Origin of large scale magnetic fields

A. CAMERON ; A. ALEXAKIS ; M.-É. BRACHET

9th November, 2016

Département de Physique, ENS Paris

Table of contents

2 Detailed observations

Compass

Use of the magnetic property of the Earth for traveling.

Magnet and metal dust

Similarities with magnets.

Aurora

Appreciating the visual beauty of the magnetic activity.

Magnetosphere

Interaction of solar particles with the magnetosphere.

Solar activity

Magnetic activity on the Sun.

Alpha-dynamo

Table of contents

Curie temperature

No magnetization at high temperature. How can you make a magnet at high temperature ?

Reversal

Reversal of the magnetic field. How can the magnet flip ?

Table of contents

1 Rough observations

2 Detailed observations

4 Alpha-dynamo

Alpha-dynamo

Dynamo (Bullard set-up)

An example of magnetic field generated by motion.

Cores

Description of the core of the earth and the Sun.

Alpha-dynamo

Rayleigh-Bénard convection (heated from bellow)

Rayleigh-Bénard convective rolls.

Magnetic Reynolds number

Dimension

$$\partial_{\tau} \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mu_0 \sigma)^{-1} \Delta \mathbf{B}, \quad \nabla \cdot \mathbf{B} = 0,$$
(1)

$$\mathbf{v} = U\mathbf{u} \quad ; \quad X = Lx \quad ; \quad \tau = (L/U)t. \tag{2}$$

Dimensionless equation

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + Rm^{-1} \Delta \mathbf{B} \quad \text{with} \quad Rm = \mu_0 \sigma UL.$$
 (3)

Physical interpretation

- $Rm \ll 1$: viscous effects dominate
- $Rm \gg 1$: cinematic effects dominate (Sun: $Rm = 10^{11}$)

Alpha-dynamo

Symmetry: reversals explained

Dimensionless equation

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + Rm^{-1} \Delta \mathbf{B} \text{ with } Rm = \mu_0 \sigma UL.$$
 (4)

Symmetry

 $\mathbf{B} \rightarrow -\mathbf{B}$: leaves the equation unchanged. Reversal of the magnetic field are possible.

Table of contents

Rough observations

2 Detailed observations

3 Induction

Three-mode interaction

Dimensionless equation

Instability generation

Dimensionless equation

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + Rm^{-1} \Delta \mathbf{B} \quad \text{with} \quad Rm = \mu_0 \sigma UL.$$
 (6)

Eigenvalue (ev) problem

Linear operator:

$$\mathscr{L}[\mathbf{B}] = \nabla \times (\mathbf{u} \times \mathbf{B}) + Rm^{-1} \Delta \mathbf{B}.$$
 (7)

 α -dynamo eigenvalue:

$$\mathscr{L}[\mathbf{B}_{ev}] \simeq (\alpha q - Rm^{-1}q^2)\mathbf{B}_{ev} \quad \text{with} \quad q = \frac{2\pi}{\ell}.$$
 (8)

Methods to explain α -dynamos

Multi-scale expansion

- Theoretical demonstration of existence of the phenomenon
- Links small scales with large scales
- <u>Valid at $Rm \ll 1$ </u> (Sun $Rm = 10^{11}$)

Mean field

- Theoretical demonstration of existence of the phenomenon
- Dissociates large and small scales $(\alpha q Rm^{-1}q^2)$
- Valid at large *Rm*

Floquet method

- Can only be performed with numeric simulations
- Dissociates large and small scales
- Valid at any *Rm* with *CFL* limitation

Our results: What is measured ?

Linear operator equation

$$\partial_t \mathbf{B} = \mathscr{L}[\mathbf{B}] \text{ with } \mathscr{L}[\mathbf{B}] = \nabla \times (\mathbf{u} \times \mathbf{B}) + Rm^{-1} \Delta \mathbf{B}.$$
 (9)

Eigenvalue (ev) problem

Temporal evolution:

$$\mathscr{L}[\mathbf{B}_{ev}] = \lambda_{ev} \mathbf{B}_{ev} \implies \mathbf{B}_{ev}(t) = \mathbf{B}_{ev}(t=0)e^{\lambda_{ev}t}.$$
 (10)

Maximal eigenvalue:

$$\gamma = \max_i(\{\lambda_{ev}^i\}).$$

Random start

$$B(t=0) = \sum_{i} b_{i} B_{ev}^{i} \implies B(t) \simeq b_{\gamma} B_{\gamma} e^{\gamma t}.$$
(11)

Our results: $\gamma(q)$

Our results: $\gamma(Rm)$

Alpha-dynamo

Our results: $E_0/E_{tot}(q, Rm)$

Alpha-dynamo

Thank you for your attention

Use

- Theoretical demonstration of existence of the phenomenon
- Exact conditions on the velocity to have generate an instability
- <u>Valid at $Rm \ll 1$ </u> (Reminder: for the Sun $Rm = 10^{11}$)

Method

- $B(x_1, x_2, t_1, t_2)$
- $\partial_t \rightarrow \partial_{t_1} + Rm^{-4}\partial_{t_2}$
- $\partial_x \to \partial_{x_1} + Rm^{-2}\partial_{x_2}$

Use

- Can compute numerical values of the α -coefficient
- Requires to know the statistic of the small scale *b*
- Dissociates large and small scales
- Valid at large *Rm*

Method

• $\mathbf{B} = \langle B \rangle + b$

Use

- Can compute numerical values of the α -coefficient
- Introduces an scale separation parameter **q**
- Links small scales with large scales
- Valid at any *Rm*

Method

•
$$\mathbf{B} = \tilde{\mathbf{b}} \exp\left(-i\mathbf{q}\cdot\mathbf{r}\right) + c.c.$$

The induction equation governing the evolution of magnetic field:

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}.$$
(12)

Mean field theory decomposition: $\mathbf{B} = \langle \mathbf{B} \rangle + \mathbf{b}$

$$\begin{aligned} \partial_t \langle \mathbf{B} \rangle & -\eta \nabla^2 \langle \mathbf{B} \rangle &= \nabla \times \mathscr{E} , & \mathscr{E} = \langle \mathbf{u} \times \mathbf{b} \rangle , & (13) \\ \partial_t \mathbf{b} & -\eta \nabla^2 \mathbf{b} &= \nabla \times (\mathbf{u} \times \langle \mathbf{B} \rangle) + \nabla \times \mathbf{G} , & \mathbf{G} = \mathbf{u} \times \mathbf{b} - \langle \mathbf{u} \times \mathbf{b} \rangle . \\ & (14) \end{aligned}$$

When **G** can be neglected:

$$\mathscr{E}^{i} = \alpha^{ij} \langle B \rangle^{j} + \beta^{ijk} \nabla^{j} \langle B \rangle^{k} + \dots$$
(15)

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}.$$
(16)

$$\mathbf{B} = \tilde{\mathbf{b}} \exp\left(-i\mathbf{q} \cdot \mathbf{r}\right) + c.c.$$
(17)

$$\partial_t \tilde{\mathbf{b}} = i\mathbf{q} \times (\mathbf{u} \times \tilde{\mathbf{b}}) + \nabla \times (\mathbf{u} \times \tilde{\mathbf{b}}) + \eta (\nabla + i\mathbf{q})^2 \tilde{\mathbf{b}}.$$
 (18)

Lenz-Faraday law and Maxwell equation

Lenz-Faraday law

$$\mathscr{E} = \oint \mathbf{E} \cdot \mathbf{d}\ell \quad ; \quad \Phi = \iint \mathbf{B} \cdot \mathbf{dS} \quad \text{and} \quad \mathscr{E} = -\frac{d}{dt}\Phi.$$
 (19)

Without motion

$$\mathscr{E} = -\frac{d}{dt} \Phi \quad \Longleftrightarrow \quad \iint \nabla \times \mathbf{E} \cdot \mathbf{dS} = -\iint \partial_t \mathbf{B} \cdot \mathbf{dS}, \qquad (20)$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B}. \qquad (21)$$

With motion on the x axis

$$\partial_t (\mathbf{B} \cdot \mathbf{dS}) = \partial_t \mathbf{B} \cdot \mathbf{dS} + \mathbf{B} \cdot \partial_t (\mathbf{dx} \times \mathbf{dy}) = \partial_t \mathbf{B} \cdot \mathbf{dS} + (\mathbf{B} \times \mathbf{dv}) \cdot \mathbf{dy}, \qquad (22)$$
$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B} + \nabla \times (\mathbf{u} \times \mathbf{B}). \qquad (23)$$

Maxwell's equations

$$\nabla \times \mathbf{B} = \boldsymbol{\mu}_0 (\mathbf{J} + \boldsymbol{\epsilon}_0 \boldsymbol{\partial}_t \mathbf{E}) \simeq \boldsymbol{\mu}_0 \mathbf{J}$$

$$\nabla \times \mathbf{E} = -\partial_t \mathbf{B} + \nabla \times (\mathbf{v} \times \mathbf{B})$$

;
$$\nabla \cdot \mathbf{B} = 0$$
.
; $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} = 0$.

Ohm's law and approximation

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} \quad ; \quad \mathbf{J} \gg \boldsymbol{\epsilon}_0 \boldsymbol{\partial}_t \mathbf{E}.$$

Maxwell's equations $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} = \mu_0 \sigma \mathbf{E} \qquad ; \quad \nabla \cdot \mathbf{B} = 0.$ $\nabla \times \mathbf{E} = -\partial_t \mathbf{B} + \nabla \times (\mathbf{v} \times \mathbf{B}). \qquad ; \quad \nabla \cdot \mathbf{E} = 0.$ Ohm's law and approximation $\mathbf{J} = \sigma \mathbf{E} \quad ; \quad \mathbf{J} \gg \epsilon_0 \partial_t \mathbf{E}.$

Maxwell's equations $\nabla \times \mathbf{B} = \mu_0 \sigma \mathbf{E}$; $\nabla \cdot \mathbf{B} = 0$. $\partial_t \mathbf{B} - \nabla \times (\mathbf{v} \times \mathbf{B}) = -\nabla \times \mathbf{E}$.; $\nabla \cdot \mathbf{E} = 0$.

Ohm's law and approximation

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} \quad ; \quad \mathbf{J} \gg \epsilon_0 \partial_t \mathbf{E}.$$

Evolution of the magnetic field

$$\partial_t \mathbf{B} - \nabla \times (\mathbf{v} \times \mathbf{B}) = -\nabla \times \mathbf{E} = -\nabla \times (\mu_0 \sigma)^{-1} \nabla \times \mathbf{B},$$
$$\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mu_0 \sigma)^{-1} \Delta \mathbf{B} \quad \text{and} \quad \nabla \cdot \mathbf{B}.$$