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Abstract. Property FW is a natural combinatorial weakening of Kazhdan’s
Property T. We prove that the group of piecewise homographic self-transfor-
mations of the real projective line, has “few” infinite subgroups with Prop-
erty FW. In particular, no such subgroup is amenable or has Kazhdan’s Prop-
erty T. These results are extracted from a longer paper. We provide a complete
proof, whose main tools are the use of the notion of partial action and of one-
dimensional geometric structures.

1. Introduction

The purpose of this note is to extract from the long paper [Cor3] a strong
restriction on groups of piecewise homographic self-transformations of the real
projective line. We start with introducing this group, and then the rigidity prop-
erties we deal with, namely Kazhdan’s Property T and Property FW.

1.1. Piecewise groups. Let PC(P1) be the group of piecewise continuous “self-
transformations” of the real projective line P1. Formally speaking, it consists
of maps f : P1 → P1, continuous outside a finite subset, such that there exists
another such map g : P1 → P1 such that f ◦g and g◦f coincide with the identity
map outside a finite subset. This identification essentially means that we ignore
the values at discontinuity points.

We will mainly be interested in its subgroup PCProj(P
1) consisting of piecewise

homographic self-transformations. That is, it consists of those elements repre-
sented by a map f : P1 → P1 such that for all but finitely many x ∈ P1, there
exists a neighborhood V of x and g ∈ PGL2(R) such that f(x′) = g(x′) for all
x′ ∈ V .

It naturally contains various subgroups that have been considered by various
people with various points of view:

• the group of piecewise affine self-transformations of [0, 1], and its sub-
group of continuous elements. In turn, those piecewise affine groups con-
tain many famous groups, notably Thompson’s groups and several of their
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generalizations, and also the group IET of interval exchange transforma-
tion. The list of references is too long to fit here!
• Define Gi as the intersection PCProj(P

1) ∩ Diffi(P1). First observe that
for i ≥ 2, Gi is reduced to PGL2(R). The groups G1 ⊂ G0 = PC(P1) ∩
Homeo(P1) are much larger. The group G1 was introduced by Strambach
and Betten [Str, Be]; they identified it as automorphism group of a Moul-
ton plane (some affine plane, in the sense of incidence geometry). It was
further studied in [BeW, Gre].
• The intersection G0

∞ = PCProj(P
1) ∩ Homeo(R) (stabilizer of ∞ ∈ P1

in G0 above) was considered by Monod [Mon], who remarkably observed
that this group (and hence some of its finitely generated subgroups) is
not amenable while it does not contain any free subgroup. The key
argument for non-amenability is a topological notion of amenability for
equivalence relations, due to Carrière and Ghys [CG]. Subsequently non-
amenable finitely presented subgroups of G0

∞ were exhibited by Lodha
and Moore [LM].

A general question is to find restrictions about the possible structure of sub-
groups of PCProj(P

1). Such questions have often been addressed within the
various subgroups mentioned above (see, among others, the references in [Cor3]).

1.2. Rigidity properties: Kazhdan and FW. We will mostly be concerned
with two group properties: Kazhdan’s Property T, a rigidity property about uni-
tary representations, and one of its less known combinatorial weakenings, Prop-
erty FW. We first quickly overview these notions, before turning to the results.

Kazhdan’s Property T was originally introduced by Kazhdan. For a countable
discrete group Γ, let us use as a definition the following characterization due to
Robertson and Steger [RoS] (4 denoting symmetric difference):

The countable discrete group Γ has Property T if1 for every measure space
(E,A, µ) with a measure preserving Γ-action and measurable subset X ⊂ E such
that µ(X4γX) < ∞ for every γ ∈ Γ, there exists a Γ-invariant measurable
subset X ′ ⊂ E such that µ(X4X ′) <∞.

This means that the only way to satisfy the “invariance modulo finite measure”
condition is the trivial one: modifying an invariant subset on a set of finite
measure. Here are two illustrating examples of actions in which such X ′ does not
exist:

• Z or R naturally acting on E = R by translation, X = R≥0;
• PSL2(R) acting diagonally on E ′ = P1×P1; this action is transitive on the

complement E of the diagonal, and preserves a Radon measure (unique
up to rescaling). The space E is homeomorphic to an open cylinder in

1To respect established terminology, we could remove the word “countable” here at the price
of replacing “Property T” with “Property FH”. Nevertheless the case of Γ uncountable is of
marginal interest here.
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which both ends have infinite measure, and X can be chosen as one “half”
of it.

A natural combinatorial weakening of Property T is when the previous con-
dition is asked while E is required to be a set endowed with the σ-algebra of
all subsets and the counting measure. That is, the discrete group Γ has Prop-
erty FW if for every Γ-set E, every subset X ⊂ E such that X4γX is finite for
every γ ∈ Γ, coincides with a Γ-invariant subset modulo a finite subset.

That Γ has Property FW has various geometric characterizations [Cor2], among
which

• every Γ-action on every nonempty CAT(0) cube complex by automor-
phisms, has a fixed point;
• Γ is finitely generated, and every Schreier graph Γ/Λ has at most one end.

For a long time the class of countable discrete groups known to satisfy Prop-
erty T was essentially reduced to arithmetic lattices and analogues, such as
SLn(Z), SLn(Z) n Zn, or SLn(Z[1/2]) for n ≥ 3. Then this was considerably
enlarged, in several directions. It was notably obtained, for many hyperbolic
groups [Zuk], for analogues of arithmetic groups over general rings [EJZ], for
automorphisms groups of free groups on ≥ 5 generators [KNO, KKN]. This list
is far from comprehensive; the book [BHV] surveys several of the developments
until 2005.

The study of Property FW for its own interest is much more recent [Cor2]. At
this time, the main supply of groups with Property FW consists of groups with
Property T. Examples of groups known to have Property FW but not Property T
come from [Cor1]; these are arithmetic lattices in products:

• Let G be a semisimple Lie group with at least one noncompact simple
factor with Property T. Then every irreducible lattice in G has Prop-
erty FW. On the other hand it does not have Property T if G does not,
e.g., when G = SO(3, 2)× SO(4, 1).
• For G a semisimple Lie group of real rank ≥ 2, conjecturally Property FW

still holds for all its irreducible lattices. The remaining case is when no
noncompact simple factor has Property T. In this case, it is nevertheless
known in some significant examples. For instance, for k ≥ 2 non-square,
SL2(Z[

√
k]) (which sits as an irreducible lattice in SL2(R)2) has Prop-

erty FW.

Other examples mechanically follow: for instance using the Ollivier-Wise “Rips
machine with Kazhdan kernel” [OW], one deduces the existence of Gromov-
hyperbolic groups with Property FW but not Property T.

The main reason for introducing using Property FW (instead of sticking to
its better known and more elaborate Property T cousin) is therefore not, at this
state of knowledge, the gain of generality. It is rather that this is exactly the
assumption that is needed to run the argument, as we hope to convince the
reader in the sequel.
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1.3. Results. The purpose of this note is to prove the following theorem ex-
tracted from [Cor3].

Theorem 1.1. Let Γ be an infinite subgroup of PCProj(P
1) with Property FW.

Then there exist n ≥ 1 and subgroups W ≤ Λ ≤ Γ, with W finite normal, Λ
normal of finite index, such that Λ/W can be embedded into PSL2(R)n in a such
a way that each projection Λ→ PSL2(R) has a Zariski-dense image.

From the Tits alternative (in the particular easy case of subgroups of PSL2(R)),
we deduce:

Corollary 1.2. Every infinite subgroup PCProj(P
1) with Property FW has a

non-abelian free subgroup. In particular, PCProj(P
1) has no infinite amenable

subgroup with Property FW. �

Also, it is well-known that PSL2(R) has no infinite subgroup with Property T.
Indeed, since the locally compact group PSL2(R) has the Haagerup Property
(Faraut-Harzallah [FH, Cor. 7.4], reproved by Robertson [Rob]), such a subgroup
would be contained in a compact subgroup, and thus be abelian, and hence finite.

Corollary 1.3. The group PCProj(P
1) has no infinite subgroup with Kazhdan’s

Property T. �

(The same conclusion fails for Property FW, since SL2(Z[
√

2]) has Property FW
as mentioned above.) The first known result of this flavor (in the context of
1-dimensional dynamics) is maybe Navas’ result [Na] that the group of diffeo-
morphisms of class > 3/2 of the circle has no infinite subgroup with Kazhdan’s
property T.

Our approach also addresses the group PCAff (R/Z) of piecewise affine self-
transformations (which can be viewed as subgroup of the previous one, since
PCProj(P

1) is isomorphic to PCProj(R/Z), through a piecewise homographic
transformation between R/Z and P1, or alternatively by extending as the identity
outside [0, 1]). In this case, we have a stronger conclusion:

Theorem 1.4. The group PCAff (R/Z) has no infinite subgroup with Property FW.

The same statement for its subgroup PC0
Aff (R/Z) of continuous elements was

independently proved by Lodha, Matte Bon, and Triestino [LMT]. Even the
case of Property T is new in Theorem 1.4; nevertheless the absence of infinite
Property T subgroups in its subgroup IET of piecewise translations was initially
proved in [DFG, Theorem 6.1] with another approach.

The formalism of partial actions is very useful in the output proof. A regular-
ization theorem in the context of birational actions of groups with Property FW
was recently obtained by the author [Cor4] using similar concepts, but with a
more involved proof.

Acknowledgment. I thank Pierre de la Harpe, Octave Lacourte and the referee
for a number of corrections.
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2. Main concepts and auxiliary proofs

Attempts to define partial actions were done many times, for instance in the
context of integrating Lie algebras of vector fields by Palais [Pa, Chap. III].
Eventually a very general and flexible notion was introduced by Exel [Ex].

Definition 2.1. A topological partial action of a (discrete) group Γ on a topo-
logical space X is an assignment g 7→ α(g), where α(g) is a homeomorphism
between two open subsets of X, satisfying the following conditions:

(1) α(1Γ) = idX

(2) α(g−1) = α(g)−1, for all g ∈ Γ;
(3) α(gh) extends α(g)α(h), for all g, h ∈ Γ.

A partial action is called cofinite if for every g ∈ Γ, the domain of definition of
α(g) is cofinite (= has finite complement) in X.

Here α(g)−1 denotes the partial inverse, and α(g)α(h) is the composition: its
graph consists of those (x, x′′) for which there exists x′ ∈ X such that (x, x′)
belongs to the graph of α(h) and (x′, x′′) belongs to the graph of α(g).

Definition 2.2. A globalization of a partial action α as above, is a continuous
action β of Γ on a topological space Y , a homeomorphism i from X onto an open
subset of Y , such that for all g ∈ Γ and x, x′ ∈ X, the element (x, x′) belongs to
the graph of α(g) if and only if (i(x), i(x′)) belongs to the graph of β(g). It is
called essential if every Γ-orbit meets i(X)

In other words, viewing i as an inclusion, this means that the partial action is
obtained by restricting the action to the given open subset.

The following proposition is already present (with special hypotheses but the
same straightforward proof) in [Pa], and asserted in full generality in [Aba1,
Aba2, KL].

Proposition 2.3. Every partial action admits an essential globalization, unique
up to unique isomorphism, called universal globalization. Moreover, the underly-
ing set of the universal globalization coincides with the universal globalization of
the partial action on the underlying (discrete) set; in other words, forgetting the
topology of X and taking the universal globalization commute. �

Property FW will be used in the following form (as in [Cor4]):

Definition 2.4. A group Γ has Property FW if for every set X and for every
cofinite partial Γ-action on X, there exists a Γ-invariant subset Y of its universal
globalization, such that the symmetric difference X4Y is finite.

For our purposes, let us just slightly strengthen the conclusion.

Proposition 2.5. Let Γ be a group with Property FW. In the setting of Definition
2.4, the Γ-invariant subset Y can be chosen to satisfy: for every finite subset F
of Y , there exists g ∈ Γ such that gF ⊂ X.
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Proof. First, choose Y0 as in the definition, and define Y as the complement in
Y0 of the union of finite Γ-orbits in Y0 meeting the finite subset Y0 r X. Then
for every F , a lemma due to B.H. Neumann [Neu] (see also [Po, Lemma 6.25])
ensures the existence of g. �

An immediate but crucial observation is that if the partial action preserves
some geometric structure, then this geometric structure is inherited by the uni-
versal globalization, and preserved by its Γ-action. Here for the sake of brevity,
we only consider the following geometric structures:

• 1-manifolds with an affine structure: charts valued in R, with affine
change of charts;
• 1-manifolds with a projective structure: charts valued in P1, with homo-

graphic (x 7→ ax+b
cx+d

) change of charts.

We call them affinely-modeled and projectively-modeled 1-manifolds. Of course
every affine structure defines a projective structure, and every projective structure
defines a smooth (analytic) structure.

Warning 2.6. Although we are mostly interested in Hausdorff manifolds, we do
not assume that the manifolds are Hausdorff: a 1-manifold here is just a topo-
logical space locally homeomorphic to R. The reason is that taking the universal
globalization usually does not preserve being Hausdorff, and the proof needs to
transit through this outlandish world. (Nevertheless, being a manifold implies
the T1-separation axiom: finite subsets are closed.)

The classification of connected Hausdorff affinely-modeled and projectively-
modeled 1-manifolds was done by Kuiper [Ku1, Ku2], up to a minor (but subtle)
error in [Ku2] (see the appendix in [Cor3]).

While these notions are standard, we need to introduce this one:

Definition 2.7. An affinely-modeled or projectively modeled 1-manifold is finitely-
charted if it has a finite covering by bounded charts: here bounded means valued
in a bounded interval of R.

Clearly this implies having finitely many components. Every compact affinely/
projectively-modeled 1-manifold is finitely-charted. But the affinely-modeled 1-
manifolds R and R>0 are finitely-charted as projectively-modeled 1-manifold,
but not as affinely-modeled 1-manifolds. An example of a connected Hausdorff
non-finitely-charted projectively-modeled 1-manifold is the universal covering of
P1.

A piecewise affine/homographic transformation between affinely/projectively-
modeled 1-manifolds X, Y is a locally affine/homographic isomorphism between
cofinite subsets (identifying two such isomorphisms whenever they coincide on
a cofinite subset). Denote by PCAff (X) and PCProj(X) the group of piecewise
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affine/homgographic self-transformations of X (when it makes sense). A piece-
wise affine, resp. piecewise homographic, transformation X 99K Y induces an
isomorphism PCAff (X)→ PCAff (Y ), resp. PCProj(X)→ PCProj(Y ).

3. Regularization theorem and proofs

Theorem 3.1. Let Γ be a group with Property FW. Let X be a Hausdorff finitely-
charted affinely-modeled [respectively projectively-modeled] 1-manifold. Let Γ →
PCAff (X) [resp. Γ→ PCProj(X)] be a homomorphism. Then there exists a Haus-
dorff finitely-charted affinely-modeled (resp. projectively-modeled) 1-manifold Y ,
a piecewise affine [resp. piecewise homographic] transformation X 99K Y , such
that the induced map Γ → PCAff (Y ) [resp. Γ → PCProj(Y )] actually maps into
the group of affine (resp. homographic) automorphisms of Y .

Proof. The two proofs are strictly similar (and applicable to other geometric
structures), so let us do the affine case; the projective case just consists in chang-
ing the adequate word at each place denoted (∗) below.

Define a partial action of PCAff (X) (∗) on X, saying that f is defined at x
if some representative f̄ of f is continuous and affine (∗) at x: then f̄(x) does
not depend on the choice of f̄ (this just uses that X has no isolated point).

Let X → X̂ be the universal globalization. Using that Γ has Property FW, let
Y ⊆ X̂ be given by Proposition 2.5. As a finite union of translates of an open
subset of X (namely X ∩ Y ), the subset Y is open, and is a finitely-charted
affinely-modeled (∗) manifold. Since by the conclusion of Proposition 2.5, any
pair in Y can be translated into X, and since X is Hausdorff, we deduce that Y
is Hausdorff too. �

Proof of Theorem 1.4. It follows as a corollary of Theorem 3.1: indeed, by Kuiper
[Ku1], the connected Hausdorff finitely-charted affinely-modeled 1-manifolds are,
up to isomorphism: the open interval ]0, 1[, the standard circle R/Z, and the
non-standard circles R>0/〈t〉, where the latter means the quotient by the dis-
crete subgroup generated by multiplication by t, where t > 1 is a fixed number.
For each such affine manifold, the affine automorphism group has an abelian
subgroup of index ≤ 2. In particular, for an arbitrary Hausdorff finitely-charted
affinely-modeled 1-manifold, the affine automorphism group is virtually abelian
(indeed some finite index subgroup preserves each connected component). Since
a virtually abelian group with Property FW is finite, the conclusion follows. �

Let us now deduce Theorem 1.1 from Theorem 3.1. We need the following
result which follows from classification (as almost achieved in [Ku2]); however we
give a short classification-free proof.

Lemma 3.2. Let X be a Hausdorff connected finitely-charted projectively-modeled
1-manifold, whose homographic automorphism group AutProj(X) is not virtually
metabelian. Then X is isomorphic to a finite covering of P1.
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Proof. First suppose that X is homeomorphic to an interval; then X is isomorphic

to some (necessarily non-empty) open interval I in the universal covering P̃1,

whose oriented homographic automorphism group Aut+
Proj(P̃

1) can be identified

to S̃L2(R). Then Aut+
Proj(I) is the stabilizer of I. Since point stabilizers for the

action of S̃L2(R) on P̃1 are metabelian, we deduce that Aut+
Proj(X) is metabelian,

unless X = P̃1, but the latter is excluded since X is finitely-charted.
Otherwise, X is homeomorphic to the circle, and hence isomorphic to the

quotient of some nonempty open interval I in P̃1 by a cyclic subgroup 〈t〉 of

S̃L2(R) acting freely and properly on I. The oriented automorphism group of

X is therefore isomorphic to N/〈t〉, where N is the normalizer of 〈t〉 in S̃L2(R).
Then N non-metabelian forces N to be the whole group, which means that t is
central. This precisely means the desired conclusion. �

Proof of Theorem 1.1. Let Γ be as in Theorem 1.1. By Theorem 3.1, we can
suppose that Γ is a subgroup of the automorphism group of a Hausdorff, finitely-
charted projectively-modeled 1-manifold Y . Let Γ0 be its normal subgroup of
finite index consisting of elements preserving each component of Y as well as its
orientation: it also has Property FW. Let X be the union of components Z of Y
such that the image of Γ0 → Homeo(Z) is infinite. Then X is Γ-invariant and the
action of Γ on X is faithful on some finite index subgroup, so has finite kernel.
For every component Z of X, the image of Γ0 → Homeo(Z) is infinite with
Property FW, hence not virtually metabelian; hence by Lemma 3.2, Z is an n-
fold covering of P1 for some n ≥ 1; hence its oriented homographic automorphism
isomorphic to PSL2(R)(k), the connected k-fold covering of PSL2(R). Modding
out by the center for each of the n components of X, we obtain a homomorphism
Γ′ → PSL2(R)n with finite kernel, such that each projection has non-virtually-
metabelian image, hence is Zariski-dense. Since Γ is infinite, n ≥ 1. �

Let PC(R/Z) be the whole group of piecewise continuous self-transformations
of R/Z. Whether it has an infinite Property T subgroup is unknown, and pre-
cisely equivalent to a well-known open question.

Proposition 3.3. The following (absolute) statement are equivalent:

(1) there is an infinite Property T subgroup in Homeo(R) (equivalently: there
is a nontrivial left-orderable Property T group), asked in [BHV, (7.8)]);

(2) there is an infinite Property T subgroup in Homeo(R/Z);
(3) there is an infinite Property T subgroup in PC(R/Z).

Proof. Since there are inclusions Homeo(R) → Homeo(R/Z) → PC(R/Z), the
implications (1)⇒(2)⇒(3) are obvious.

Suppose (2): Γ ⊂ Homeo+(R/Z) is infinite with Property T. Let Γ̃ be its
inverse image in Homeo(R). If Γ̃ has Property T, we are done. Otherwise, by
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[BHV, Theorem 1.7.11], Γ̃ has infinite abelianization. Hence its derived subgroup
Γ̃′ embeds as a finite index subgroup of Γ and hence has Property T, proving (1).

Suppose (3). Arguing as in the proof of Theorem 3.1 (with no geometric
structure beyond being a 1-dimensional topological manifold without boundary),
we obtain Γ infinite with Property T in the homeomorphism group of a finitely-
charted Hausdorff 1-manifold. Passing to a finite index subgroup, it preserves all
components, and the action on some component yields either (1) or (2). �
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