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Abstract

Our main result is that a finitely generated nilpotent group has no iso-
metric action on an infinite dimensional Hilbert space with dense orbits. In
contrast, we construct such an action with a finitely generated metabelian
group.
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1 Introduction

The study of isometric actions of groups on affine Hilbert spaces has, in recent

years, found applications ranging from the K-theory of C∗-algebras [HiKa], to

rigidity theory [Sh2] and geometric group theory [Sh3, CTV]. This renewed

interest motivates the following general problem: How can a given group act by

isometries on an affine Hilbert space?

This paper is a sequel to [CTV], but can be read independently. In [CTV],

given an an isometric action of a finitely generated group G on a Hilbert space

α : G → Isom(H), we focused on the growth of the function g 7→ α(g)(0). Here

the emphasis is on the structure of orbits.

We will mainly focus on actions of nilpotent groups. Let us begin by a simple

example: every isometric action of Z on a Euclidean space is the direct sum of

an action with a fixed point and an action by translations. This actually remains

true for general locally compact nilpotent groups. The situation becomes more

subtle when we study action on infinite-dimensional Hilbert spaces. However,

something remains from the finite-dimensional case.
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We say that a convex subset of a Hilbert space is locally bounded if its inter-

section with any finite dimensional subspace is bounded. The main result of the

paper is the following theorem.

Theorem 1. (see Corollary 3.9 and Theorem 4.3) Let G be a locally compact,

second countable, nilpotent group. Let G act isometrically on a Hilbert space H,

with linear part π. Let O be an orbit under this action. Then there exist

• a subspace T of H (the “translation part”), contained in the invariant vec-

tors of π, and

• a closed, locally bounded convex subset U of the orthogonal subspace T⊥,

such that O is contained in T × U .

We owe the following general question to A. Navas: which locally compact

groups have an isometric action on a infinite-dimensional separable Hilbert space

with dense orbits (i.e. minimal)?

Theorem 1 allows us to provide a negative answer in the case of finitely gen-

erated nilpotent groups.

Theorem 2. (see Corollary 4.6) A compactly generated, nilpotent-by-compact

locally compact group does not admit any affine isometric action with dense orbits

on an infinite-dimensional Hilbert space.

Actually, for compactly generated nilpotent groups, one can describe all affine

isometric actions with dense orbits; see Corollary 4.5.

In the course of our proof, we introduce the following new definition: a unitary

or orthogonal representation π of a group is strongly cohomological if it satisfies:

for every nonzero subrepresentation ρ ≤ π, we have H1(G, ρ) 6= 0. It is easy

to observe that the linear part of a affine isometric action with dense orbits is

strongly cohomological. The non-trivial step in the proof of the main theorem is

the following result.

Proposition 3. (see Corollary 3.9) Let π be an orthogonal or unitary represen-

tation of a second countable, nilpotent locally compact group G. Suppose that π

is strongly cohomological. Then π is a trivial representation.

Another case for which we have a negative answer is the following.

Theorem 4. (see Theorem 4.7) Let G be a connected semisimple Lie group.

Then G has no isometric action on a nonzero Hilbert space with dense orbits.
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It is not clear how the main theorem can be generalized, in view of the fol-

lowing example.

Proposition 5. (see Proposition 2.1) There exists a finitely generated metabelian

group admitting an affine isometric action with dense orbits on ℓ2
R

(Z).

Another construction provides

Proposition 6. (see Proposition 2.3) There exists a countable group admitting

an affine isometric action with dense orbits on an infinite dimensional Hilbert

space, in such a way that every finitely generated subgroup has a fixed point.

Acknowledgements. We thank A. Navas for useful discussions and encourage-

ment.

2 Existence results

Here is a first positive result regarding Navas’ question.

Proposition 2.1. There exists an isometric action of a metabelian 3-generator

group on a infinite-dimensional separable Hilbert space, all of whose orbits are

dense.

Proof. Observe that Z[
√

2] acts by translations, with dense orbits, on R; so the

free abelian group of countable rank Z[
√

2](Z) acts by translations, with dense

orbits, on ℓ2
R
(Z). Observe now that the latter action extends to the wreath

product Z[
√

2] ≀ Z = Z[
√

2](Z)
⋊ Z, where Z acts on ℓ2

R
(Z) by the shift. That

wreath product is metabelian, with 3 generators.

Corollary 2.2. There exists an isometric action of a free group of finite rank on

a Hilbert space, with dense orbits.

Recall that an isometric action α : G → Isom(H) almost has fixed points if

for every ε > 0 and every compact subset K ⊂ G there exists v ∈ H such that

supg∈K ‖v − α(g)v‖ ≤ ε.

In the example given by Proposition 2.1, the given isometric action clearly

does not almost have fixed points, i.e. it defines a non-zero element in reduced

1-cohomology. The next result shows that this is not always the case.

Proposition 2.3. There exists a countable group Γ with an affine isometric

action α on a Hilbert space, such that α has dense orbits, and every finitely

generated subgroup of Γ has a fixed point. In particular, the action almost has

fixed points.
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Proof. We first construct an uncountable group G and an affine isometric action

having dense orbits and almost having fixed points.

In H = ℓ2
R

(N), let An be the affine subspace defined by the equations

x0 = 1, x1 = 1, ..., xn = 1,

and let Gn be the pointwise stabilizer of An in the isometry group of H. Let G

be the union of the Gn’s. View G as a discrete group.

It is clear that G almost has fixed points in H, since any finite subset of G

has a fixed point. Let us prove that G has dense orbits.

Claim 1. For all x, y ∈ H, we have limn→∞ |d(x, An) − d(y, An)| = 0.

By density, it is enough to prove Claim 1 when x, y are finitely supported in

ℓ2
R

(N). Take x = (x0, x1, ..., xk, 0, 0, ...) and choose n > k. Then

d(x, An)2 =

k∑
j=0

(xj − 1)2 +

n∑
j=k+1

12 = n + 1 − 2

k∑
j=0

xj +

k∑
j=0

x2
j ,

so that d(x, An) =
√

n + O( 1√
n
), which proves Claim 1.

Denote by pn the projection on the closed convex set An, namely

pn(x0, x1, . . . ) = (1, 1, . . . , xn+1, xn+2, . . . ).

Claim 2. For all x, y ∈ H, we have limn→∞ ‖pn(x) − pn(y)‖ = 0.

This is a straightforward computation.

Claim 3. G has dense orbits in H.

Observe that two points x, y ∈ H are in the same Gn-orbit if and only if

d(x, An) = d(y, An) and pn(x) = pn(y). Fix x0, z ∈ H. We want to show

that limn→∞ d(Gnx0, z) = 0. So fix ε > 0. By the second claim, for some n0,

‖pn(x0) − pn(z)‖ ≤ ε/2 whenever n ≥ n0. Set

W = {x ∈ H| pn(x) = pn(z)};
this is the orthogonal affine subspace of An passing through z. Then y0 =

x0 + (pn(z) − pn(x0)) ∈ W . By the first claim, there exists n1 ≥ n0 such that

|d(y0, An) − d(z, An)| ≤ ε/2 for every n ≥ n1. Therefore there exists y ∈ W

such that ‖y − z‖ ≤ ε/2 and d(y, An) = d(y0, An) = d(x0, An). By the previous

observation, there exists g ∈ Gn such that y = gy0. Then

d(gx0, z) ≤ d(gx0, gy0) + d(gy0, z) ≤ ε,

so that d(Gnx0, z) ≤ ε for every n ≥ n1, proving the last claim.

Using separability of H, it is now easy to construct a countable subgroup Γ

of G also having dense orbits on H.

Question 1. Does there exist an affine isometric action of a finitely generated

group on a Hilbert space, having dense orbits and almost having fixed points?
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3 Cohomology of unitary representations of

nilpotent groups

Our non-existence results concerning nilpotent locally compact groups will be

based on the following study of their unitary representations.

Definition 3.1. If G is a topological group and π a unitary representation, we

say that π is strongly cohomological if every nonzero subrepresentation of π has

nonzero first cohomology.

The following Lemma is Proposition 3.1 in Chapitre III of [Gu2].

Lemma 3.2. Let π be a unitary representation of G that does not contain the

trivial representation. Let z be a central element of G. Suppose that 1−π(z) has

a bounded inverse (equivalently, 1 does not belong to the spectrum of π(z)). Then

H1(G, π) = 0.

Proof. If g ∈ G, expanding the equality b(gz) = b(zg), we obtain that (1 −
π(z))b(g) is bounded by 2‖b(z)‖, so that b is bounded by 2‖(1− π(z))−1‖‖b(z)‖.

Lemma 3.3. Let G be a locally compact, second countable group, and π a strongly

cohomological representation. Then π is trivial on the centre Z(G).

Proof. Fix z ∈ Z(G). As G is second countable, we may write π =
∫ ⊕

Ĝ
ρ dµ(ρ), a

disintegration of π as a direct integral of irreducible representations. Let χ : Ĝ →
S1 : ρ 7→ ρ(z) be the continuous map given by the value of the central character

of ρ on z. For ε > 0, set Xε = {ρ ∈ Ĝ : |χ(ρ) − 1| > ε} and πε =
∫ ⊕

Xε

ρ dµ(ρ),

so that πε is a subrepresentation of π. Since |ρ(z) − 1|−1 < ε−1 for ρ ∈ Xε, the

operator

(πε(z) − 1)−1 =

∫ ⊕

Xε

(ρ(z) − 1)−1 dµ(ρ)

is bounded. We are now in position to apply Lemma 3.2, to conclude that

H1(G, πε) = 0. By definition, this means that πε is the zero subrepresentation,

meaning that the measure µ is supported in Ĝ−Xε. As this holds for every ε > 0,

we see that µ is supported in {ρ ∈ Ĝ : ρ(z) = 1}, to the effect that π(z) = 1.

Proposition 3.4. Let G be a topological group, and π a unitary representation

of G. Suppose that H1(G, π) 6= 0. Then π has a nonzero subrepresentation that

is strongly cohomological.
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Proof. Suppose the contrary. Then, by an standard application of Zorn’s Lemma,

π decomposes as a direct sum π =
⊕

i∈I πi, where H1(G, πi) = 0 for every i ∈ I,

so that H1(G, π) = 0 by Proposition 2.6 in Chapitre III of [Gu2].

Remark 3.5. The converse is false, even for finitely generated groups: indeed,

it is easy to check (see [Gu1]) that every nonzero representation of the free group

F2 has non-vanishing H1, so that every unitary representation of F2 is strongly

cohomological. But it turns out that F2 has an irreducible representation π such

that H1(F2, π) = 0 (see Proposition 2.4 in [MaVa]).

Corollary 3.6. Let G be a locally compact, second countable group, and let π

be a unitary representation of G without invariant vectors. Write π = π0 ⊕ π1,

where π1 consists of the Z(G)-invariant vectors. Then

(1) π0 does not contain any strongly cohomological subrepresentation (in par-

ticular, H1(G, π0) = 0);

(2) every 1-cocycle of π1 vanishes on Z(G), so that H1(G, π1) ≃
H1(G/Z(G), π1).

Proof. (1) follows by combining Lemma 3.3 and Proposition 3.4. For (2), we

use the idea of proof of Theorem 3.1 in [Sh2]: if b ∈ Z1(G, π1), then for every

g ∈ G, z ∈ Z(G),

π1(g)b(z) + b(g) = b(gz) = b(zg) = b(g) + b(z)

as π1(z) = 1. So π1(g)b(z) = b(z); this forces b(z) = 0 as π has no G-invariant

vector. So b factors through G/Z(G).

Observe that Corollary 3.6 provides a new proof of Shalom’s Corollary 3.7 in

[Sh2]: under the same assumptions, every cocycle in Z1(G, π) is almost cohomol-

ogous to a cocycle factoring through G/Z(G) and taking values in a subrepresen-

tation factoring through G/Z(G).

From Corollary 3.6 we immediately deduce

Corollary 3.7. Let G be a locally compact, second countable, nilpotent group,

and let π be a representation of G without invariant vectors. Let (Zi) be the

ascending central series of G (Z0 = {1}, and Zi is the centre modulo Zi−1). Let

σi denote the subrepresentation of G on the space of Zi-invariant vectors, and

finally let πi be the orthogonal of σi+1 in σi, so that π =
⊕

πi.

Then H1(G, πi) ≃ H1(G/Zi, πi) for all i, and π is not a strongly cohomological

subrepresentation. In particular, H1(G, π) = 0. �
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Note that the latter statement is a result of Guichardet [Gu1, Théorème 7],

which can be stated as: G has Property HT (i.e. every unitary representation

with non-vanishing reduced cohomology contains the trivial representation).

Definition 3.8. We say that a locally compact group G has Property HCT if

every strongly cohomological unitary representation of G is trivial.

It is a straightforward verification that this is equivalent to: every strongly

cohomological orthogonal representation of G is trivial. This will be useful in the

next paragraph since we will deal with orthogonal rather than unitary represen-

tations.

As a corollary of Proposition 3.4, Property HCT implies Property HT . We

have proved

Proposition 3.9. If G is a locally compact, second countable nilpotent group,

then G has Property HCT .

4 Non-existence results

Definition 4.1. 1) We say that subset Y of a metric space (X, d) is coarsely

dense if there exists C ≥ 0 such that, for every x, y ∈ X,

d(x, G.y) ≤ C.

2) We say that a subset Y of a Hilbert space H is enveloping if its closed

convex hull is all of H.

Observe that every dense subset of a metric space is coarsely dense. Besides,

in a Hilbert space H, every coarsely dense subset Y is enveloping. Indeed, suppose

that Y is contained in a closed, convex proper subset X of H. Consider v /∈ X

and let y denote its projection on X (excluding the trivial case Y = ∅). Then,

for every λ ≥ 0, we have d(y + λ(v − y), Y ) ≥ d(y + λ(v − y), X) = λ, which is

unbounded, so that Y is not coarsely dense.

Example 1. In ℓ2
R

(Z), let X denote the elements with integer coefficients. Then

X is enveloping: indeed, its intersection with the subspace Fn = ℓ2
R

({−n, . . . , n})
is coarsely dense, hence enveloping in Fn, and the increasing union

⋃
Fn is dense

in ℓ2
R

(Z). But X is not coarsely dense: indeed, for every n ≥ 0, the element
1
2
1{1,...,4n} is at distance

√
n to X.

Note that X is the orbit of 0 for the natural action of the wreath product

Z ≀Z = Z(Z)
⋊ Z on ℓ2

R
(Z), where Z(Z) acts by translations and the factor Z acts

by shifting (compare the example in the proof of Proposition 2.1).
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Lemma 4.2. Let G be a topological group and π an orthogonal representation,

admitting a 1-cocycle b with enveloping orbits. Then π is strongly cohomological.

Proof. If σ is a nonzero subrepresentation of π, let bσ be the orthogonal projection

of b on Hσ, so that bσ ∈ Z1(G, σ). Then bσ(G) is enveloping in Hσ, in particular

bσ is unbounded. So bσ defines a non-zero class in H1(G, σ).

Theorem 4.3. Let G be a locally compact group with Property HCT . Let G act

isometrically on a Hilbert space H, with linear part π. Let O be an orbit under

this action. Then there exist

• a subspace T of H, contained in Hπ(G), and

• a closed, locally bounded convex subset U of T⊥,

such that O is contained in T × U .

Proof. We immediately reduce to the case when π has no invariant vectors, so

that we must prove that the closed convex hull U of O is locally bounded.

Observe that a convex subset of a Hilbert space is locally bounded if and only

if it contains no affine half-line. Thus denote by D the set of affine half-lines

contained in U , and suppose by contradiction that D 6= ∅. Denote by D0 the

corresponding set of linear half-lines (where the linear half-line corresponding to

a half-line x + R+v is simply R+v). Then D0 is invariant under the linear action

π of G. Let W be the closed subspace of H generated by all the half-lines in

D0, and denote by σ the corresponding subrepresentation. By assumption, σ is

non-zero.

We claim that σ is strongly cohomological, contradicting that π has no in-

variant vectors along with the HCT assumption. Let ρ be a non-zero subrepre-

sentation of σ. Then by the definition of W , there exists an half-line of U which

projects injectively into the subspace of ρ. Thus H1(G, ρ) 6= 0, proving the claim,

and ending the proof.

Corollary 4.4. Let G be a locally compact group with Property HCT . Let H be a

Hilbert space on which G acts with with enveloping (respectively coarsely dense,

resp. dense) image. Then the action is by translations, defined by a continuous

morphism: u : G → (H, +) with enveloping (resp. coarsely dense, resp. dense)

image.

Corollary 4.5. Let G be a locally compact, compactly generated group with Prop-

erty HCT , and let H be a (real) Hilbert space. Then
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• G has a isometric action on H with coarsely dense (respectively enveloping)

orbits if and only H has finite dimension k, and G has a quotient isomorphic

to Rn × Zm, with n + m ≥ k.

• G has a isometric action on H with dense orbits if and only H has finite

dimension k, and G has a quotient isomorphic to Rn × Zm, with max(n +

m − 1, n) ≥ k.

Proof. Let α be an affine isometric action of G with enveloping orbits (this encom-

passes all possible assumptions). By Corollary 4.4, the action is by translations;

let u be the morphism G → (H, +); its image generates H as a topological vector

space. Let W denote the kernel of u.

Then A = G/W is a locally compact, compactly generated abelian group,

which embeds continuously, in a Hilbert space. By standard structural results, A

has a compact subgroup K such that A/K is a Lie group. Since K embeds in a

Hilbert space, it is necessarily trivial, so that A is an abelian Lie group without

compact subgroup. Accordingly, A is isomorphic to Rn × Zm for some integers

n, m; the embedding of A into H extends canonically to a linear mapping of

Rn+m into H. In particular H is finite-dimensional, of dimension k ≤ n + m.

If the action has dense orbits, then either m = 0 and n ≥ k, or m ≥ 1

and m ≥ k − n + 1; this means that k ≤ max(n + m − 1, n). Conversely, if

k ≤ n+m−1, then, since Z has a dense embedding in the torus Rk/Zk, Zk+1 has

a dense embedding in Rk, and this embedding can be extended to Rn ×Zm.

From Proposition 3.9 and Corollary 4.5, we deduce

Corollary 4.6. A compactly generated, nilpotent-by-compact group does not ad-

mit any isometric action with enveloping (e.g. dense) orbits on an infinite-

dimensional Hilbert space.

Proof. The only thing we have to care now is that the group G is not necessarily

second countable. So let α be an isometric action with enveloping orbits on a

Hilbert space H. By the Kakutani-Kodaira Theorem [Com, Theorem 3.7], there

exists a compact normal subgroup N such that G/N is second countable. Since

N is compact, the affine subspace αN of N -fixed points is non-empty. Since it is

G-invariant and the orbits are enveloping, necessarily αN = H, so we are reduced

to the case when G is second countable, allowing us to use Proposition 3.9 to

conclude.

Proposition 2.1 on the one hand, and Corollary 4.6 on the other, isolate the

first test-case for Navas’ question:
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Question 2. Does there exist a polycyclic group admitting an affine isometric

action with dense orbits on an infinite-dimensional Hilbert space?

Let us prove a related result for semisimple groups.

Theorem 4.7. Let G be a connected, semisimple Lie group. Then G cannot act

on a Hilbert space H 6= 0 with coarsely dense (e.g. dense) orbits.

Proof. Suppose by contradiction the existence of such an action α, and let π

denote its linear part. Then π is strongly cohomological. By Lemma 3.3, π is

trivial on the centre of G. Thus the centre acts by translations, generating a finite-

dimensional subspace V of H. The action induces a map p : G → O(V )⋉V . Since

G is semisimple, the kernel of p contains the sum Gnc of all noncompact factors

of G, and thus factors though the compact group G/Gnc. Thus H1(G, V ) = 0,

and since π is strongly cohomological, this implies that V = 0.

It follows that α is trivial on the centre of G, so that we can suppose that G

has trivial centre. Then G is a direct product of simple Lie groups with trivial

centre. We can write G = H ×K where K denotes the sum of all simple factors

S of G such that α(S)(0) is bounded (in other words, H1(S, π|S) = 0). Then

the restriction of α to H also has coarsely dense orbits. Moreover, every simple

factor of H acts in an unbounded way, so that, by a result of Shalom [Sh1,

Theorem 3.4]1, the action of H is proper. That is, the map i : H → H given by

i(h) = α(h)(0) is metrically proper and its image is coarsely dense. By metric

properness, the subset X = i(H) ⊂ H satisfies: X is coarsely dense, and every

ball in X (for the metric induced by H) is compact.

Suppose that H is infinite dimensional and let us deduce a contradiction. For

some d > 0, we have d(x, X) ≤ d for every x ∈ H. If H is infinite dimensional,

there exists, in a fixed ball of radius 7d, infinitely many pairwise disjoint balls

B(xn, 3d) of radius 3d. Taking a point in X ∩B(xn, 2d) for every n, we obtain a

closed, infinite and bounded discrete subset of X, a contradiction.

Thus H is finite dimensional; since every simple factor of H is non-compact, it

has no non-trivial finite dimensional orthogonal representation, so that the action

is by translations, and hence is trivial, so that finally H = {0}.

Remark 4.8. 1) The same argument shows that a semisimple, linear algebraic

group over any local field, cannot act with coarsely dense orbits on a Hilbert

space.

2) The argument fails to work with enveloping orbits: indeed, in ℓ2
R

(N), let

X denote the set sequences (xn) such that xn ∈ 2nZ for every n ∈ N. Then X

1Shalom only states the result for a simple group, but the proof generalizes immediately.
See for instance [CLTV] for another proof, based on the Howe-Moore Property.
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is coarsely dense in ℓ2
R

(N), but, for the metric induced by H, every ball in X is

finite, hence compact. We do not know if a semisimple Lie group (e.g. SL2(R))

can act isometrically on a non-zero Hilbert space with enveloping orbits.

References

[Com] W. Wistar Comfort. Topological groups. p.1143-1263 in: “Handbook

of Set-Theoretic Topology”, edited by K. Kunen and J. E. Vaughan,

North Holland, Amsterdam, 1984.

[CTV] Yves de Cornulier, Romain Tessera, Alain Valette. Isometric

group actions on Hilbert spaces: growth of cocycles. Preprint, 2005.

[CLTV] Yves de Cornulier, Nicolas Louvet, Romain Tessera, Alain

Valette. Howe-Moore Property and isometric actions on Hilbert

spaces. In preparation, 2005.

[Gu1] Alain Guichardet. Sur la cohomologie des groupes topologiques II.

Bull. Sci. Math. 96, 305–332, 1972.

[Gu2] Alain Guichardet. Cohomologie des groupes topologiques et des
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