  contains an isomorphic 

copy of every countable locally finite group.  The words"locally 

finite"are ~~~t~~nl~~ not redundant here as there are quite strong 

restrictions on the t~~~~~~ f ~~ ~~~ subgroups of the groups G4n,r .  For 

instance, if ~~ is a torsion-fre abchan group of finite rank 

contained in (  G n r 
+ 

(or  then ~~ ~~ 

~~ is free abolian, 

(ii) CG(i) has finite index. in 

(iii) there ex.ists a direct factor ~~ of N(1) and a free 

abchan subgroup C of ~~ of finite rank such that ~~ 

has finite index in lib . 

From (ii) it follows, for example,that every torsion-free 

 

nilpotent  subgroup of G  is ahelian.  (Recall that in a torsion-free 

nilpotent group R the centralizer of a subgroup is always isolated 

that is, ~~ ~~ ~ (1) implies  ~~ ~ (1  for any n > 0  so that 

NR(~)/~R ~) is torsion-free [Kurosh, Vol. Ii, 661). 



~h "smallest" of th5i groups, G21 » cangenerated by 

4 generators, subject to  ~~ defin~~g relations, all of which can 

: 00 not  

~~ comfortably written on ~~ 
single sheet of paper. 

prove it here,
common Upper bound to the  ;: ~: elements 

probably ( W)Uid be enough. 

In.  n 

shall ~~W in the last section. 
 ' word problem issoluble because 

finite17,.g(prierated aimple group wkose
defining : ~~ i ~i ~~ an7,:recursive  

enumerabLe ')l ~~ word pPc)hibm. 

If G  I the resuit  , so 

we  ~~ 
suppose that someword u defines a non-trivial

element. of G . 

Lit '- be any word. 
 ~) testwhti~~ in G , we 

two lists.  ~he first list consistsif the simultaneously compite 

defining relationsof ( and their consequences: it is easy'see 

thaf these form a 
recursively enumerableslice the defining 

relations if ( ao.  ~~~ second list consistsof all tt.e 
~. 

of fhe defining relations of G and the additiunai relation w = I ; 

again this is a recursively'enumerable
set, for  .:. i..~~ ~~~~ 1 . 

Eventually either vi will appear on the fi
list, andso  

w = 1 in (  ur L willap.Dear on 
the second.1:i  and w  

I in. 

G  For if w  
I in. G the relations on the second

are those 

if 

 

a proper homomorphic 
~~~ of G .  this ~~~ only be the 

trivial group,
~~~~ Will certainly include u= 1 

It is 
needed to generateG 

not known if there is a bound. ~~~~ the minimal number if defining 

relation_ii: the G  . il ~~ 
the cbnjugacy and order ~~U i ~~ are soluble, as we 

n 

Left G bi such ~~ group.  



riups ~~ 

sna and Sn  
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~.~. Hurley is considering a variation from the approach here.  

In it the one to one correspondence between the sets S and s1 is 

replaced by an isomorphism between elementary abcHan 

and ~~ One could also look at isomorphisms between 

for m ? f1  Both of these variations were suggested by ~.~. Neumann. 



as 5 ~t~t. . O that ~, is 
Crhe caso 

~~ .1 (~~ U {;k}) 

~~ we shall mean. one of t : ~~ . 5be 

sequences of:lements of . ~ .  , 

- ,) A u ]/O~~ 5  by ( 

for 

~~ . ~~
 ~t~ ; 

I :2  n 
arc 

•~~1~~~~ 1- 1.(r(] .~~ 

, 

such that ws  1. 

(.' 

2 .  ~~ lE ~LL;;. k•;  n r 

For any set  . ~~ let the free 

It will be useful to have a. method of 

.o~ti / 
 construction we describenow also 

suggests bun to solme  worf  : ':?lem  i  F ~) . 
n 

We continue to write. o , . . . o ,  the operations ~s ~o~~otod 

with th algebras in  .  Lt ~.  ~~ } ,  For the 

cbnstruction of F ClO we shall assum,... 

is a  .5,. ~( ~~:(.).  bnl  t ~~ foln 

and  ) 

We male the set of s : .  f forms into an ; i :~~ 
by. :  ..  . 

 

operations ~.  ' as follows     : 
, .  ~~ 1 

( ~~ . o  )(L  xoo o...a. a.  U) 

..  ~~ .1 

 

2 

So  n 
 w. 
 (2) 

. .  
generated by 

O~~Ot~U~t11  ( 
SA 

~. 



2:. 

for i  i 2 . .  n and 

(w w2  w1w2 .w
n 

Z~~ se there is ' standard form u. such that w =u~. for I  i 

i = 1„..,,n in which case we define 

44,  i:•  u(~1)? = u  (4) 

The algebra if standard formsdefinedabove is ~~ 

freeiy genevated by X . n 

From the way the operations ov ,..,an,were defined it is 

clear that everystandard formcan be obtained by a ol/ing these 

operations successively to ciments of X .  Thus  generates the 

algebra. 

Ti prove that the a)  ~~ belongs to /„‚ we need to check that 

the laws 

( (w) (:t  (w) ~2  (w) a) 1. 

2'  ,w),: ~L );.  Wi 

hold.  If W is a standard form. involving no X then ~) is ~~ direct 

consequence of (4) .  in the other haad if w has •the f~~~~ w  

then,by (2) 

w~1  W~41);\  u1. .  = w 

si (~) holds in this case too.  Thus (~) is ~~ law.  Similarly (6) is 

~~ direct consequence of (2) except in the case where there exists ~~ 

standard form u wiLh w = ~~~ for j = i  « ~~ In this case 

(4) shows that 



whence ((w  )?‚)i 
i  n 

So (6' is a law, and hence the algebra is in L' 

~~~ show that X is a 
free generating set, suppose 9 : ~~ * S 

is a mapping of X into an algebra 
S in V .  We extend this to 

a map 6 fromthe algebra of 
standard forms by defining 

(~~

 

'0 
ii  ~i  ii  1, 

( OX 

 

i  n  I w , w  = W . n• 

(ibis defines 6 by induction or the unter of ? involved in. a 

standard form.)  To prove that ~~ is a homomorphism we need to check 

that 

w ~~~ W~~i (i L2 

w  ~~  
I n. L 

(JO) 

for all standard forms ww,w'  ‚w 

If w involves nc ', then (9) follows from the definition(
7) 

On the other hand if w has the form w = v...v X then by (2) the 

left-hand side of (9) is 

(u)ai = wi for each i  as requiee. 

(7) 

1,2, . 

creas, by (8), the right-han side is 

wua.  .v 8Xa. = v.8 (i = 1,2,...,n) 
i i n i i 

so that (9) holds in all cases.  
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Similarly (10) follows directly from (8) unless there is ~~ standard 

form I such that w. = ~~~~ for i® 1,2,...,n in which case the left-

hand side of (il) is 

~~ 

2~~ (9) we have w..} ~~ ~0~.€ ~~ for each i , so the right-hand side of 

(1i) is 

~~ ~. _~~ Lï.~~~ . .1~~C¢ °. ~ ui . ~~ 1  ît 

Thus (10) holds in all cases. 

iherc;forF> ~} is a h~~~~~~~ h~~~~ extending I ®  It is the unique 

h~~~~€orphism with this property, because ~~ homomorphism extending ~~ must 

satisfy equations analogous $~~ (7) and (8) and so will coincide with G 

Consequently 
 free generating set and the proof is complete. 

If we need to think concretely about the free a.lgeb-ra. of ~Fn 

freely generated by a sete. will be $~~ i ,, gebra of stand 

forms  that we have in find   
 This makes á,:.t. Clear ïMl1at 

sp ~~k, for ix~starxce N of the n~mbe2,' of )tf 9 in an element 

a.Igc:bra.. 

For a subset ~. of an algebr;.a. S, in V  we shall write ~( ~ ) 
n 

for the ~.-s~ba lgebra of S generated by ~ , and h 4 X ) for the 

Xws° ;zbalg~baa generated by ~~ . 

LEMMA  2.2.  if a sat ~~ g~re~ate~~ ~~~ aZ~e~ra S ~? V then 

5  ~ (/ ) f ~~ } .  Also,  f.or each y in 5  the set y i A) \ X ( A. ) 

~s 2ZYi2t~ 6 

It is sufficient to consider the case where S is free on X . 

'~hen S is isomorphic to the algebra of standard forms on X , so the 

first part holds, by the definition of standard forms. 

~~ an 
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For the second part, noti that if ~~ ~~ ~~ and the number of 

involved in ~~ (in ~~ standard form) is  then ~~ havi 

E ~~ (A ) whenever r > in  lince the only elements in 
i  i i 

y < ~~ > ' X (A ) are those of the form ~~ » ~~ .  with ~~ < m and these 
1  r 

axe clearlyfinite in number. 

L~~~~,  2 . .  (i) If x E X  then F
n(X)ja e..so f ~~Z~~ generated  

~~ \ fN1 ~~ ,xa  1 <  <  . 

(ii) if '  ~~ ~~~~ ~~& t ~~~t ~1 ~ it~~ ~~~ ~~ then F 00  • 

is freeiy gerley, 
 by 

X \ {~~  «~ . } . i  n  i  n 

(i) Write Y  ~~ \ {~~ U {~~ ,  and suppose that 

) : ~~ * ~~ is a mapping from. into an algebra b in i] .  Define  

a ~~~ ; ~i•  : X ± S by 

for yEX\ {x} 

Because K is a frie basis • thereis a unique homomorphism  from 

(~) into ~~ that extends ~~ .  But ~~ is also a homomorphism 

etending ~~ as we have 

for ~~ ~~ ~~ \ ( 

)(~~ ~ a  xla. :  I 

~a-u .. ~~ a n 

= xu.0 i 
r i = 1,2,...,n . 
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This shows that every mapping from Y into an algebra in V can ben. 

extended to a homomorphism from F(X) .  since y generates F(x) 

it follows that Y is a free basis of F(X) . 

(ii) is proved similarly.  

The operation described in (i) will be called a simpie expar, 

The operation obtained by composing d simple expansions will be 

called a d-foid expansion, and an expansion will mean ~. d-fold 

expansion for some J > 0 .  The operation described in (ii) is the 

inverse of a sinipli expansion and will he called a . ~~1~~ contraction 

We shall also say that a basis Y is a d-foid expansion of X , 

meaning that it is the result of applying a  .1d expansion to X 

Observe that X. ( ~~ ) is the set of all elements of F(X) that occur 

in expansions of X .  Also if Y is a d-fold expansion of a finite 

basis X . then 

+ (nid 

L~~41vi~~ 2.4.  If X je a finite set, then the f~ o ~nq conditions 

on a subset U of F (X) contained ~~ ~~ (A  are equivaZent : 

(i)  U= ~. (A ) ~~ Y ( ~~ ) . for some set Y genePatinc F(~) . 

(ii) U is A-cosed and ~~ (A ) \ U is fínite,  

(iii) U = Z (A ) for some expansion Z of X 

i (i 
 

(ii)]  Assume that U  ~(~) i Y (~) , where Y 

generates F(~) .  As it is an. intersection of A-closed sets, U is 

itself A-closed.  For each x E ~. , the set x (A ) \ Y (A ) is 

finite, by Lemma 2.2 (with X replaced by Y).  Since X is finite, 

this implies X (A ) \ Y (A )  X (A ) \ U is finite. 
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[(ii) =- (iii)]  Assume that U is A-closed and that X (A ) 

is finiti.  We provi (iii) by induction on. IX. (~~ ) \ U 

IX(A > \ Ul = i then (iii) holds with Z  X .  Otherwise,choose 

an element w in X. (  1.7 of greatest length (that is, w is to 

involve the largest possible number of al).1'h~~~ the set U 

isA-ciosed, and  (A ) \ u  ~~ ' u  i .  
So by induction 

there isan expansion  if X such.that U  < >  ~~~~ eleme.,  

w h~1~ng t 3 : ; for if not  w~ui have dn f~~~~ w  z~ . . . . a 
i  ~~ 

where z  L* and ~~ > U .. and hence i ' U  w  ) .  ut. U is 

A-c osed so this would imply that w ( U , a contradiction. Take 

z  :* \ w } U {via,  i < ~~ < 

this is an expansion of X and, by the choice of w , we have wa, E U 

for each i . and therefore U = Z (A. ) as required, 

-(iii)  i )  is trivial, 

CORWLARY ~ i; free baoes X , Y of the oame 

aioebra have a comon expanoion 2 . 

(Note that Z & > determines z : for Z is the set if e ments 

of 2(A > that do not have the form for some z ( Z. h ) .) 

COROLLARY 2 V  V 
n ~~ n s and onty if ~~ E s (~.1) . 

For if r  s (n-1) then VII  1/11,s  
by Lemma 2.~.  Conversely, 

if 

~~   

~~
 then ~~ ( X  t)  and 

n,r ~~~ 

IY1 = s which freely generate the same algebra in 1' ; these have a 

common expansion,Z say, and for some ~~n ~~g:~ti~~~ integers 4 and 

e we have 

+ d-1)d = 1)  , 

whence r E s (n-i) . 

U 

if 
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L~~~~~ 25  Let X be ~~ set and V a  et of F(~) 

contained in ~~ ( ~' ) 

(i) If X and V arc inite then V is contained in an expansion 

of X if and onlR • if the followingcondition is satiefied : 

no element of V Ls an, initial segment of another.() 

(ii) if X and V are finite,then V is an expansion of X if and 

only if () issatisfied and for each u E X (A ) there exists 

V E V such that one of u , y ~~ an initia segment of the other.  

(iii) V is a set of .0:neegenerators- for the subaigera itgenerates if 

and oni;if () is cotisfied. (& ~~ neither X norV is assumed 

finite.) 

(iv) Let Y (01d Z he d-frld expansion2 of X  forsome d .> 1 . 

If Y- Z then some element of Y is a proper initial segment of 

an element of  

(i) "Only if" is obvious. 

Suppose V satisfies (3) and write  

~j ' X ' {proper initial segments of V 

Then (*) implies that V ~~ U .  Also U is A-closed,and ~~ (~~ ) \ U 

consists of the initial segments of the elements of the finite set V 

it is finite.Thus by Lemma 24 there is an expansion Z of X 

such that U = Z (A > .  Therefore V c Z (A ) , and this i!~1~1C that 

V c Z (for an element of Z (A.) \ Z has a proper initial  gment in 

Z ~~ U so it cannot be in V , by the definition of U) .  1- ~~~~~ V is 

contained in an expansion of ~~ . 

(ii)"Only if" is again obvious.  

Suppose V satisfies *) and the additional condition in (ii). 

~~~ (i)  V is contained in an expansion Z of X  If V  Z • then 
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there is an element z ~~ Z \ V  and hence by hypothesis there exists 

'r ( V such that one of ~~ , z is an initial segment of the other. 

But no element of Z can be an initial segment of another, so this 

is a contradiction.  Hence V = Z . 

(iii) "OnlY ~f iqagain obvious. 

Suppose (*) is satisfied.  If V is not a free generating set 

then the same is true of some finite subset V0  and clearly () 

is also satisfie4 with V replaced by V( .  However Vf.' 5_ ~.(A > 

for some finite subset ~~ of 
 

This contradicts (ii) 

(iv)  If no element of Y is a proper initial segment of an 

element of Z , then we must have Y c  ‚ >  ~~ : ; ;  z , ~~ > 

This implies that Y is an expansion of Z .  Eut Y  Z are both 

df~Id expansions of X. • so it follows that Y  Z . 

 

i~~~  .  If I xi > L  t721?1 anelements of X ( 

~q~iuh~ t•  ~ t~vz~h . ~~ i ~~~~ cf F1  X ; 

a11:)~~~~~ ~~ f elements in which neither menber is an initial eement cf 

the other are aZoo equl.valent'undev the ~z4t''?:.  ~t~; cf F )) . 

 

Let u  X < ~~ >  then. u belongs to some expansion of X. .  If 

we assume that  XI> 1 , then any expansion of X containing u will 

contain other elements also, so we can apply a further simple expansion 

to it to obtain a larger basis which still containsu .  As each  

simple expansion increases the size of a basis by n-I . this shows 

that each element of X 4. ) belongs to a basis of size 

for all sufficiently large d .  Therefore, given any two elements of 

X  we can find two bases of the same size, each of which contains 

one of thegiven elements.  Every one to one mapping from one basis 

onto the other exi.tnC45to an automorphisni 
 F1(~) ; hence there is 

an autornorphism mapping one of the given elements onto to the other. 



is 

Similarly given any pair of elements of X (A) , neither of 

them an. initial segment of the other, we know by Lemma 25 that there 

is a basis of F(K) containing both the elements.  ~~~~~v~~~ by the 

Corollary 1 to Lemma 24, we may assume that this basis is an expansion 

if X  If we assume that 1X1 > 2  then any such basis must contai 

elements other than the given two, so it can be expanded to a larger 

basis also containing the givenelements.  The result now follows 

exactly as above. 

LFIVek 2 . 7 .  (~) ~~ ~ 1 2 ~hl ~~ of F 
 

is generated by its 

intersection with X 

(ii) n  a ~~h - ~:~~ variety  of free 

/ are free n 

(iii) te  ~~~~o. t~~ 000' 2, c. c f f ~~~ ' Zq~b2:~~ in V  ~~~ 

free P.zetorÿ.  

(iv)  F (X) has vo non-triviai cha2acteristicsubagebras.  

(i) Let S be a subaigetra.of F C 

 

n''.  and write ~~ for the 

subalgebra generated by  11 X (A) .  We prove that an arbitrary y 

in S belongs to h by induction on the namber of ?. in y .  if 

this number is zero, thenX. (A ) and so y ~~  

 

S .  If this number 

is positive, then v has the form Y = w . . k? , where each w . 
i 

involves fewer ) than 'i .  but then w.  va. E ~~ for each i , 

so by induction w. ~~ ~' . and hence y E ~~ , as required_  

(ii) Sub-pose that S is a subalobra of F(K) .  ~~~ (i)  ~~ 

is generated by S n X < ~~ ) ; moreover,if we omit from S 1 X ( ~~ 

those elements that have a proper initial segment also in S  then 

the resulting set a150 e1edriy generates 
 In this set no element 

is a proper initial segment of another, so by Lemma 25 the set is a 

free basis for S .  Hence ~~ is free. 
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(iii) Suppose that S is a finitely generated subalgebra of ~ (~) . 

Then the argument used for (ii) shows that S has a f-Z.nite free basis, 

G say, and this is contained'(. (A ) forsomefinite set X0 ~~ ~~ 

Ÿy Lemma 5  G is contained in an. ~~ of X0  and hence  

also in.f ~~~ basisof F 00  Iherefere S is a freefactor of n 

()) Let be, a non-empty characterdstic subalgebra. of  ~~ i 

~ k 5 e) (i), w~~ have S n X,  ? 4 s .  may assume that  X! > i . 

 

o Lemma.2.6 shows that any two elommt,:7,  ~~ ~.  are equivalent 

 

under the antomorphism group of i 00 .  71e-refer~~ 0. ~~ ~~ ~~ and 

so  F (~) n 

A o::~g2~~ 7 en F (~) is an equivalence relation such that 

ifazbtleliaamE bafOr ail i and if a  b. fur i  1,2,...,n  

tbe~ aTt. »  
. ~~ .L  Its iiinn.: ~ t ~~ nh  \  is  Ct 

 

 ~~ L  ~~ 

if congra~ :' ~~ (a,b with bothand e in X. ~ ) . 

(X)  :qonerated, . ~ ith 

intersection wit.7  ~~ 

(  F (XI has no non-tri?)ial, charactstie conamence8.  

n lo ~~ ~~~ ;~~ ~~ ~(O  fo...o each n 

(i) Let : be an congruence :n  X and 1 ~~ . he the '.  n .  h 

congruence generated  ( n ,b) 1 a  h aud a,b E ( ' ; 

showtt t 

u n v  V , 

and  using induction on the total number of ? involved in u 

If this number is zero then. u . y ( X (A. )  so U  V by definition 

of  ‚  So suppose one of these  . . say u , involves at least 



one A. : then it can be expressed in the form u = u. .  , where 

ui,»ufl are elements involving fewer ? than u.  Since  is 

compatible with the operations.in A  we have 

for each and.u  involves fewer A. than u and va. involves 

no more X than ~~ .  So by induction 

whence u.  u ?v'  .. '1~. ).  V . i  n  O  • I  f1 

(ii) Assume that E is a characteristic congruence on F.1).00 

other than =.  Replacing. ) by an expansion if necessary, we may 
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assume that > 2.  Let a , h be elements with a E h but a h ; 

by (i) we may assume that a,b E X (n ) . 

We claim that we may further assume that neither of these elements 

is an initial segment of the other.  For suppose, for exaMple, that a 

is an initial segment Of h .  Tht n h has the form 

i  i
1 

where ~~ > i , and ~~ by app lying to ~~ and h an operation ~~ with 

.  suffix j not equal to i , we obt tin elements ~ . , be» , neither 

of which is an initial segment of the other.  These elements also 

satisfy aa. E ba. , because  is compatible with A , and therefore 

may be used in place of the elements a,h originally chosen. 

As  was taken to be a characteristic congruence, it now follows 

from Luira 2.6 that = !  O1 7Z)(V pair of elements u,v E X (A ) in 

which neither member is an initial segment of the other.  In particular, 
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y for all x,y E X  so that the quotient algebra modulo 

generated by the equivalence class for every x E X .  Further,  

if x,y ~~ ~~ and ~~ ~~ then in the ~~~~~ way we have ~~ s ~~ . for 

i : :1,2.  n  îherefore 

 

i = V1(  [ya.1 

is 

and 

~~~ ~~ "  _fl 

-- 

 

This shows that the quotient algebra is ~~ orte-element algebra,so that 

is the trivial congruence under which ali elementsare congruent. 

Thus F(X) has no non-trivial characteristic congruences. 

(iii) Suppose n is not U.  minimal variety.  Then there exists a 

variety W properly contained. in Vn. and not consistingonly of 

algebras with at most one element.  For a sufficiently large set X 

the free algebra of W freely generated by X is a quotient of the 

algebra ~ (~) modulo a. non-trivial congruence.  This congruence must 

be fully invariant and a fortiovi charactexistio.  But this contradicts 

(ii).  ) 



ALGERAS OF L' ~~~ ALGERRAS 0F V FOR N> n N 

If a set S is in one to on.e oorrespondene with, its Cartesian 

square ~2  then this corre5pendence can he used to define a one to 

one correspondence between. ~~ and• ~~ ~hexe are the following two 

essentially different natural w: :,: to di this,  Suppose that the 
, 

correspondence ~~ 4 ~~ associat,,, ~~ ~. ~~ 'th (b,e) in ~~ ; and 

suppose that the element  b,' b,c are in turn assoniated.with (d,e, 

(fg) respectively,hen either of the mappings 

~~ ± (d i ~) determines s. one to one ~~~ r ~~~~~nd~~~ 2. Pc'  ~~ and 

This meansthat an algebra.in V can be viewed, in two essentially 

different natural ways, as ar‚ algebra in ~~ Expressing: this formally, 

we can define new operations 
i 

on any ~~ gebra in. V, in terms 

of the operationse . s1  either by 

11 = ~ 1  2,1b2  ~as ,  ans.  a, a,a,„  ~~ '23' 

or by 

aC = aalal  aS2 = aa.a_,  ~1~9 u  ~]~2i~)k . 

In either case this makes the ariginai algebra in '  into sn algebra.  

in V, . because the laws 

~~ 1~b2~~~ = a ,  ~~ .. a_am.¡J!3. 

are consequences of the laws of V: 

This situation, and the obvious generalizations of it that we now 

consider, will later provide the setting for our discussion of the 

isomorphisms  n,r  n s between the automorphism groups of certain 

19 

° 

pairs of non-isomorphic free al ~~~~~~~ V , V 
fl ?~~ 1)5 
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In generai, algebraic operations that are defined in terms of some 

given set of operations by formulas of the sort used above to define 

are called derived operations  We shall not attempt to give 

a formal definition of this term as we only need it to describe obvious 

generalizations of the oporations already defined.  We write Der C 

for the set of all derived operations associated with a given set C of 

operations.Thus in the aboveexamples  belong to Der A 

(where A = {~~ ,a  and p. belongs to Der f; } .  Note that, since 

A consists of unary o perations for any ,  n , the set Der A. 
1  ~~  

will also always consist of unary operations, 

A set ~~ = {  . . . ,  of unary operations in Der A wjll he called 

a fundamental set if for any element ~. of an algebra.ir  the set 

'  ~ Nl 

 

isproper erpansion of {  . It follows from what has 

been said about expansions that.there is a fundamental set of size N f 

each integer N of the form N = I  014-1)d . where d  i  : 

particular if n.= 2 tAci, there is a.fundamental sea of size N f": 

every N 2 

~~ 1~~ ~~ . l.  if h = fÿ . . . ,  i  ~ h~~~ t~~. cez h;  Der ~~ 

then there exis't ~~ an  oyeration P in Der 0,1  ~~h that 

.  .  a 

d1 'N ~~ =  (i  

are laws of every algebra in V n 

~~~ the remarks preceding the lemma, there is a positive integer d 

such that N = i ± (i)d .  We prove the lemma J.y induction on d . 

If d = I  then. N = n and  ,  are a permutation.of 

~1 ~1  ~u~~~~~~ ~~~(i)  fox i =  • where ~~ 
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In this case we define  by 

~~ . , ~~ 
1) 

It is easy to check that the above laws hold. 

Suppose next that d > 1  Then there is a. fundAmental sot C 

such that the set xB is ~ simple expansion of ~~~ for every element x 

Suppose that C ! I.3y rearranging elementsif necessary 

we may. assume that ~~ has the form 

,
N ~~ 

fN+l~:  . YNn+i~n} 

Now : N-n+1 = 1 + (n-1)(d-1) , so by inuction there is an (Nn±l) ~~~~ 

operation v ih Der 0.} } ~u~~ that 

for all elements a.a1 , a 

~+~~ 
a If we define u by 

= ai a a a ~ 1 

thin it is again easy to check that a has the required properties. 

This lemma shows that if S is an algebra of V
n under the operations 

~ 1 a a  the 5 f~~~ any fundamental set ~~ = {. . a  } ' we can make 

s into an algebra of V,, under new operations. 
 .  .  We shall 

denote the algebra obtained from S in this way by Sÿ a  ([t is not 

necessary to specify  , as ~~ determines i uniquely.) 

~~ 



" 

LEMMA  2. Th( suba7,gebra if (F (X) )  generated h~~ ~~ is a 

   

fee ~1I ~~~ of 'N  
generated by X . 

We may suppose that X is non-empty, for if X =  then F(i) = 

and the result is trivial, 

Let S denote the subaigebra of (F(X) )  generated by X «  We 

show first that S is relatively free.  Let 8 be any mapping from X 

into ~~ If we think of ~~ as a mapping from X into F (~) then 

because  F1(~) is free we can extend i to an endomorphism,I say, 

if F1 ~) .  Ihemapping  is also an eridimorphism of (F (XI 

because ~~ , . ,  are derived operations; moreover sirice ~~~  

the restriction of e to S is an endomorphism.of S .  Pius an 

arbitrary map X  S. canhe extended to an endomorphismof S•: henc 

s is a. relatively free algebra, freely generated by X . 

Flowover S belongs to (/h,  which. is minimal variety by 

Lemma 2.8  (iii).  Therefore, since it is no ~~a~t~~ ~~ must be a free 

algebra of V'. '" freely g~~~~t~d by ~~ . 

[~~ ~~ If X ia 'inita and ~~ ia a ~ ,Z ~at~~ i  t, then 

a aet if elements of X (S > is anexpansion of X qua ~ h~sis if 

~~n~~ ~~~ if t L ~~~ I~~~~7~S ~fl ~t X q ~~ ~ b~~~a. 

A. simple S-expansion (that is,  simple ~ . ~~~~~ using the 

operations in ~) is an A-expansion by definition, oo the"only if part 

of the lemma is obvious. 

Suppose now that U is.. an A-expansi  of X. such that U c X ( ~~ ) 

We apply the criterion of Lemma 2,5 (ii) to show that U is a ~~~~~n~~~~~ 

of X  Firstly, U cannot contain a pair of elements such that, as 

~ w~~d~, one is an initial segment of the other; otherwise one of these 

would be an initial 1,bgmeat of the other as A-words also, which would 

contradict the assumption that U is an A-exp • sion of X .  secondly, if 
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V is any element of X (~~ ) then by Lemma 2.5 (ii) there is an element 

u in U such that, as A-words, one of uv is an initial segment of 

the other.If 

u 

V : 

Ji 

where x,x' ~~ ~~ . then it follows that ~~ = ~!  and that one of 

f  :  an initial s~g ~~~ ~~ of the other when these are expressed as 
__i  ji 

products of elements of A .  Since ~~ is a fundamental set, the latter 

can be true only if O.  8_;  i 
Similarly we find that 

- 
12  j2 

is an initial segment of the other as 5-words also  Lemma 2.5 (i) now 

shows that U is ~~ 5-expansion of ~~ , as claimed. 

LF~~~ 3.4  If L and  r  sets., then so is 

Lt ~~ be an element of any algebra in 
~L 
 Since  is 

~ ~~ =  where s  min( k,., ; hence one of uv 

fundamenIal set ~~~ = {~ y ~~ ~~ } is a proper expansion of {~ } 

for every  E 5 .  It follows that ~~~~ is a proper expansion of xB 

But xB is a proper expansion of {x1 because ~~ is a fundamental set.  

Hence XBC is a proper expansion of {x} , and the result follows. 

• 



 

4 THE GR~U~~~ G  FINITE ~R~~~N~~~~~N n r 

In this and the following sections G  is the autorairphism ~ ,! 
group of VF1( )  for  "~ «: set X of r elements.  ~he 

n,r

symbols  Y and Z will be reserved for expansions of X 

IENNA. LL  If {e„...  ‚~~ &; subset ~~ G  thn 

thereis ~~ unique ~ini~u1 eXpanSiOn Y cf X ~~ z tht Ye, 
i  

X 

i = 1,2,...,s  In otherwords othep expansion of X with this 

property is an. expansion if Y . 

Ey Lemma 2 . 4 , there i; an expansion Y of X such that 

(  I n ( 
~~ i 

~~~ ~~ Y 

1) (A)  Y < ~~ ? .  Then 

(. )  ~: (~~ ( ~~ ~ . = ~ ( A ) 
 

Conversely, if 2 c ~~ ~~ > , 

~~.d  :  >  for 11 j. then Z c, Y ( A )  when,' e.  is an 

expnsion. of 

In the notation of the lemma,if Y i; ~~ d-fold expansion of 

so that  = r ± (~ :U ~~ , w say that the set ~1 1 } has  

d.epth d  The two most important cases are (i) when the set consists 

of a single element and (ii) when the set consists ;t of elements 

i  i1-2'  ~.  : in this second case we shall say that d i  s 

3'_s t~~~ depth cf the :~~1~t~~~~ i. .  = i (and s isits length).  

If i is anelement of ( 
~~ ~~ ~~ 

expression 

by a sym.-604 for ~~ we mean an 

i 

where Y  and Z = {z, . . . z j are expansions of X , 
i  a  L  N  - 

and  .7 0 = Z~~ i»,N .  If ' ( A )  ~~ (i'‚  R Xi  (~' >  then 
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~~ (A >  ~I ( ~~ > 1 X (. ) and by L~ D~~~ 24. ~~ is an expansion of ~~ . 

lince by Lemma 4 . 1, ~v~~ ' el en:te  nas a symbol .  If N  ~~ ' (~ )d , 

then ~~ has depth  most d .  1f e has depth  than d then 

since any expansion W(~ image under I is in X (A  is an expansion 

~~ t th' ~~~~ ‚ ~~~ inc , th e colimns of t; : s~m~~l can be so reordered that 

it as the form 

~~ 
:  

L1 

'1!,/e.,..  V n :+ 

and ' ~ ?  . • 

mi. ri Y. 'ht. •:7.72~~ foy, the  .  . .  w mean 

an 0:ffay 

'11 Y IN 

~~ 
' J  :  :. N 

for i ~~ 

r ] 
. 

~~ )' ± 

L  a ~;L~I for ,  and hence 

i:t 

+N; 

is a symbol. f( i i N ~~ +  (i ] ) d  , the relation has 

depth at most J  and it has depth less than d if and only if , after 

rearrangement of the co itilmsnecessary » the symbol has the form 



f?  d :;• 4  ..'.: Y?,t  ti  ot  G  of abc'h
cl 

th Ieof3 than. cl. . 

¡EA/POP, 42 . 

~(;~~~ be ~~~~~~~  a6 a ~~~d~~t cf ~(r~~~t 

u11 . . . 
 Y1,n+1  . . .  1N 

11_12,1 ~~ U ~L  V.  . . Y   2 n  L,1+1 

, , u ~~ . V 
~+

- 
~~ ~~~ 

4. 

Because d > 4 we have (: )'  r k (fl J.) d  i and 

(ii)  th~~~~ exists ~ df:~l~~ expansion of ~~ of the form.  

u~1 . U~1 V~ 1  ~ 1 % 2n i 
 Let 

Y 1  )TN I 
4 

..4.  

be a symbol for 6 ,  ~~~ 4 
 contains a sub set 

{  ~~~ ) ~~d• 1  n •i  , a subset {ha. . ,, l)~~ . i  n 
There are 

two cases.  SuppoSc first that no column of thn symbol bc  more than 

one of the 2n elements,  Then, rearranging the columns if 

and using (ii 
 

~~ can  . : an extra rowin the symbol to ohtain 

au n )n+1  Y2n 2•n+1 • N 

un va  W 
~~ i  n 

, z  ~~~ Z _  Z 
n i  n n~+  N) 

whichis the symbol of a relation  ' I . , where 0, have depth 

at ~~~ t  I in view of th- observation made in the paragraph i,rk which 

symbol is defined. f on the other hand  

between themoccupy at most. I colums, then by (i) there are n 

free columns at leasq, 

necessary to obtain 

Over.  Aga.in we rearrange the columns if 

i~~ 



fa al . .  N ~ 1 

‚_~~ . ~(  va_ . . van I  n  Q 
. u~'  -mt.  val. " 

i  ~_ I  ~~ 
« ~~~ Z .‚ 

i  i 
L  ~~ 

which is a symbol of a relation ~~ = 6112 ~~ » where 

depth at most d-i . 

2' 3 have 

Note that we have defined 6 
 

in the first case and 

in - the second case such.that the relation i  6,6, (resnectiveiy 
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0 = ~~ ~~~ has depth (exactly) cL 

REMARK 
 

i ~~ > 2  then we can replace d > 4 in the lemma 

(1  sinceand (i: ) are still true. 

COROLLARY G  is
by the e7., of O'JeDth. at most 

~~ prove next a result which, though it is essentially only a 

restatement of what we have already, puts in some technical detail which 

will be useful when we come to consider defining relations.  

Li 4~~ 4 ~~ w;?;?17. each element O of G  ~~ ~~ ~~ associate a. 

ward we in the elements Of de-0th at meet ~~ ouch that 

(~)  if ~~ has depth  then 

(ii) if ~~ has deptn d. 

)  
i ; 

then w1 = I is a Peiation of depth d ; 

(iii) if ~~ = i je ~~ relation of de s ti thenw .w 
~~ I 
i 2  ~~ 

i2 ~~ ~~it~0~1 if depth az most d 

We first discuss the meaning of condition (ii) .  if 01...6s      = i  
~~ a relation. of depth d • whered. is the depth of i  we have a 

symbol 

(*) 

~~+11 ° ~+1, N 
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for the relation, where N = r + (n-1)d  Then Y  fy  ~ ) 

is an expansion of X such that Yi  A >  and so it is an 

expansion of the minimal such expansion Y  whose existence is 

guaranteed by Lemma 41.  But since O has depth d  we have 

N;  r  (n-1)d = N aiso, so that Y =  If now 

° 

is any symbol for 0 • then U = {~~ ,u} is an expansion of Y.. . 

Applying this expansion to each row of that the symbol 

u~~ 

[V 1 . 

can be filled out, by adding more rows, to a symbol for the relation 

.&~~ = i  ~h~t is, if (ii) olds for ~~m  Z~~~~nt G 

canbe fiiled out, bg adding moz,e rows, ~~ 

fo!' tin; re 1ati('11 

We now choose, by induction on d , words w, satisfying (i) 

and (ii)  Su-ripose i has depth d , and words havebeen chosen for 

alL I  of depth less than d .  if d < 3 there is no ~~~b1~~~ 

So assume d > 4  Then by the argument in the proof of Loma42 

0 :t 0L) ~~~ I = ~).6 'i., ‚ where each i. has depth less than d . 1  i 

and this relation is of depth d. .  ~~ the argument of the previous 

paragraph, a symbol for the relation i ~~ or (~~ ~1b23 can 

then 

he filled out to a symbol for the relation i 
O 
i ' 

~~~ i 

so that this relation also is of dip 

or w = w w  
2 
w03 

and have 

So we may define w 

Now (iii) follows automatically; for any symbol for the relation 

1 can be filled out to a symbol for the relation w " —  w  i il  is 



LEMMA 4.4.  if d > 7 , then any relation ~ ..  =1 

depth d between elements i. . . . ~~ of depth 7'ess than d is ~~ 

ciisiqweflCi of relations of depth Less than d . 

Because d7 we have (i) N ~~ + (n-1)d > Sn  and 

there exists ~~ df1d expansion of X of the form  

°  ' N  Let 

Y IN 
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be ~~ symbol for the relation al_  1 . If we modify this symbol 

w o 
I '2 

by inserting the row (ci,.,.,cN)between the i-tb and. (i+1)-st 

rows,we get ~~ symbol for the relation61...6i_O ~~ I 

where 

Yil 

ci  CN 

~~ v i+li 

is ~~ symbol of the relation of eply._  ~.  and these two relations are 

obviously equivalent to the original relation, We shall say one set 

of symbols is equivalent to another if the relations defined by the first 

set are equivalent to those defined by the second set.  The symbol above 

corresponds to ~~ relation of depth less than d • if possibly after 

permuting the columns, it has the form 

~~i . ~~~ .. 
i  n 

b~ . . ..ban ~~  

i.ca1...can 

i 



~~~ 

We shall describe these rows as being linked by the first n columns 

and say the linkage between them occupies the first n columns.  If 

threerows of the new symbol are linked,then the original symbol is 

equivalent to the new symbol and a symbol of depth less than d .  nus 

if we ~ e~t into the symbol newrowswhich are linked to the rows on 

either $1'dQ or remove such rows,we transform the egN2bo1 of the relation  

we. started with into ~~ symbol for ~~ relation equiva1et to it under the 

relations of depth less than d  Thus to prove the lemma we have to 

show that by ~~ ~~qu~~~~ of such transformations we can transform the given 

symbol to ~~ symbol for the identical relation : that is, to a symbol 

consis ing just of two identical rows.  We do this by induction on s 

so that itis sufficient to produce ~~ symbol with fewer rows than the one 

we started. with. Notice that since each ~. has depth less than d 

each pair of consecutive rows is linked, and because we are dealing with 

a relation I . . . 0 s  I . the first and last rows are the same. I  

If s  I  we are finished, so we may ~~~~s~~ s > 2  If 

three consecutive rows are linked by the same n columas, we can remove 

the middle one.  ~his is ~~ type ). reductionBocanse the first 

and last rows are identical, ~~ type.I reduction is always possible if 

s 2 so we may suppose s > ~~ .  ~u~~~~~~ next that there exist four 

consecutive rows, such that the ~~~ columnS by which they are linked 

are all different.  Then, using (ii) we can insert ~~ new row between the 

second and third,and then delete the original second and third rows : 
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) 

d~~ . . ~~~ I  n 

bn . b~~ ca.—ea    i n i 

d~~ . . d~~ 2~:  ~~~~ . .. i  n  n 

f ...fa . 

 

I  n  

Taal . 

b~~ . . ban cc'  can 

~~L  o ~~~ '~~ ~~~ Z(~~ Z 
i n i n i n 

d~~ d  i( i  n cal —can .  
f~ f~~ i  n 

~~ .? 

~~~ ~Q ~ ' _yap, Z~~ Z~~ I n i n i 

~~ fa 
~~ 

This is a type II  Again we notice that if s  3 then because 

the first and last rows are.identical and any two consecutive rows are linked, 

either a type I reduction or a type II reduction is always possible,  So 

we may suppose that i~t s  4 . and that no type I or type 1. reduction is 

possible 

Thin there are ! consecutive rows, and because a type II reduction 

is impossible, the linkages between them r ~~u~~~ at most 4n.-2 columns; for 

there isoverlap between the linkages between row J. and row 2 and between 

row 3 and row 4, and aisc between the linkages between row 2 and row ~~ 

and between row 4 and row 5 : 

. au i  n 

~ »hu I  n  ca/ ...can 

.  eu ea . . . in du . . . du i  n 

fu1 . .  1,...f:. . . g~1 „u2 

Thus by (i) there are n columns not involved in any of these linkages. 

Now given any three consecutive rows, we can apply a transformation of the 

form 



1° . ln 

~~ »b~~ ~~~ » 
I  ~~ i  ri 

da1n 

. , ~~~ i  n 

. 
Naa ~~~ . cci i  i  n 

 

~ i .~ci1 ~ ~~ « ~~ 'n  1  Z~~~ 

aa 

~ci~~ .Xcin ycii  ~cin zci5: 

dci ,. dcx 

 

i  n 

to replace tho middle row by another one, which is linked.to the first and 

third by the same co:1u Is, and has entries of the form zcx  cx 
in any 

i  

given n columns distinct from. ttXIsI  if we replace the second,third 

and fourth rows of our original set of five consecutive rowsusing the 

same ri "free" in each case, we can. then delete the new middle row. 

0 we achieve a reduction in any case, completing the proof of the lemma. 

R~\R~ :If r>2 we can replace d7 b:y  and if L.

r  '  by d > s , since (i) and (ii) still hold. 

LEMMA 4.5.  I1cx~~ t(Zki ~~ to b~~ qcnerated by the:eiements of 

    

depth at mos t ~, then ~~~ ~~f~?~in ~~ velations ocx may take the ~~~ i~t~~~~~ 

between them of depth at most ~~ 

This is not quite ~~ corollary. of Lemma 4,4  , because the process 

there described introduces new generators whose depths we have no 

obvious means of controlling.  This is the difficulty that Lemma 43 

was designed to overcome,Let R be the set of relations of depth at 

most 6  between generators of depth at most ~~ • and let us prove 

by induction on its depth cl that any relation ~~ .  = ~. say between 

generators of depth at most  is a consequence of R .  If 

there is nothing to prove.  if d > 7 , then the relation is a consequence 

if a number of others,of which ~1 = I say is typical, of depth 
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less than d ~~ Introduce words w  ~s in Lemma 44.  The relation 
~1 

~1 
 = 1 , and hence our orl.ginal relation ~~ ... 8s  1. is :~~ 

consequence if the relations w, - ~~ , for generators of depth greater 

~~ 1 

.r.elatio~s between generators of depth at most 3 and have depth les

~.

s

~~ 

than 

d , ~~~ ~~~ the induction hypothesis they are consequences of R ,  Ii".. ce 

our original relation ~, a consequence of R a.t:~. the relations 

But these relations meáeiv define generators which ~~~ ~~~~ occur 1~~ the 

rei.atl.on, ~9 . e47 - 1 
 

Hence this relation is ~. consequence of R 

required. . 

THEOREM 4. ~~ 6 .  &zch, Ç/rvZ4ÏJ 

Fir fixed d. ~~ the number 

~̀dÓ,îZ: ( ~  ~Y7~'.P..ac.'27.~;~? d ~~ %.~~ 

~~ hases of den th 

and equal to ~~ ,~~.  Thus there are only ~~ "1:1%~~ number of  generato 

depth d .  There are an infinity of relations  th 
 

f1CïW ~~ y4.', r 

if ~~ relation of depth d ha ..~~ length greaterthan ~ g some two ro4tis 

symbol for it (apart f~c~n. the first a.Fìd. I+ast ) must coincide, and it 

~'.a.s!'' to SIC that. this 
 hat it is a ~;, ~~ f 3.~~ W q 6,  s!`9 irt er 

lations (bet 
 

he sa ~~ generators) ~~ Thus ~. , ~3 set of defining 

s we may take those of depth at most.  a7 and length at most 

and these are certa:s.'~-~1er f1Fîs.tL, in I'i.Cb]"r'Fbh.?rm 

than ~~ , and the relations w = 1 ,  These relations axe 
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THE: GROUPS G : SDP= n ~~ 

We order the finite basis X arbitrarily and the set A of 

oPeraticlasbYsetti"oga,<ct-whenever  < j , and then any expansion 

of )'  If  is an  ~~ of (,-;
r 
 then by 

4,1 there isexpans  of X such.that ~3 c ~~ (  If 

' is taken to be an ordered set in ~~± 'or~~ ii order, then there will be 

another expansion  Z of : , ordered lexioNranhically,such that YO 

with the ordcr ihherited. ~~ :'  ~~ i 

is ~~ permutationof i .  Consider the  , n odd.  We show that the 

pa'ritey uf the permutation.  

at least) ~' ~~ . and not on Y .  1 ~~ the permutation. is odd.even 

respectivelywhen th; humfor of pairs with y < bt 

Y-  > Y2  t~t : ~Id - ~: odd or oven,  '. retdade 

by y, = Y ) J J and  C ~~i) id :~t, I :  by 

: , \  ••  whereZ :.  ~hea y 

)O  2Limply ya. •; 

is rep1aced by t..••' 

so the pair 

andsimilarly'pair ~ with 

y. < Y is replaced ~)  . paits \)  • 
~~ , .  is'b the  

parity of the number of pairs is unchanged,  Since any two expansions 

~ ' Y2 
with  O h are expansions of the  t ~~ such.  '~~ 

the invatiance of parity'extends to all such  elements ~~ 

can be classified as either odd or even and, since the cold td )f' 

elements multiply with the usudl ruiep rui  for  ; the 

. norral subgroup (. lr of Index. two in (...;d ,r 
 A  as we ha 

said,this  : ::depends on  ':t weshall provethat it is simple  

Whence it is independent of X.. (~~ :; bon a:n group can-nut have two 

distinct simple subgroupsof index : • er they would each have a subgroup 

if index 2, contradiot  simplicity,) 

For the 5 () Of ~~ uniforn! notation, we write (  G  when n 
h,r 

is even . 
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L~~~~ 5. A nontrivial normal subgroup of ( ‚ 
 
contains a 

nontrivial e-temen of f ~~ ;~~ orde-P.  

 

Suppose the normal subgroup N contains the element G  i , and 

that Y and Z are expansions of X such that YO - Z .  if Y = Z 

then i  being a permutation of Y , is of finite order, and we are 

home; so we suppose Y  Z  By Lemma 2.5  ' can choose z  in Z so 

that z  is, a proper initial segment of some element y of Y  Thus 

Y contains an expansion ~~ .  z ~~ and y may he Chosen in. this 01  0 d 

expansion such that v0 
 

let z = ~& . i new define ~~ by 

=  for ,z,°   \ 1.1-  for I 1+1 

and 

20 6 = za n  I 

(If n is odd, ~~ induces an even permutation of 

= Z \ {z} U {zo. «. za }  ~~ that  .  Observe that 
1 ~~ n,r 

z~~~ ;;  and, since z, is an iiitiai ~grn~nt of y  va.6  ~~~ for 

any i  We thon easily caiiuIati that if ~~ 1 (t  
:1 

~~~ .  for ~~ E Y \ 

 

~~~~~ :t 
1+1 

t for i ;:t ~~ 

and Yar, = yai(P ya 

 

i~~ 

Plainly ; is ~~ nontrivial element of N .  Clearly ~~ and ~~ have 

order •n 

LEPNA 52. A nontmvq.ai a~~L° ~ba~ii~~ o  CA-  ~~~t~~o ~~ - 

elements of G+  of finite order.  , n,r 

bi an clement 
 

G±  of finite order.  ~v Lenuna 2 4 
itr 

for every expansion Y of Z thora is an expansion Z of X such that 



~~ ~~ 

i (~d) (~~ ) = z < ~~ > .  ~~~~u~~~ commutes with the elements of A 

Zq-, = z  if ri is odd, the fact that 4) belongs to G  implies 

that * induces an even permutation on Z .  If n is even then 4) 

induces an  oermufetion on :'  { z. 

the pair (z ,z2) is replaced by the nz  

case ~~ induces ~~~ even permutation on 

(: Z  ~~ ~~ ~)  ZA sinee 

li2  In any 

-r ali s > i so the:re  

pai rs 

is an a:ebitrair,iiy'iarge ~~~~~ Z of X ouch that Z = Z and * 

induces an aven -ermvtation on Z 

Now by Lemma 5.1, a nontrivial normal subgroup N of G±  contains 

a nontrivial element ~~ of finite order.  Applying the above argument 

to '~1 , there is an expansion Y of X. with Y5
1 
=  . and  '  : 

~~~ the normality of N  N contains the whole alternating group on 

andhencecontai.nsanontrivialelement ~~ with  I.. = Y such that 

has a fixed point oDY Uorexemplee-could be a 3-cycle).  BuI; 

then112 = Y* also, Where  = Y \(y} U bra..  i = 1  n] ; and 

iterating 02  bases of size 1Y +  1)d for  ~nn~~~ti ~~ 

J  By the normality ~~~ N , N corvtaias the a t ~~~t~~~ group on each.  

such basis. ~ t if two h  d V have  = V ;- 2 then there 

is an element * of C-1-  with ~i = V  whence if N contains the 

wh le alternating group on one of these., it contains the alternating group 

on the other.  Thus N contains the alternating group on al . sufficient l~~ 

large bases.  Nom by the result of the first paragraph of this proof. N 

contains all  ~'~~~ ,  if finite order.  
n,r  

G;  is qenerated by its a ~ ;n~'~~ L s of fit; .;; ~d~~~ 

Using an expansion if necessary we can and will ~ : .e r 

We e by induction  element J  that an elennt () of ~~ prove, n,r 
of der  

belongs to the subgroupgenerated by the elements of finite order.  If 

d  0 then 6 permutes )' and so is of finite order.  If J > 1 then 
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6  FINITE sUBGROUPs OF THE 

If i is ~~ fixed finite group,we are interested in thisction 

in the conjUgacy classes of homomorphisms of i into 0f course,  

p : 1 - G i  i  G  are conjugate if , for some I in G 
n r -  n , ~~ ~~ ~~ 

and all h in i . ha  e-Ilip0. 

Lit ~~ be ~~ set of representatives of the isomorphism classes  1  

of transitiveh-sp ' :  be nen-negative in,.--  , not 

all zero, such that ni:~~ +  + ntlXt : -  1)  nen we cuch find 
a free basis X of V  of sJzo En,  . we canmake ) into an 

n,r  i A..  

II-space which is split into 11  sets isomorP1,,c to Y  for 

and we can extend thisaction to produce a homomorphismof i Into 

Obviously the choices involved here do not affect the conjugacy' 
of 

the homomorphism because tlacro are elements of G  which send one free 

basis t.0 another of tb. ::'Aie or permute a free basis .  ihus catl such 

(Orderer" sit  ° • Of integers ,eteimiaes a con.ju.gacy class of 

nomomorphisms,  Each conjugue-y class of ho..2  -hhisms arises in. this way 

for bv an obviousmodification of the procf ut L~~n~~  ~~ G 

is a homomorphism then lu fixes some free basis of V  Go the 

u~~t~~~ is, which sots of integers correspond to the :s.:s  class 

of nomomorphisms? 

If hu fixes both X and Y , then it fixes sumo . .. .ssss ion 2 of 

both of them,((lefined hv Z(A)  X ..'\ > 1 Y (A )  
. h:o c,he questionu 

becomos,bow do the ne chanae if we pass. from X to an expansion al so 

fixed by io ?  if X  is an. orbit of ~~ in X , then d.. is clear that 

\ ~~ U fxa.  x ~. X0 .  
i  1,,,,1 

is an expansion of ~~ fixed by hu , and that every such expansion is 

result of a sequence of moves of this sort.
But if X corresponds to 
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and X to  «V it is clear that, if ~0 is 

isomorphic to X. as ~~~~~~~ then n.  ~~ and ~~ = n. + ~® ~~ and 

n = ~~ for j  i since for each. k, bot, ~~ ~~ ~0} is also 

isomorphic to X0 .  If we define ~~ Eb (11) for integers ~~ > 0 and 

b > 0 to mean that a E  (n-i) and  = 0 if and only if b0 

~~ end the notation componentwise to sequences, we see that (m1, », 

and (n1,  determine the same conjugacy class of embedding if and 

only if (nh) E (nt) (nl)  We sum up the discussion in ~~ lemma. 

LE 
 If  ~~ tZ set of representatives if the 

isomorphism classes of tl  ~~~~~~~~ then the conjugccy ciasses  

of homor;orphisms if i ~~~ ~~ ‚i in one to one correspondence with 

the equivalence classes 01'3c-butions of 

under the equivalence relation E (ni) 

If we are interested in ~m~~dding~~ rather than in honiornorphisms , or 

in G±  rather than G  . this result has to be modified; but we deal 
fl:~~ n,r 

with such questions when they arise rather than try to stat,eral answers.  

62  If p isa prime which doesnot divide 'l then the 

numbev of ~~~~i ~~~~ ciassesof eiemen.. of order p in e  is n . 

~~ cyclic group of order ~~ has transitive spaces of I and p 

elements.Thus by Lemma 61 . the number of conjugacy classes of 

homomorphisms of ~~ cyclic group of order p in G'  is the number of 

Inequivalent solutions of 

n1 pi 

Now n1 can take any of the n possible values 0,1,...,n-1  The 

congruence class of n2 mod(n-1) is then uniquely determined,since p 

does not divide n-1 ; and so the (E)-class is uniquely determined unless 

~1  + njXj  r (II- I) 
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*  *  * 
Ql  when we may have h2 0 or n,  

,  So thare are n+i 

classes of homomorphisms.  Oneof these is the trivial.holo.-rphism,  

sothcre are n embeddings, that is, n conjugacy classes of elements 

if order p in G  is even we are done,. If n is odd 

then ) is also odd, so elements of order ~~ in C'  lie in n,r  ~~~ 

Sincedoesnotdivide n-1 there an m such that m 2 ~~ 

and m :  Remainder ~heorem.  An.element if order p 

of G  fixes two elements in an  Y of size  and..the 
n,r 

element of ~ h~'h 
~~ 

~~ 
, ii 
 these t  will commute 

uith the  "  - chosen ~~ ~~~ t  ~d~~~ ~~ G  .  ~hus elementsof order.  

canjuote in  
4" 

' corjunate ~~ ; 4 

Ií'
;~~ .  exact ~) 
 

d-i:vidingn-1 , the 

there Z~ ? positive integeno ;(  " ~~ 
~~ „ the exact 

e 
i  

"  }) (~ :;  ]" . L )  then. the  ‚ ~ 'i ~~ 21asses (f 

(?1t •  ~-  
~ G  "  4 :.  ± 

7~ . ~~ " 

~~ ~' i» uoup 0~" order na has, to  tisomorphism, prenisely 

one transitive i' size 1:2 - fhreach  b with. ) < 1 < a 

Ihtisby Lemma.6.1 the coniugaey classes of . «  from such iorlahims 

groupinto  
«?  

are in one-to-onecorrespondence with the suti n~~ of  

n, " r.,p" ~~+»~~~ ( 

The embeddlns CV i dn I ~" coi .. : pifld to solnfions with i .  0 
~+1 

Let C 
be the set of all equivalen7eclasses (under ) of sequencrh]   

with  •• 
L ()  Every clement of C ;solution of the  

' 

above congruence fhr : :. value of r .  1» g C.  for th subset of 

(: consistih of equivale-]e classes of ~~~» 

= fl = ~~ L~1d ~)  0  we now count the number of elements of 
o 

1b 
satisfying the congruence, for each choice of h and r.If  

with.  
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does not divide r then clearly no element of Cb can be a solution. 

On the other hand, for each r divisible by p
b there are exactly Pb 

solutions of the form (0,...,0,nb+l,nb+2,..,,na+i) corresponding to 

each choice of n.D+i . . . a±l  - ; this is so because the congruence 

h 

 

b+1 a 
p 1b+].  11h±?  ±  • + ~+~~ ) (nl) 

has exactly  solutions for  when pb  (b11) divides the 

number on the right--hand side.  (Recall that a congruenceof the form 

ex  d (m) has (3,m) solutions whenever (e,m) divides d ) 

lince in particular, the number of solutions of the original congruence 

belonging to Cb is the same for every ~~ divisible by p , and is 

therefore equal to p 1 C.b i / (n-l) .  Thus, takingo,  plCb / (n-4) 

for each b, we have the result, apart from the fact that we have used 

± G  instead of Gn,r 

TO obtain the result in the form ~~~~~~d. we first show that 

elements of order p~~ . -  i  ~- are ~~~~ ucate n G  whenever they -  n ~~ 

are conjugate in G  It wilL be enough to show that each element of 

order a  commutes with an element of G  \ r±  .  ~~ p I  ~} ~~ -  n,r  ~' ~~ 

is odd, this follows froman argument like that used in the proof of 

Lemma ~ 2.  if ~~ = 2 , then an element of order in G4 induces n ~~ 

a permutation on a basis of V1  whose orbits all have length a power 

of 2  Disregarding the trivial case where a  ()  we choose an 

element of G  that induces the same cyclic permutation on one cf the 

non-trivial orbits and leaves the other basis elements fixed.  This 

element induces an odd permutation on the basis, so it belongs to 

G ~~ n 
\ G±  .  it also clearly commutes with the cnosen element of 

~,~~ 

so our claimis now verified for all ~~ . 

If p is odd, then all the conjugacy classes of elements of order 

pa 1ie in  G  , so the required result follows from the first part of 



the proof.  Suppose again therefore that p = 2 .  Then the conjugacy 

ciases of elements of order pa are in one to ono ~~~~~~~~n i~~~~ with 

the solutions of 

ni + 212 +  + 2-na+1  :  1) 

Under this correspondence a solution (ni,...,na×.1) is associated with 

a conj ugacy class whose elements each induce  tation having r, 

orbits of length 
 

i-1 for ~~ • .4. » 2 ,„ ~+~~ .  Since a cycleof even 

length is ar odd. permutation, such ~~~ element  i I i induce ~' even 

permutation if and only is even  h~w~;~~~ , the mapping 

° ~'~±~• ±  :1, L ±:  

determines ~~ one-to-onecorrespondence on the set of Solution3 of the 

congruence, and since (~~ 4)/:2  is odd by hypothesis,  ~h~~ numbers 

~, +  + ' ~d ~L + „  n  n  + ~~ /2 1 have opposite 2  a+1  2  ~~ ~-1-1 

parities,Hence exactly' half the cor ‚~~v classes of G  1 e in 

We t ~~~f~~~~ obtain th' required result by taking ~'  have h ~~ 

half the valueassigned to it in the case of odd ~~ , for every b . 

 

:citi:ons -or th, isomorphism 

are that ~~ = n and 01-4.,$) 

 

if n we can choose ~~ to divide neither.I nor ~~ i ; 

and then by Lemma.2 (+  ard  have different t~~'r. ~~ ~iug~~ • - ~~~ n,s -  

classes of elementsof ei-der ~~ .  If (n-- I ,r)  (n-i , ~~ ) then ~~~ for some 

prime ~~ the powersof ~~
 

dividing (n- I I ) and (~ - I . ~) aie different. 

~~~ Lemma ( . 3 . G  and G±  have different numbers of conjugacy classes 

of elements of order In- . for sorne a 

It may ~~ observed that the present methods con do no more. 

r , r 



43 

LEMMA ~~ 5' ( ~~ , (s,n-1) the number of c njugacy c-I-asses 

if homomorphismsof into G  aid 
n , 

are the same for any 

  

   

We have s F ar (n-1) for some a prime to n-I .  We use 
* 

Lemma 6.1.  Solutionsof can bi mapped into solutions of 

Zh.1X.s in.a fashion which is one to one on equivalence classes, by 

mapping  ,rtj onto  ~n  . . ~~t)  the reverse mapping using tho 

inverse if a modulo ni.. . 

The.following embedding theorem.belongs to this section because of 

its method.of proof, which is similzx to that used by F.  . "Some 

constructions for local v finite groups". J. London ~~.tb Soc.  (1959),   • 

~~~)R~~~ (‚( . Each o ~~~ G .' 1 ~~ 
containzan teemovnic 04,1  O . 

 . 

every. countable 7,,gea-41 ~ n2t~~ .)1'()~~' 

For any finite group  by a ~t~oda:7 ~~..ag of i in G. 
o i 

we moan an ~~~~ dia2 CL such that for some fi ~~~ ~. of V 

IXI I  (~~ i + a  fixes X and acts so that it ;. n-1 regular 

orbits and r fixed points, or an embedding conjugate to one of this form. 

Observe that a in fact embeds i in G  (this is obvious if n 

is even, and if n is odd then ncl is even).  if course, stand.ard 

embeddings always exist since there aro expansions of size N  ' 1) d '' r 

for any d ' () • ~d any two standard embeddihgsof  same.  axe 

conjugate because we are dealing with two free hases of the same size. 

If ~~ is a subgroup of i of index. k , then ~. fixes ~~ , arid so 

acts that it has (11-1)k regui ar orbits  fixedpeints,  Ÿut 
* 

(n-l)k E nl (n-1) . . ~~ o that ~~ in fact a standard embedding of ~~ 

Put in the other dil:u(Aion, this sa  that if ~~ < ~~ a standard embedding 

of K can be - o ded to a standard embedding of II (since all standard 
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embeddings of K are conjugate,and therefore"alike") .  ~~t ~~ countable 

locally finitegroup L is the union of an ascending chain 

11 < 1 1 <  of finite subgroups,  We choose a standard 

embedding of ~~ . extend.it to a. standard embedding of 12  then 

to ~~ standard embedding of ~,  ~~ with ~~ standard 

embedding of L 



45 

~~ 

7. ~t~3~D~~ N~~~ AND I~010R~1~~1~~ 0F THE moo G n,r 

In this section we use the ideas of section 3 to study 

relationships between different groups G 

As usual, ~. =  ,  ,~ } will denote the set of unary operations 

and. ~ .L?)N} will be a fundamental set in Der A 

The operation "inverse" to al,...,ar is denoted by . • and u will 

denote the operation in Der {} "inverse" to  : the 

existence of is guaranteed by ~~ 

For a fixed set X of r elements we now write F (~~ = F (~~ V 
A, -  n '  n.~~ 

for the free algebra of V  f~~~l~~ generated by ~~ .  ~~~ Lemma ~.2 the 

subalgebra of (F~ ~))~‚ ge:' ~~ t~d. b: ~~ is  f~~~~ algebra of VN 

we denote this free algebra by F~ ~) .  Thus the automorphism g-roups 

F (X) and F0 (~~ are the groups 

LEMMA 7.1.  The G  a ~~O7~~1)k1~~ to G ,  n ~
subgroup 
 L  f 

consisting of those automorphisms i of  (.') suck that XI  

~~ necessary and sufficient condition fbr an o toment ~~ in G  to n , ~~ 

belong to this subgroup, i8 that, for ~~ 11 sufficientiy iarae integere 

(X.Ps 

Let ~~ be an element of Gn,r such that X.6 ~~ P.6(X) As in 

the proof of Lemma ~.2, we see that the restriction ~~ of e to 

Pÿ(X) is an endomorphisni of Fli(X) . 

As ~( ' ~~ is a finite set there is a bound on the number of 

involved in any element.  Provided we choose s to exceed this bound, 

‚- 5 - I )  we have (](i)B c 1 ~~  . ~~ 9 is an endomorphism, (~~
~~ )i  ~1)~

~~ 

and hence 

(~~~ ) ~~ ~ X (~~ ) 

and :~~ r N, 
respectively.  



Now ~~~ is ~~ 8-expansion of X and hence is also an A-expansion_ 

Sinoe ~~ is an autornorphisrn of FA(X) , it follows that (~~5)1 is an. 

A-expansion of X .  But by Lemma 3.3 an A-expansion of X contained 

in ~~ ( ~~ ) is also ~~ ~'~~~~~~~~~ of ~~ Hence (~~~)0 is a 

ß-expansion of ~~ and therefore a free basis of Fÿ(X).  Thus 

~ F (~) maps one (finite) free basis of F 
(X) onto another, so it is 

an autouiorphisrn of 

It follows that the elements i such that ~I ~~ F(~: fo  ~~ 

subgroup if G  ., for the above shows that ~~~ ~~ F.'(~~ for all such 
r  - b 

ii~iflt~~ i  Also from the above %i see that the mapping i * Ol r  

(~~5)1 5 ~~ ' ~~ ) 

is satisfied for ai] sufficiently' large integers. s .  CalwerSely if 

an element 1' satisfies this condition for some s , then since ~~ and 

~~~~ are both free generating sets for ~~(~) we have X6  F~ (~)  and 

the proof is therefore complete.  

THEOREM -.2.  ~~ is a oubgroup of G  whenever  the 
N,r  '  ~,~~ 

form N = i + (~ i)d fOr some d ; 1 . 

~~~ the observation before Lemm- 3 ~. fundamental sets of size N 

exist in Der { if and only if N has the for N1±(~ 1)d 

with d > 1 .  When N has this form we can choisi one such fundamental 

sit ~~ and we obtain the result by applying Lemma 7'~. 
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~~ ~) 

is an isomorphism from this subgroup onto G  Thus the first part 

it the lemma is proved. 

We have already seen that if I belongs to this subgroup then the 

condition 



a ~u~g~~u  G . isomorphic to 
,1 

~~ n , ~~ 
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If c  thin G 

We prove this by embedding both G ~~ ~~ and G ~ » ~i in G  and 
21 

showing that the images of the two embeddings coincide.  

, uose that n = ed and let C,D be fundanental sets in 

Der L;'  with 1  Iri = ~~ !DI:; J  (here  are the unary 

operations of .) ~hen. by Lemma ~.4 both CD and DC are fundamental 

sits of.size n .  Using the funddntal set CD we first embed. V 

'5,2.  Lemma 7;1.,  G  = G,..contains    'L 

censisting if thoseelements u 

such that for sufficiently large integers s 

x(CD)  ~~ ( ci > 

Now C is a. fundamental set, so "X,C'is an expansion of 

consequently  ‚!  = F2 (X)  U  nowu ~~ n  2 XC) 

using the fundamental set DC  As above. G  ~~~ t.~~n~~ a subgroup 
2,1 

isomorphic to G  consisting of those elements ~~ such that, 
n,~~~  ~~~~ 

i for sufficiently. large s , 

i  
~~ (D~)'1 ~ . XC 1)~~ . 

liowever if i is an elemGlIt for which (1) holds, then 

(XC)(DC) s = ~ GL)) ' c.  

( CD > ~~ xc (L~~ , 

si (2) holds also for this element.  Conversely if & is an clement such 

that (2) holds for some s . then 



Therefore @ belongs to G  if and only if it belongs to 
~~  Gn r 

and ~~~~~q ~t1~~ 

G  G ~ . ~~ ~ )~~~ 

48 

so that G  G
fl ~i 

~s 
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EXPLICIT G~N~R~~~R~~ AND R -  FOR 

The algebra V2  has two unary operations al'a2  which we 

write as a,  in this section for simplicity.Elements of V.  are 

standard forms ovEx a set X. with one element,x say, and we-implify 

our notation by omitting the ~~ and writing simply  for . : :~~ le, 

in place.if xa  

TNe generators that we take for G1  are the elements ~, ' , , 

defined by the following ~ b~1~~ 

~~ : ( 

[ao 

~~ 

~~ 

:  ? ; 

Oa 

(Here X is a genera t.~: not an opirat ion . )  As  f~~~ng relations 

between these generators we have the following, the  t  of which, 

in brackets , are consequences  of the othcrs 



2  2 =1 = 

i 

(~)  k\))~Wv ~~ ~ ? )~~ 

~~ _ •
Q 

‚ )~~ 

~~ ~
~V~~ ~\ ~\) 7, 1 

i 

 

(9)  ~~ )\\ ~~ • )  i 

 

(ii)  ' ~~~ \ ~?'~)  I 

 

(ii)  i 

( 1 2 

si 

i 

In this section we shall siçt~~ the method by which these generators and 

relations were derived, 

in sectinn 4 it was shownthat each of the groups G  is gcnerateA  

by its elements of depth at most ~~ and that every re1atio  . ~~~ these 

generators is t consequence of relations of depth at ~~~t ~~ .  We shall, 

show that, in the case of G2,1 
 

relations of depth at ~~~ st ~~ also 

suffice to define the group when we use the generators ~~ ~~ ,  .  A 

set of ' ~~~~~t~~s for G 
 

is said to be mooth if, for eVery clement 

in (3
n,r 
 there is ~~ word w  in these generators such that O = 

is a relation of the same depth as ~~ .  The proof of Lemma 4.5  ~h~'i~~ tht 

as defining relations between any sfflooth set of generators we may take the 

relations of depth at most 6 .  A diagra~~ cf depth cl for G  is a 

graph whose nodes are identified with d-fold expansions of a free 

generating set X of V  and whose edges are identified with the 

elements of a specified subset of Gn,r(in practice this will be a 
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generating set) , such that an edge between two nodes is an element mapping 

one basis onto the other.We shall construct diagrams for G21 using 

the elements ~, ? v,  as edges : because these elements are 

involutions there will be no need to specify directions in our diagrams 

Observe that the paths on a diagram for G1  represent elements of 

G n r that are expressible as words in the elements used to label the 

edges.  An element O is represented by a path associated with a word 

w  on a diagram of depth d if and only if Gn,rhas a relation ~~ 

of depth at most d .  Paths that begin and end at the same basis(in.  

other words, circuits) correspond to elements that induce permutations 

on this basis.  In particular paths representing the identity element are 

circuits, and on a diagram of depth d these correspond to relations 

'4G  
of depth at most d between the elements used to label. the 

LEW, 8.I  ii necessary and sufficient conditionfor ~~ set of 

direita of G  to be a. smooth qenera/;tnq set is th.m1:,„ fOr ai d < ~~ 

the diagram of depth d be connected and the pePmutations corres ~~~dt~~ 

to paihs beginning and' ending at a fixedhasis Y constitute the fali 

.*jri,metric group Sy 

Let S be a set of elements for which the condition on diagrams is 

satisfied.Note first that, on a connected diagram, if the permutations 

corresponding to paths beginning and ending at one basis constitutethe 

symmetric group, then the same is true of the permutations corresponding  

to paths beginning and ending at any other basis. 

Now let :" be an element of depth d in G  .  Then there 
- 
 n,r 

exist cl-fold expansions ~. Z of X such that YO = Z .  These bases 

occur as nodes on the diagram of depth d  and since this diagram is 

connected there is a path joining the aides.  Hence there is an element 



~~ in G 1' mapping Y onto Z which can be expressed as a. word 

in elements of s so that ,1) = w  is a relation of depth at most d . 

Thi element ~~ induces a permutation on Y so by hypothesis it 

is represented on the diagramby a.path beginning and ending at 

This path determines a. word w  in elements of ' such that ~~ = w 
~~ 

is a relation of depth at most d  if we now define w = w  then 

we is a word in elements of S and ~~ w,. is a relation of depth d 

as required. 

To complete the proof cf the sufficiency we showhow to construct 

~~ word w with these properties when I has depth greater than 

F~~ Lemma 4 . 3 the elements of depth at most 
 

form ~~ smooth generating 

set. -i~~~~~ an element  of depth d > ~~ can be expressed as ~~ word,  

~~~~ say. in elements i  of depth at most  such that the 
~~ s  i 

ri t ~n  6,182  has depth d  ~~~ the first part of the proof 

~~ can find.words w  of the required type for each ~~ and we can 

therefore take for w. the. t ~~d w, '  _.w,   .  This proves that. the -~~ b_  e 

 

‚  s 
condition  on diagrams is sufficient. 

For the neceSsity, suppose e is a smoothgenerating set for 

and consider the diagram of depth d • for arbitrary  if Y 

and ? are any two nodes on this d ~~grs, then ' and Z are also  

d fold expansions ~~~n ~~ of X .  Hence there is an automorphism  in G, , 

mapping Y onto Z .  ~~~ hypothesis there is a relation  w  of 

depth at most d which expresses ) as a word in elements of i . 

in the proof of Liana 4 ~~ we see that the symbol for r C having Y and 

z as its rows can be filled out to a symbol for the relation H. w , . 

It follows thal there is a path from Y to Z on the diagram.  Therefore 

the diagram is connected. 

Finally, if - ~~ ' permutation belonging to the symmetric group 

on a basis Y on this diagram, then ~~ extends to an autoniorphisrn of 



53 

V  which maps Y onto itself.  This autoniorphism can be expressed n,r  

as a word in elements of S by means of a relation of depth at most d 

so as above there is a path beginning and ending at Y that corresponds 

to the permutation ~~ 

Using this /emma we. shall verify that ~. ). &,  form a smooth 

generating set for G21 .  To do this we construct the diagrams of depths 

at most ~~ for G2,1 
and check that the hypothesis of the lemma are 

fulfilled. 

On the diagrams we denote expansions of X by symbols of the form 

and so on.  To find the basis represented by such a 

symbol on the diagram of depth d •  start from the unique minimal 

expansion containing the circled element and expand it to a d-fold 

expansion of X • first expanding symmetrically from the circled element 

as far as possible and then carrying out any additional expansions needed 

at either a or  , whichever one has so far been left unexpanded. 

Thus. fir example. 

= (~~~)() on the depth 3 diagram, 

;  on the depth 4 diagram, 

:  ~(~~~ F ~t ~ »(~~ ,$) on the depth ~~ diagram. 

(aa,o,i3) on the depth 2 diagram, 

on the depth 4 diagram.  

In conformity with this notation a basis obtained by expanding ~~ 

symmetrically is denoted simply by Later we shall introduce 

further symbols I ~~~ bases not expressible in this way. 

~'h~~ diagram of depth ~~ consists of one node (the basis X) and 

no edges.  The diagram of depth i is 
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Were re standsfor (a  ) . )  ~~~ permutation induced by  is 

non-trivial, so it generates thefo1]symmetric group (of degree 2) . 

The diagr= of ce th 2 is 

wms, 

Writing 1 2, ~. for the elements of the basis  

we find that the permutations corresponding to the circuits\ ~dr. at 

thisnode are  (  ted ~~~ ' respectively,  These generate the 

symmotric group S  and, using definingrelations for the symmetric 

group, we obtain the following.relationsin  2 ; 

~~ 
~~ ((1; 

ne last if these  relationonpage SO.,. the other relations  

merely tellus that 2, and are involutions,which we know lrea.dy ,  . 

ne diagram.of depth  is 

i we identify the elements ~ ,  . (q, of  ) watt. 1 2,  4 

respectively,we can associate the circuits at thisnode with permutations  

as follows  

i
i~ k~~ 2(21) 
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Since the symmetric group is generated by transpositions of neighbouring 

elements,the first, second and. fourth of these generate ~~ .  Now 

S4 
has the following defining relations on the generators a = (12)54. 

b = 1(23)4, c  i2(34) d  (13)(24) 

~2 = b2 = ~2 = (db) = (bc)3 = = i , bdb = ao . 

Since every circuit at the node () is expressible as a product of 

circuits corresponding to these permuta ons, it follows that every 

relation of depth at most 3 in G21 is a consequence of the following 

relations : 

2  ?2 = ~2 = v2  , 

(? ~ 1~?)) = ( ~)~ )  I , 

\~~~ ? 

These give us relations (2) and (4) on page 50.  Also, if we note 

that ~\ corresponds to the permutation (l~)(24)(2~) = (1234), we 

obtain the relation (~ ) = I , which is relation (14) on page 50. 

The information derived so far tells Us that the conditions of 

Lemma 81 are satisfied, and we conclude that  is a smooth 

generating set. Thns to obtain.defining relations for (.32,1 it would 

now be sufficient to construct the diagram of depth ~~ and examine all 

the circuits.Ii practice, however, this would mean working with a 

diagram having 132 nodes, and it is simpler to use relations at lower 

depths first to reduce the size of the diagram. 

We therefore next consider the diagram of depth 4, which is : 
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The relation  Iwhich.is relation. (~) on page50, 

corresponds to ~~ circuit at  and may be verifie0.as follows . 

Identify the elements  fieva,  ~5, aa, cai of 
 

with 

in the order given and note that the ~~ r~~ s~its ~ ;? 

correspond to the permutations 1(24)(35),  (i4)(25)3 (  25)4 

respectively : the required relation is obtained by multiplying 

permutations . 

;~~ use this relation and relation (2), which was dorived above, 

to ~~du~& the diagram as follows.  Write relation (2) in the form 

À = 

and observe that the word on the right-hand side represents ~~ circuit 

at  whereas the ) on the left-hand side represents a loop at 

As this loop does not occur as part of the circuit represented 

by the right-hand side, we can replace any circuit on the diagram that 

involves the loop by one that does not, in.such a way that the correspondin 

permutations induced on any fixed basis are the same.  it follows that 
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(2)  any. relation of depth at most 4 is a. ~~n~iqu~n ~~ of relation.  

together with relations on the diagram. that remains when the loop is 

deleted.  On the latter diagram the only circuits passing through 

and are those involving a trivial circuit consisting of a path 

fo] lowed by its inverse.  ~~~ t we may also delete these nodes and the 

edges that end at them.  In this way. we remove the whole"tassel"at 

theleft-hand side of the diagram.  The other three tassels may be 

removed exacciy similarly, usingthe same relation 

Next•'41 rewrite relat:i.on () in the form 

and use it in the same way to remove the edge joining 

As b .... :~ :  when we have removed. this edge, the nodes %.) and  ) no 

long. occur in an essential way on any remaining circuits, so tiey may 

~~ removed, together with t1 ~~ edges th: to the rest Of the  

diagram.  We are thus left with the reduced di 

and 

\ 

On this diagramthe eluaera.; riesents ~~ circuit at 

and if we label the elements au, aiia,  a,n of thisbasis by 

L 2 • ~~ 4 ~~ respectively, th~n the permutati a corresponding to 

turns out to be the cycle (1 2 ~ 51 ) .  Hence we obtain the relation 

I 

which is relation (6') on nage 50.  We ~~ aid now tise defining relations  

of the symmetric group 
 to hid a basis forthe relations of depth 
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at most 4, but since we shall later find a basis for all the relations 

of G7  there is not much point in doing this.  (In fact, relation (6) 

was derived only because we .shall need it to reduce the depth 6 diagram) 

The reductions that were carried ~~ at-we ,onsisted in removing  

nodes that occurred as endpoints of only two edges on the diagram of 

depth 4 .  it is easy to see that on every d"gram of depth greater 

than. ~~ the nodes with this property are precisely'those that  represent 

hases in which either a or  is un~~~~d~d .  ~~~ examining the effect 

of the generators ~~ , A, 11,  on such bases it is not hard to see that 

these aides will ° col:ix in pairs on diagrams of depth greAter than ~~ 

either as tassels: 

~~ 

I 
 

Gr 

Y 
~:' in the form 

~~ u 

~h~;~~ correspond precisely to the sectionsthat we removed fromthe 

diagram of depth 4  and we can use the sante relations to  '~~ them 

from the diagram ' cf depth 

Aftr apply g these reductions we obtain the rediiced diagram Of 

depth 6 shown on page 60.  in this diagram we use the following 

notation  The bases 



aí'L,  

etc.are obtained by expanding symmetrically.. about both the cire led 

elements, starting from, the unique minimal expansion. containing both and 

Fcacti 
proceeding as before.  The symbols ~~~ L 
the following bases 

denote 

, •: ( f1aa, 

(aaa,QLf: 

(aaa, ~~~~ .  , 

(auu, ': ~~ ~4~~,  ~~ ,,  ' 

The remaining basesare Labeiled : ~di~~~ ~~ t e scheme already explain 



~~ () 

: 
~) 

Cal ~~, 

 

/17-1  ~~ 
~:)  ~~ 

~~ \ ;
_  I  ‚ ;~~ 

/ 

Q 
\ 

.,„z-)z)  , 

j 

\`'' :p.:0 - ,-..-' 

_~~ 

k 
Un)] 

• \ 
i 
, 
i \ 

(  ) '\  i•n''  /  n:  (: Ui"  (  ~~ ‚  .-  

; 

n 

Q.n~~
 ) 

r 
1. 

T» ~~ 



We nowcarry out further reductions on this diagram, beginning by 

removing the branches surrounding the areas labelled A G .  Note first 

that relations (14) can. be written. as 

~~~~ ')~\)') 

which shows that the two branches surrounding each area are"equivalent"  

to one another : that is, any relation corresponding to a circuit that 

involves one branch is equivalent to a relation corresponding to a 

i circuit involving the other.  Next we use the relation 

I ~\;~ L\))\1) 2 

which follows from (2) and () , to 311 that the lower branch at ~~ 

is equivalent to the upper oneat ~~ , and. that the upper bran ch at D 

is equivalent to the lower one at E .  ~~~ what we have just said, this 

means that the pair of branches at C is equivalent to the pair at ~~ . 

and the pair at D is equivalent to the pair at E .  We express this 

by writing ~~ ~~ and [) 7 ~~ . 
 ~~ now delete the  ...  at A. using 

the relation 

) Y \)~~ = \ ')'\ ~)'~\))  ~'i  ; 

observe that both sides are represented by circui_s at 1 act.  (It can 

be 'erified by calculating the permutations that this is ~~ rela tion.) 

The sarna relation can he used to delete the branches at ~~ (consider 

circuits at. )  and those at ~~ (consider circuits at ru72\ 

or USC symmetry),  Also, h~~ writing this relat'  

~~~~\)~~~ vtroävp~A 
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and considering circuits at and ~~ find that ~~ 

and D ~, G  It now follows that every pair of branches may be deleted,  

si we are left with the diagram : 

 - I}  
( )  

;f 

? (\_ 

  -  

(I y 
L- ~~ \ ~ ' __ 

i 

Using relatiofl  14 :(~~ )  1 . which was derived.from the depth 

~~~
 rand the edges 

joining  •~h~~~ to the rest of the diagram  We then use relation f ~~ 

7..-  ~\ 
(depth 4) to delete  . ) and (  relation (1~) (depth 2  to 

 

„ _‚  \ ?; 
delete  and ( )  , relation (~ ) (depth 4) to delete the 

remaining tassel on the right, and finally relation ( 14) to delete the 

dikza , we can delete the nodes (t',21 
 

\ h 007 

loop at 



(~ ' '‚ 

' ~~ 2 

\ 

au  ,./a  
aria ( ) 
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These reductions leave Us with the diagram  

It is now easy to see that all circuits on this ; :Liagram passing through 

the node [~] are expressible as products of the six circuits through 

this node representingthe elements ~~ , ~~0~~,  ~~'Q ) ~~~ 

~)'~~~~ ,  N;- , respecti'feiy . 

These elements determine the following permutations 



(16)(27)345 ~\~~ 

~~~)  (13)(25)4~? 

~~\),k) ~~ 12(3')) 4 (7 

1~')~~)  I(24) (6) (57) 

' 

The complete list ,at defilling ~~1~ti~n . is obtained by taking those used 

so far together with a set of defining relations for the symmetric gronp 

onthese generators,  

64 
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9 ~~ s EMINORMAL FORM FOR ELEME N Ts 0F ~~ 

In this section we pick an automorphism ~~ of VII,r and construct 

a basis for Vn,r which makes the study of ~~ easy.  We shall then 

apply the construction to study algorithmic questions, showing that one 

can solve the conjugacy problem in  and also recognize when ~~ is 

of infinite order.  he shall use the same method to study torsion free 

abchan subgroups of G  of finite rank. 

The method is based on a consideration of the orbit structure of 

 

on X ( ) for any basis ~~ .  Since I is one to one on V n,r 

~~ may have orbits in X. (~~ ) of any or all of the following five kin 

(i)  Coraplete bif ~ it~~ 01,b1-to.  For ~~ in. such an orbit, yO  belongs 

to ~~ (~~ ) for all integers  , and the elements -yei ari ali 

different. 

(1) Complete finite orbits.  For ~~ in such an orbit, ~&  ~~ for 

all some positive integer n , and y,  y-')n-1 ail belong to 

~~ (~~ ) 

(iii) Right  orbits.  For some y in the orbit, 

belongs to ~ (A > for all i > ~~ , but dies not. 

elements ~~~ , are then, of course, necessarily all. 

different. 

(iv) Left semi-infinite orbits.  Interchange 6 and 0  in (iii) 

(v) Yinite incorr'p Z-ete orbits.  Here for some y and some non-negative 

integer fl y, y6  belong to X (~~ ) but y0
-1 a- 

n+1 ~&  do not 

(In the case of incomplete orbits, several of them may really belong 

to the same orbit of  on V  . but we are not concerned about this,) n,r 

~~~ Lemma 41, for suitable expansion s Y and Z of X we have '/6  Z , 



so that (y ~~ ) )0 cX (~~ )  and (Z (~~ >)Q 1  X ( A ) . since 

X (A > \ Z ( ~~ ) is finite and an orbit of type (iii) must contain an 

element y Es X ( ) \ Z (A )  there are only a finite number of orbits 

of typo (iii)  Similarly there are only finitely many orbits of type

•(  and (y)  Furthermore we may assume that Y is chosen so that 

maps no proper contraction of Y into X (A )  which case we see 

from the proof of Lemma. 4.1  that 

Y ~~ ) = ~~ ( ~~ ) 1 ~~ ~~ 

ar)d hence 

z)  { ~ > ~~ i xA> 

'Dins ~f u  ~~ ) \ :~~ then u  X A )  , so u6- 1  X A ) and 

hence u is the initia]. element either of an incomplete finite orbit or 

if a right semi-infinite orbit.  Similarly if y E Xi (A ) \ Y ( ~~ ) then 

V is the terminal elementeither of an incomplete finite orbit or of a 

left semi-infinite orbit.  But  ~~ (~~ ) \ z  .  = ~~ >  y (p, >  , 

and the initial and. terminal elements of the finite. incomplete orbits 

are evidently in one-to-one correspondence,  Therefore; there are as 

many right semi-infinite orbits as left semi-infinite orbits.  ~~ summarize 

the discussion. 

LBMMA 9.i.  Acre are on i' f'initely many02qiitÿ cf types (iii), 

(iv)  and (v) and there ave ~~~ many of type ( Jill) i) ~~~ of type (iv). 

We shall say that I is in seminormai with respect to the 

basis ~~ if there are no finite incomplete orbits.  The letters ~~ , t A, 

j 11 be used for sequences, possibly empty, of the form 

C = (1. a. _a.and we write  11"  k . 

I  '  ~~ 
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L~~~~ 92.  7;',or. an automorphism i there exist B ~~ ~;z~~~~ with 

respect to wh ~h 6 is in seminormai 

The proof is by induction.on k , the number of elements in the 

orbits of type (v) for someX  if k = 0 we are done.  

there is an. element ~~~
 with ~~ ~~ and ~~ ~ ) 

 
in an orbit 

of type (y)  if i is the orbit containing x then x E X (A ) while 

for ir ~~~~~ m and n  x6  and ~ ,  not in X (A  because 

~~~ ~~ and. ~:~ 1 are not, so C' is.also of type (v).  if 

~*  x \ ix) U {xal,..,,xa,1! then X ( >  \ ixj  ~!~~~ the 

only change in orbits whehwe pass from. to  is that we have 

reduced by one the number cf elements ia orbits of t~~ ) .  ~~~ 

irtdnct ~~~~ we are done. 

If I is in seminorma1 form. with respect.to X then. I is also 

in ~~m~~~r ~~1 formwith respect to every expansion of X .  it follows 

that given a finite set of flamants of G  there is on ~~ with ~~s~~ t 

to which they  all in seminoxmal form. 

L~~~~~ 9 ~~ Let :) be in seminornal fOrm with respect to the 

~~~~~~ 

(~~ )  For x in X . if some xf beionce to a finite (complete) orbit,  

then x itself  he i~ q~~ to a finite ' ~~~~ le t ) orbit, which consists of 

elements 4 V  

(E)  If for some x in X and aime ~~ 4% with '  I:,xr and 

~ belongto the same orbit, then for some n i)  1 , s0 = xA . 

Fur.thermore (1) the orbit containing  is rightsemi-infinite if 

n >  and (ii ) the orbit containing  ie left semi-inftnite if n < 0 

(C)  If X. in. X does not fali under (4) o.r (~) above, the orbit 

containingx contaimz vP  for some y ,aiiing ir case (~). and 

some F 
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We use repeatedly the prinCtptC that if 0 is an orbit (complete 

or not) then OF (~~ tyr 1 ~~ ~~ ~}) is at least part of an orbit.  In 

case (~) this implies immediately that the orbit containing ~~ is 

finite, and it is therefore complete. since O is in semiformal form. 

If the  orbit containing ~~ contains also yA  where ~~ 1~~ in X , 

then it is  A.0, where ~~ is the orbit containing ~~ Since ~~ 

belongs to the orbit, this implies f = i, completing case (A). 

It foi10,4s that if ~~ belongs to ~~ finite orbit, then the orbit 

containing xr is {~1~, . . . ~k ~) for some set of distinct generators 

Thus in. case (~) the orbit containing ~~ must be at least 

semi-infinite since F /.  We may suppose that xt stands to the 

right of xr in the orbit that contains them both.  If the orbit ~~ 

containing is right semi-infinite, then OF contains ~~ and 

everything in its orbit to the right of it.  In particular. it contains 

I  ‚‚~~ 
~~ ~~~ for some  ' ,  ~~~ . ana ~s  xA for some n ' 0 . 

Similarly if () is left semi-infinite then for some A  I we have 

F = AA  and xi1 ~~ xA for some n < 0 .  If 0 were a complete 

infinite orbit,each of ~~ ,  would be a proper final segment of the 

other,which is impossible.This completes the proof of (~). 

Finally (C) is obvious, for if ~~ dies not come under case (A) the 

orbit containing it is infinite; but X is finite,so the orbit contains 

5001 yi" and yA , y in X  F  /  and y falls under case (B). 

COROLLARY. If ~~ , an elemeit of infinite order in G 

thin there is a bound on the ect of integers i such that there is a 

in ~~ ~~ r 
 ~!) 11 = u 

~~n~~~ e has infinite order so does every such 41 and by Lemma 9 . 

each such ~~ has a semi-infinite orbit.  For some i this orbit is a 
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disjoint union of i semi-infinite orbits for i  and since I has 

only finitely many semi-infinito orbits by Lemma 91, there is a bound 

in the i 

When.we apply Lemma ).~~ we shall speak of generators or elements 

of X of types (A), (6) and (C).  Following a vector space analogy, 

wo call an elementJ if n ~~ such that for  
- 

some ~~ ~0 = uF 

a characteristic siernimt.„with characteristic multiplier ~~ .  The 

element and.the multiplier are properif ~~ I . 

~~~0R~~~ 9,4.  eiement & of G 1,6 of infnite ~~d~~~ if 

and only if f/ir some ~~ ') ~ m nas a rrooper, charactor,istic elment 

If u  s a characteristic element of o  with multiplier  then 

uem)  But if ~~ the elements IlFj are all 

different as soon. as j is large enough for urj to belong to X ( ~~ ) . 

so that ~~ has infinite order.  For the converse let e he in soidnormal 

form with respect to the Oasis X .  If no ~~ has a proper Characteristic 

element then X has no elements of t . (~) and hence none of type (C). 

~hus all elements 0~~ X. are o f type (!) ,  on.ee 0 is a permutation  

X and has finite order. 

L\C 
 are aeromorphisms of two isomorphic free algebras 

and. Vwrite 0  4) if there is an isomorphism 
.,r  r  

p ; V  - V  such that ~~ =2-16p  Observe that  reduces to 
n,r  n,r 

olaj ugacy in  ~~
 if ~~ and ~~ ari automor.phisms of the same algebra 

For a finitely generated free algebra V in VII with an automorphism 

~~ let V  and V.  be the subalgebras generated by elements of V 

in finite orbits of i and proper characteristic elements of powers of 

g respectively.  ~~~ neorem 9 . 4 , 9 is periodic if and only if VRT 

is empty; if V) 15 emptywe shall say that ~~ is neguiar infinite. 
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THEOREM 9.5.  The finitely generated free algebra V is ~~ free 

product of the 0-admissible subalgebras VP and VRI 

and ORI
. th(?  two automorphismo ~~ and 4 

RI 
and oniy if e  1) p and e RI  1,RI 

1f Op = 

Lit X hi ~~ basis with respect to which ~~ is in seminormal form, 

let V  be generated by the elements of X of type (A) of Lemma 9.3 

and VII by the elements of types (5) and (c).  ~..  'i is certain-1-Y 

the free product of V'1,, and Vla so we have to show they ~~~ ~~ O-admissible 

and V = V)  V ~~ = R1•°   We use frequently the fact that an element 

u belongs to a subalgebra if and only if there is an integer  such 

that all u  do for all ~~ such that s 

If u lies in ~~ finite orbit of e then there is an s such that 

for all ~~ if length s  u6, X (A ) , and uA is in a finite orbit 

of i.  Thus ut, = xf for some x E X and .~ ((~ >, and by 

Lerama 9 ~~ (~) x is in a finite orbit so x  V° and  xr ~~ V10 - 
P 

Since this is true for all A of length s , u E. V. .  ~h~~ V  contains 

all finite orbits of I .  It is generated by these orbits because it is 

already generated by the ones which lie in X ,  Thus V = V  and 

it is clearly 1-admissible. 

We show next. that V  is O-admissible; that is, if u belongs Ri 

to  so do ul and ul  Because we can replace u by the 

set of all ui large enough. and (Uf)O  116~~ etc„ , it is 

sufficient to prove this statement in case u, u0,ue-1 all belong to 

X (  ~ut then, by assumption, u is xAwith x of type (~) or 

(C) of Lemma 9.3; and ul and u~~ belonging to the same orbit as u 

ari also if the form xl ' with ~~ of type (~) or (~) , and so belong to 

RI 
 as required.  We show V 1 contains no proper characteristic 

elements of powers of ~~ .  If u is a. proper characteristic element 

for Om , 0m  u~~ , where ~~ 1 , and so u0m1 =u~1 .  Choose 



so large that u~~ belongs to ) ( ~~ > Then url belongs to a 

semi-infinite orbit (right semi-infinite if m > ~~ . left semi-infinite 

if rn < 0) and so it is xAfor some ~. in X of type (~) and. some ~~ . 

Thus ur± belongs to V . , and sinceV,1 isO-admissible. u 

heluhstoV's  ~bat ~~ ~~~t~~~~ J. i proper characteristic 

elements of powers of I  Now 'V  is generated by- elemerits x in ~~ 

if type (~) or (~) .  ~- eloment of type (~) is a proper characteristic 

element of a power of C' . I f x is of type (),  yt for 

5001 integer  generator y of type (~) , and word ~~ ~~~~ 

 

e (y-6-111)/i , and v0-m ,  .i ~~ y , is a propor characteristic 

of a power of ~~ Thus V :,  ~:~t~d by these characteristic 

elements and so V  V  . RI  PI 

We have now provided an invariant  . ion For the subalgebras  

and V ; the last sent,snce of the theorem is therefore clear. RI 

If is ~~~~~n~~ t next to i utroduce a.. slight strengtheningof the 

notion of seminormal f~~~ .  We shail say  that  ~~ ~~ in quasinormal-form 

with respect to the basis X if it is in semi-normal form with respect 

to X  but not wish respect to any proper contracticn of X  show 

there is a basis X with resnoct to which I is in qoas ~o~~~~l form. 

Let Y be a basis with respect to which 0 is io..semiuormal form.  If 

there is a contraction of Y with respect to which I is in $eMinotMal  

form call it Z ; otherwise take Y  X  Apply- the same process to 

z  if necessary, to get a chain Y. Z. . . . with  ,Zi > . 

Since ' is finite the process terminates after a finite number of steps 

at a basis with respect to which. I is in  's ~O~~m~ L form.  The 

followingresult shows the usefulness of the quasinormal form. 

~~~~~~ 9,6.  ~fe i8 inquasinormaiform uit/i reswct to X 

aid f 'i = 1m  and u V L~~ l~ q to X. ~~ >  then ue  belong s 

to X (A )  fop i • J ,  ri i 
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is legitimate because the set of all symbols of eieme'ts can he effectively.  

enumerated.The analogue if the word problem is then the question when 

two symbols represent the same elements.  This is clearly soluble for, 

given any symbol for  we can find a "shortest. possible"such symbol, 

and by Lemma 4'1 two such shortest possible symbols differ only by a 

permutation of columns.  Equally trivially, if we change the basis X 

of our algebra, we can find from a given symbol for O a symbol relative 

to the new basis, 

LENNA 9.7,  Given an element 8 of G  (i) wecan ~~~i~ti»~~t 

ci basis with respect to which 0 is in quasinoymal, form and (ii) far u,11 

in. ‚I  can 7 l7 whether  are  8  ‚ii t f 1,1'  , 

se, what are the integers ~~ ~~~ 7~.~~h. u& = y 

(~) Starting with an arbitrary basiF, ~~ and. an element. ~~ of ~~ 

we construct the orbit 

7  2  ~~ 2  '.3 xi  '~~ ~:) 

going forward until either we reach  ,.. ' ~~ for which xEima+1 is 

.,  „ ~~  ..  „  .  .  .. not in ~~ \ ~~ ' , or we reach ~~ , r  () , such that tor some xi 

9 .::.  :L1 ,  have ‚ ~~ ~~~ and x0:  , for some y . X . ~, 

and going backward similarly until we axe stopped,or reach the repetition 

if a generator.  If for some x we are stopped in both directions, then 

is not in seminormai form with respect to X  we expand at the 

element 
 as in Lemma. 9.2 and start again.  If for no ~~ are we stopped 

in both directions, 0 is in seoeinormal form. with respect. to ~~ and 

after a finite amount of time this must: happen.  When we have found a 

basis X with respect to which  is in serninonial forni, we test 

similarly. all the contractions of X (there are only a finite number) 

to find a basis with respect to which ~~ is in quasinormal form. 
~~ s 
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(ii) We may assume we have a basis X with respect to which O is 

in quasinirmal form.  Moreover, because ue = ‚' if and only if 

(U~)~m  V~~ for all F of any fixed length s » we may assume that 

u and y belong to X (A ) .  ~~~ Lemma 9.6, if uv belong to the 

same orbit of 0 in V. , they belong to the same orbit in X (A ) 

Suppose that u  xF and that y  vA  where x,y belong to X . 

if, in the classifica of Lemma 9  ~~ is of type (~)  then for 

sorne r  ~~ ~~ i , we have ~ 1 = xA  If ~~ = !L ~~ where ~0 

has no initial segment ~~ • and u = xio . then 

mi  mi  mi  i 
u01  xi'  ~) _ri = vi,-, Í' =  Thus we may replace u by 

UI ; that is, we maypose  has ~~ initial ~~gm~~I :. \ , and 

similarly 21 has no initial segment ~qu.1 to the characteristic 

multiplier of y  ify is of type (~) .  Now construct, as in  part (Z) , 

the orbit 

ue - ut  u u . 

again we stop going forward or back if  reach  point nt which the next 

element is not in X ( ~~ ) , or if we ~~ a. term 'zq).  z in X 

for which some z~~ has already been Included in the same half of the orbit. 

Then, given that we have made the reductions mentioned above, v will 

belong to the orbit only if it is already written down.  in this case 

we can also see whether we have  ~~ finite complete orbit and hence see 

what integers ~n satisfy uem = y . 

If ~~ is or type (C) then for some t , xe =zA for some z 

of type (~) and now we anpiy the above process to zl and y to 

determine the m for which ubm  y . 

THEOREM 9 ~~ The ~~~ ~~~ probiem and the.conjugae;y probiem are 

solubie in ~~ 



If I is an element of G  . we can find (constructively) an,r 

basis X with respect to which 0 is in quasinormal form, and classify 

the elements of X ~s in Lemma 93  If there are elements of X of 

type (~)  i has infinite order; ~f there are no elements of X of 

type (~) and hence of type (0), the order of O is the least common 

multiple of the lengths of the cycles containing elements of type (4). 

To deal with the conjugacy problem let autornorphisms  8,(p 

algebras V  and \  be given and we will show whether 0  ( . 

n,r  n,r 

By Theorem9.5. I  ~~ if and only ~i ~'  and  ~R~~ The 

ethods of section 6 enable us to deal with periodicelements, so we can 

and will suppose ~~ and ~~ regular infinite (1-, and can he 

obtained constructively from 6). 

Suppose we have found, as we can, base.. ~~ and Y respectively 

'with respect t.0 which (- and 1; are in qu~~.... a1 form.  We s'hall show 

how to find ~~ finite set R of maps of X into F (Y) such that n' 

if i  , then for some ~~ in R  there is an isomorphism 

~~ : F(X) '; F1(Y) such that p  = po  ~'~~~ .  Since we 

can.clearly Lest for a given p  whether its unique extensionto a 

homomerphism p : Fn (X)  F(Y) is an isomorphism, and if so, whether  • 

~~ ~~ 11~~ this is enough.  Note that there are, in fact, aDinfinity 

of autemorphisms p such that 4,  if there are any at all, since 

if ~~ is an automorphismof Fri(X) commuting with 
 

(~~ . if ip  ~1 

for sorne i) we can replace ~~ by 0 . From nowon when we speak of an 

isomorphism ~~ we shall mean one such that  e-I82 . 

We shall introduce an equivalence relation on the elements of X : 

taking Eto be the least equivalence relation such that ~~ y whenever 

some xF and yA are in the same orbit of i .  The method of proof is 

as follows.  First we nick an ~~ of type (~) in an equivalence class 

We show that there is a finite set V of elements of V  such 
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that, if it is true that ~~ =  en for some isomorphism p , then 

it is possible to choose p so that ~~~ is in V  Next we show that 

if ~ is another element of type (~) in X0 then there are only finitely 

many possibilities for ~~~ , provided we restrict ourselves to isomorphisms 

p chosen as above.  Then we deal separately with elements of type (C), 

and repeat the whole procedure for the other equivalence classes.  Let 

~~ be defined by ~~ = ~~~ for x in ~~ ~~~~ for ~~ in X not 

inX0 and extend ~~ to ~~ map of 1 9(~) .  Then ~~ is an automorphism 

of F (~) which commutes with ~~ , By Lemma 9  and since  is regular 

infinite we can choose an x in X,-) of type (~) .  Then x is ~~ 

characteristic element of ~~ power Om of e with some multi~1~~~~ f  i . 

We assume an isomorphism p exists with ~~ ~ 1 ~~ Then ~~~ must be 

~~ characteristic element of ~~ with multiplier F It must therefore 

belong to ~~ semi-infinite orbit of ~~ (right semi-infinite if r > 0 

left if m < ~) .  We can look at each such orbit and see whether or not 

its elements are characteristic elements with the right multiplier (if 

one is, they all are)  If no orbit of appropriate characteristic exists, 

p does not exist, and we are done.  Ret.... ~~~g to the assumplron that p 

exists we have for some initial or terminal element y of ~~ semi-infinite 

orbit and some i , ~~~ e ~~1  We can replace ~~ by -1
p so 

that ~~~ = ~~~ y is the initial or terminal element of the 

orbit in which it lies.  (Observe that this adjustment does not affect 

zp for z in any other equivalence class.)  Tiwt is, ~~~ may be taken 

to be one of ~~ fixed finite set V of elements. 

Suppose next that xF and yt are in the same orbit, say 

(x,7)0m , where y is also of type (~).  ~~~ the argument of the 

last paragraph there is a finite set, W say, of elements s u~h that if 

p exists then there is ~~ w .-  and an integer i such that yp = w~~ 

(We cannot multiply by '4 again to normalize.)  Given the fact that 

p is an isomorphism and knowing ~~~ is a specified element of V and 



in W is such that rd 
 then we show that we can determine ~~ 

uniquely.  If yp = w,  we have 

( ‚‚~~ ‚ 
(w)~~ = ()~/ ~~~ = ~1) ~~ : (~~)i

~l  

~u~~ w  and (~~~~ are in the same orbit of 4)  Because ~~ is 

regular infinite, ~ < ~~ ;> decomposes into a disjoint union of infinite 

orbits under 4,)  Thus if wA and xpF are in the  orbit there 

will he a unique i snch that wiA,bi = ~~~ b . and we oaf:.find the i 

. by Lemma. 9.7(Y,,i).  Hence we can find the unique  for which ~' - wOï  

is a possibility.  Thus given that p is an isomorphism and xp is 

a specified elementof V • since W is finite there are only a finite 

number if possibilities for yp .  We can test whether ~t'~~~ in fact there are 

any possibilities for yp by usingLemma 9 . ? (i) to sea for each w 

in W if wA and (~~~ ~~ are in the same orbit of , 

Given that p is an. isomorphism andxp is in ‚ , since V is 

finite and there are only finite -Y niany y.of type(B) in ro  

number of possibilities for the y is finite.  Note that in using the 

transitivity of  to show that x a y where both x and y are of type 

(~) we need never go through an element ~~
 

... (~'); for if z is of 

type (~) thin by Lemma 9.5 there is a z  in the orbit of z for some 

si of type (~) , and any orbit containing some z  contains also z ~~~ . 

,  _ 

Finally r'  ( ~~ and z is of type U then z  z•i
k for some 

z! of type (z •  and k . and zp is determined once  z p1r3- 

is chosen. 

Since  ~ is finite there are a finite number of equivalence ciasses, 

Repeating the above argument for each equivalence class, and noting again 

that adjustments made for one equivalence class do not affect those made 

for others, we see that we have constructed R . 



We conclude with the proof of the following theorem. 

THEOREM 99.  Let ~~ be ~~ torsion ae1ian group of finite 
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rank contained in G G 
!- ~~ 71;~~~ (i) A io ~~ free abei-ion group of 

finite rank' (ii) the ~~~t ~1i ~~ ~ (~) is of finite index in the 

norna1ized NG(A) and (iii) NG(A) hoc ~~ direct acto  ~~ which, has 

~~ fre abchan subgPou C suA that L. is of finite index in ~~~ 

A charactePiatic of A is an. infinite sequence 

ful, u 2,  U(y 

of 

 

elementsof V 1. such that for some e in A and ~~ i , 

Uil - uiF = u±±1 for all i .  If d is an element.of NG(A) then 

{p.  is ~~ chAxacteristicfor ~~~ the theoremisproved by studying 

the action of NG(A)on the characteristics. 

We begin by showing that i: an element of V»  
belongs to ~~ 

characteristic at all then there is ~~ unique maximal characteristic 

containing it.  Suppose u belongs to ~~ characteristic {u } where 

ul = uf  If {~~ ) and{u41 are characteristicscontaining {u} 

with ' 12  ~~ ~~1' ~~ :  for i = ~ 2 then L  and ~~ are 

initial segments of ~~ .  Also 

i~1~2 = ~~2~1  LL 1 ~2 

so that for sorne word ~~ we have t. = ~~ , 
 where a and 

b are positive integers.  Replacing ~~ by a power  if necessary, 

we may assume that a and h are relatively prime,so for some 

,  ~ d  c 
ac ± od  ,  Iherefore u~12  ui\ , and thus i f u( 7d~ i  is 

 ~~ 

characteristic contain' .g both fu  and {u~ }  Since ~~ has only 
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~~ finite number of initial segments it follows that {u11} is contained 

in ~~ unique maximal characteristic as required.  ~~~ Lemma 9'3 ~~ maximal 

characteristic contains ~~ semi-infinite orbit and there are only ~~ finite 

number by Lemma 9,1  ; 1"0:0 any eiement I of A there are only ~~ finite 

number of maximalcharacteristics each fixed setwise but not pointwise  

by some power of ~~ . 

~~n~~~ , is of finite rank there exist elements  such 

thatfor any. 3 in A there are integers ~~ a •  a  with ~~ ~~ 

~1  ~~ 
i  ák 

characteristic there are integers i and r such thot ~~~ fixes 

maximal characteristic setwise but not pointoise, For if {} is 

the characteristic and u ~~ u.P = u. .  F 4 1  and if ' 
E ~~ (~) , 

:1.i  i+i  
Cr (A) 

 particular if 4)  A • then ii,1141 is one of the finite number of 

characteristics fixed setwise but not pointwise by i .  Thus A. has ~~ 

subgroup ~~ of finite index. say, fixing {u} setwise .  in 

such. that ~~ = i tile shall show that forany maxima-1 

u  = u ~~ ~~~ t 
s = ‚ ) 

since 614-11 

i • i particular 

as above. 

i i fixes  u} setwise for each i .  Suppose i 

does ~(~~ t fix. ful pointwise, one since 
am am 

~.„  l  k 

~ l must notfix pointwise, giving the result. 

Putting together the results of the last two paragraphs : there are 

in all oni:q a init ~am~~~~ of ~~a~~1 characteristics.  We next show 

that if 4 in  N (~) fixes setwise the maximal characteristic {u 
(-;  I 

we must have u4 = u  where  ±1 and t is an integer.  For 

u.(J  u0
i = u0 (P(4)-100 Ut(~ 1~~)t for some t  Let  ~ ~~~ 

and observe that q commutes with & .  If ut  u  then 

Hence there is an n such that u 

if u i  en u = 
 

' = us4 = u  
so that. u ~~ 5±  

inductively we get for ail integers i , ute = u ± 

1111therliaPsti-into ~~ proper subset so {u} 

is ~~ characteristic for ~~~~ we have a characteristic 
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properly containing ~~ maximal one, which is impossible.  ~h~~~ 

i = i 

We regard each characteristic as giving rise to two oriented 

characteristics : ~~ preserves the oriented characteristics corresponding 

to {u) if c = 1  Since there are Only a finite number of oriented 

maximal characteristics, the elements of N = NG(A) preserving each 

oriented characteristics form a normal subgroup ~~ of finite index.  An 

element (I:, of ~~ acts on the characteristics i u as u. ±  
. 

If 

we let the maximal characteristics be {u . . . . , ~}  and the t s 

corresponding to an element q of ~~ be t  t , , it is easy. to 

check that the map  (t , . . . , t) is a homomorphism of 4 into a free 

ahelian grout of finite rank, whose kernel L is the sot of elements 

~~ if N which fix each characteristic pointwise .  Let 6 be a  non- 

trivial element of \ .  Since i has infinite order, by Lemma ) . 

some power of it has a. prope7 characteristic multiplier,  F say .  Let 

u
0

em =uF=uI and 8 

~ht~~ 

_1  ‚mt ~~ 
~ -  r 

i  (  () 

Since 0 acts nontrivially on the characteristic  ~~ ~~ n L = I . 

We thus have the normal series 

N  ~~ > L  I 

with N/I finite, M/L free abAian. of finite rank and L i ~~ = J . 

We can now easily obtain the first two parts of the theorem.  since 

~~ n ~~ (~~ i i)L/L is free abchan and ~~ i ~~ is of finite index in ~~ . 

there is an n such that ~~ I ~~ AD so An is free ah~ jan and 

~~ ~1 because A is torsion free. Notice ~~ A (1 1  ~~ .  Now 
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since ~~ is abeiian and conIains [~~] 

4] i „Al : L i ~~ = 

and since 
 is torsion free, ~~,~]  I .  Thus ~~ ~~ Cc(A)  

whence CG  has finite index in N. (~) 

The third. part of the theorem will be proved by showing that if 

(~ 1.  aen orat  the" V 1 9 ~~ i  k  is the free product of algebras 

VD and  RI as in. Theorem 9.S, where.each.  i is periodic i! . V , 

and VRi ~~ g~~~~t~~~ by th ~~ characteristic of k  For by the 

remark following the proof of Lemma 9.2  there ~.  is an , such that ail 

the 6  are i" seminormal form with. respect to X .  Now let 
i 

be generated by the ~~ in ~. of t~~~ ~) for all 1. 

by the x of type  or (C) for some ~~ r is the free 

product of V p arid V. d . and each :  ~~  i is p ~~~d~~~ on 'I p  An element 

[~1 ~] 

4 of ‚~~ ~~ u k) ~~~~ be regareed as a. pair  ~.~~-1 where 

and ~ 2  ~~ gives the required direct product decomposition, 
RI 

and L abovcis the first factor of this decomposition (that is, the 

sit of ,),) with  2  I)  If ~~ is the second fsoter then ~~ i ~~ C 

is freea' elian. and of' finite index in ~~ .  Rut ~~ is of finite 

index in. (~~ ~~ since the, first factor of elemenIs in A forts a group 

generated by a finite set of ~ :  ~g periodicelements,  This proves 

the theorem.  

COROLLARY.No ~i~~ •; ha6 O subgrouu isomorphic to  (L (3, Z') . 

(Note that  iL(i , Z) has a soluble.word problem.) 

The sutgrouo ~~ if GL(32 7,') ~~ of elementsof the form 



i  a 

a  i 

~~ o 

is abelian and normalized by elements of the form 

but nit centralized by then when ~~ ~~ so ~,(~) has infinite index 

in  (A) 
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