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Dynamo mechanism
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Where do large magnetic scales come from?
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Eugene Parker’'s 1955 theory

HYDROMAGNETIC DYNAMO MODELS

EuGENE N. PARKER
Department of Physics, University of Utah, Salt Lake City, Utah
Received October 18, 1954; revised May 11, 1955

ABSTRACT

The purpose of this paper is to investigate the steady-state amplification of magnetic fields in a fluid
It is shown that a rotating sphere of conducting fluid can regenerate a dipole magnetic field. It is suf-
ficient for the angular velocity of rotation to vary with distance from the axis of rotation and for cyclonic
fluid motions to be present The nonuniform rotation generates a toroidal field from the dipole field; the
cyclones generate, from the toreidal field, loops of flux in the meridional plane which coalesce to amplify
the dipole field The rotating sphere is discussed in relation to the liquid core of the earth and the geo-
magnetic dipole field. If, instead of a rotating sphere, one has a prismatic volume of fluid, it is possible
to construct migratory dynamo waves The dynamo waves are discussed in relation to the solar convec-
tive zone; it is shown that such waves can account for many of the principal features of the observed
solar magnetic activity
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Eugene Parker’'s 1957 theory

THE SOLAR HYDROMAGNETIC DYNAMO
By E. N. PARker

ENRICO FERMI INSTITUTE FOR NUCLEAR STUDIES AND DEPARTMENT OF PHYSICS,
UNIVERSITY OF CHICAGO

The Babcock magnetograms (Babcock and Babcock, 1955) indicate that the sun
possesses a general dipole magnetic field of the order of 1 gauss. The dipole field
is observed within about 25° of the poles and, presumably, is responsible for the
polar coronal streamers. The field is not observed nearer the equator, and what
we know of large-scale solar magnetic fields at lower latitudes is only by inference:
it is generally assumed that the bipolar character of the sunspots and of the more
diffuse magnetic regions observed by the Babcocks implies the existence of bands of
toroidal magnetic field circling the sun beneath the photosphere. Each band is
about 30° wide in latitude. Successive bands, and corresponding bands north and
south of the equator, have opposite sign, as shown in Figure 4. The bands first
make their presence known at about latitude +40° through the appearance of bi-
polar magnetic regions at the photosphere. In about 11 years they migrate from
latitude £40° to the equator, where they apparently disappear.
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M. Steenbeck, F. Krause, K.-H. Radler (1966)

Berechnung der mittleren Lorentz-Feldstarke v x B fiir ein elektrisch
leitendes Medium in turbulenter, durch Coriolis-Krafte beeinflusster
Bewegung

BAND 21a ZEITSCHRIFT FUR NATURFORSCHUNG HEFT 4

Berechnung der mittleren Lorentz-Feldstirke b x ® fiir ein elektrisch leitendes Medium
in turbulenter, durch Coriolis-Krifte beeinflufiter Bewegung
M. Steenseck, F. Kravse und K.-H. RipLer
Institut fiir Magnetohydrodynamik Jena der Deutschen Akademie der Wissenschaften zu Berlin
(Z. Naturforschg. 21 a, 369376 [1966] ; eingegangen am 11. November 1965)

Die Berechnung des Mittelwertes von § fithren
A turbulent, electrically conducting fluid containing a magnetic field with non-vanishing mean- ;

value is investigated. The magnetic field strength and the conductivity may be so small that the wir in der folgenden Weise durch: Wir setzen
turbulence is not influenced by the action of the Lorgxtz force. ~ .,
The average of the crossproduct of velocity and magnetic field is calculated in a second approxi- H=9+9 (3)

mation. It contains the averages of the products of two components of the velocity field, i. e. the
components of the correlation tensor.

Here the structure of the correlation tensor is determined for a medium with gradients of den- und berechnen &' im Sinne einer Stérungsrechnung
sity and/or turbulence intensity, furthermore the turbulent motion is influenced by Contouts forces. fiir kleine | b | aus der Gleichung
As the main result is shown that in those turbulent velocity fields the average crossproduct of '
velocity and magnetic field generally has a non-vanishing component parallel to the average mag- N 1 e =
netie ld. Y1 Ag = 1ot ) - @
Such a turbulence may be present in rotating stars. Consequences concerning the selfexcited L4

build up of steller magnetic fields are discussed in a following paper.
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Moffatt's Book (1978

www.moffatt.te

CHAPTER 7

Magnelic field generalion THE MEAN ELECTROMOTIVE FORCE
inelectrically conducting CENERATED BY RANDOMNMOTIONS

7.1. Turbulence and random waves

We have so far treated the velocity field U(x, 1) as a known function
of position and time". In this chapter we consider the situation of

greater hen Ulx, 1)
includes a } istical i.c.

tiesare assumed known, but whose detailed (unaveraged) proper-
tiesare -

tional determination. Such a vlociy field gencrates random per-
turbations of electric et and magnetic field, and our aim s to
determine
field (and in particular o( its local mean value) in terms of the
(‘given’) statistical properties of the U-field.

‘The random velocity field may be a turbulent velocity field as

ally

interacting wave motions. The distinction can be most easily
appreciated for the case of a thermally stratified fluid. If the
stratification is unstable (i.e. if the fluid is strongly heated from
below) then thermal turbulence wilensu, he netupward trars-

port of heat being th
Tt the stratification s sable (ie.if the temperature either increases
with height, or de a rate less than the

turbuence il not occur, but the medium may support internal
gravity waves which will be present to a greater or lesser extent, in
proportion to any random influences that may be present, distri-
buted either throughout the luid or on its boundaries. For example,
if the outer core of the Earth is stably stratified (as maintained by
Higgins & Kennedy, 1971 - see § 4.4), random inertial waves may
be excited either by sedimentation of iron-rich material released
from the mantle across the core-mantle interface or by flotation of

" From now on,
random ingredient.
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Krause & Radler
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CHAPTER 2
BASIC IDEAS OF MEAN-FIELD ELECTRODYNAMICS

Basie equations.

Our are based on Let
B o th magetioflux don, H the nmgncuc 54, Etho dtrio 1. ,m»
and

ust
We shall adopt the magnetohydrodynaniic approximation, ic. suppose that
these fields are related by the equations

B

curl E = curl H

divB=0, (1)

B=uH, j=alE+uxB). (22)

These equations determine B, H, E and j fron an assigned u. They show
hat

B ' N
G (xB) £ A8, v B =0 (23)
Once B hus been determined fron: this equation, H, E and j may be obtained
from (2.1) and (2.2)

Here, and in most of the following chapters, we shall consider u to he given.
In this way we shall avoid the problems raised by the reaction of the magustic
fild on the mation, but occasionally discuss this effect qualitatively. Finally,
in chapter 10, we shall givo a survey of the results obtained in mean-field
‘magnctobydrodynamics up to now.

22, Averaging operations
In a torbulent mediun, all the fields so far introduced vary irregularly in
space and time. Let £ be wuch o fluctusting field, considered as & random

2nd February 2017

11



Alpha modeling is at the heart of todays Solar
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0 5 10 l 20 25 30
t (yr)
B 179 a 1
8B _ 113 K3 - . N )
Pyl [ar(ru,B) + 89(1493)] +rsin6(B,.V)22 — ed,‘[V‘r] x V x Be¢] + ﬂ(v - —rz Sin29>B
AL i) + ) v V4 5.6)8 B
ar ~ rsing Vs " 5’0 15 (BB 1+ (B/Bo?

A. Brun, M. Browning, M. Dikpati, H. Hotta, and A. Strugarek, Space Sci. Rev. 196, 101 (2015).
M. Dikpati and P. A. Gilman, Astrophys. J. 649, 498 (2006).
A. R. Choudhuri, P. Chatterjee, and J. Jiang, Phys. Rev. Lett. 98, 131103 (2007).
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Formulation

9:B =V x ux B+ Rm V2B,
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Formulation

9:B =V x ux B+ Rm V2B,

e u Velocity field of characteristic length-scale ¢ such that (u) = 0.
o B Magpnetic field evolving in a domain of size L.

(<L
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Formulation

9:B =V x ux B+ Rm V2B,

e u Velocity field of characteristic length-scale ¢ such that (u) = 0.
o B Magpnetic field evolving in a domain of size L.

(<L )
Averaging procedure for f(x) : (f) = v / f(X + x)dx®
v Jv,

where V; a volume centered at X with 2 < V, <« 3
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Formulation

9:B =V x ux B+ Rm V2B,

e u Velocity field of characteristic length-scale ¢ such that (u) = 0.
o B Magpnetic field evolving in a domain of size L.

(<L )
Averaging procedure for f(x) : (f) = v / f(X + x)dx®
v Jv,

where V; a volume centered at X with 2 < V, <« 3
Let B = (B) + b then

dt(B) = V x (u x b) + Rm~*V?(B),
and
Otb =V x (ux (B))+V x (uxb—(uxb))+Rm1V?b
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Formulation

d:(B) = V x £ + Rm~1V?(B),
ob =V x (ux (B)) +V x G+ Rm'V?b

where
€ =(uxb) and G=uxb—(uxb)
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Formulation

d:(B) = V x £ + Rm~1V?(B),

ob =V x (ux (B)) +V x G+ Rm'V?b
where

€ =(uxb) and G=uxb—(uxb)
Gradient expansion ...
g =a¥(BY + pHVI(B) + ...

then for isotropic flows

0:(B) = aV x (B) + (Rm™! + 3)V3(B) + ..

*
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Formulation

d:(B) = V x £ + Rm~1V?(B),
ob =V x (ux (B)) +V x G+ Rm'V?b
where
€ =(uxb) and G=uxb—(uxb)
Gradient expansion ...
g =By + piVI(BYF + ...

then for isotropic flows
d:(B) = aV x (B) + (Rm™1 + B)V?(B) + ...,

Always unstable for a # 0 & L > ¢ with growth-rate 7
y=ak—(Rmt+B)k> + ...
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Small Rm limit: Rm = ul/n < 1 and ¢/L = O(Rm?)
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Small Rm limit: Rm = ul/n < 1 and ¢/L = O(Rm?)

Ot(B) =V x £ + Rm™*V?(B),
O =V x (u x (B)) +MxG+ Rm Vb
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Small Rm limit: Rm = ul/n < 1 and ¢/L = O(Rm?)

Ot(B) =V x £ + Rm™*V?(B),
O =V x (u x (B)) +MxG+ Rm Vb

b= RmV 2V x (u x (B))
& =a(B) = (uxb)
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Multi-scale expansion (Childress 1969)

Expanding B=By+ RB; ...

O, =R'9.+Rdr, V=V,+RVx, B=By+RB+-

From the induction equation at the first few orders we have

(0, -Vi)B, =0,
(ar - vi)Bl = Va: X (u X BO)-,
(0, =VE)By =V, x (u x By) + 2V, - VxBy,
(0, —V2)B3 = Vg x (u x Bs) + Vx x (ux By) + 2V, - Vx B,
(0, —V2)By =V, x (ux B3) +Vx x (ux B)) +2V,-VxB,
- (aT - v%()BO,
and from V- B = 0,
Ve By =0,
Ve B =

Vx-By+ Vs, By =0.
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Small 7 approximation: correlation time 7 < //u
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Small 7 approximation: correlation time 7 < //u

d:(B) = V x £ + Rm~1V?3(B),
dtb =V x (u x (B)) + ¥xG + Rm=Vb
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Small 7 approximation: correlation time 7 < //u

d:(B) = V x £ + Rm~1V?3(B),
dtb =V x (u x (B)) + ¥xG + Rm=Vb

12

(u x (B))

b
£ = (u x b)

TV X
)

a(B
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Small 7 approximation: correlation time 7 < //u

d:(B) = V x £ + Rm~1V?3(B),
dtb =V x (u x (B)) + ¥xG + Rm=Vb

b~ 7V x (ux (B))

€ =a(B) = (uxb)
Assuming isotropy

o= —%(u -V X u)

« is proportional to the helicity of the flow!
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The stances in the community
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Pro-Alpha groups

Measuring « by expansions and Numerical simulations

K.-H. Radler and M. Rheinhardt, Geophys. Astrophys. Fluid Dyn. 101, 117
(2007).

N. Kleeorin, I. Rogachevskii, D. Sokoloff, and D. Tomin, Phys. Rev. E 79, 046302
(2009).

M. Schrinner, K.-H. Réadler, D. Schmitt, M. Rheinhardt, and U. R. Christensen,
Geophys. Astrophys. Fluid Dyn. 101, 81 (2007).

M. Rheinhardt and A. Brandenburg, Astron. Astrophys. 520, A28 (2010).

S. Sur, A. Brandenburg, and K. Subramanian, Mon. Not. R. Astron. Soc. 385,
L15 (2008).

A. Brandenburg, K.-H. Réadler, and M. Schrinner, Astron. Astrophys. 482, 739
(2008).

K. Subramanian and A. Brandenburg, Mon. Not. R. Astron. Soc. 445, 2930
(2014).
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Contre-Alpha groups

S. Boldyrev, F. Cattaneo, and R. Rosner, Phys. Rev. Lett. 95, 255001 (2005).
A. Courvoisier, D. W. Hughes, and S. M. Tobias, Phys. Rev. Lett. 96, 034503
(2006).

D. W. Hughes, Plasma Phys. Controlled Fusion 50, 124021 (2008).

F. Cattaneo and D. W. Hughes, Mon. Not. R. Astron. Soc. 395, L48 (2009).
F. Cattaneo and S. Tobias, Astrophys. J. 789, 70 (2014).

D. Galloway and U. Frisch, Geophys. Astrophys. Fluid Dyn. 29, 13 (1984).
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“... We argue that the interpretation of these quantities («, 3) in terms of
the evolution of the large-scale field may be fundamentally flawed.”
F. Cattaneo and D. W. Hughes, Mon. Not. R. Astron. Soc. 395, L51 (2009).

“It is stressed that the connection of the mean electromotive force with
the mean magnetic field and its first spatial derivatives is in general neither
local nor instantaneous and that quite a few claims concerning
pretended failures of the mean-field concept result from ignoring
this aspect.”

K.-H. Réadler Astron. Nachr. 335, 459 (2014)
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When can we neglect G7
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When can we neglect G7

d:(B) = V x £ + Rm~1V?3(B),
0tb =V x (ux (B)) + ¥<xG+ Rm1V?b

where
€ =(uxb) and G=uxb—(uxb)
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When can we neglect G7

d:(B) = V x £ + Rm~1V?3(B),
0tb =V x (ux (B)) + ¥<xG+ Rm1V?b
where

€ =(uxb) and G=uxb—(uxb)

e OK, when Rm« 1
e Maybe OK if 7 < £/u if Rm is not to big.
@ Not OK when small scale dynamo exists.
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When can we neglect G7

d:(B) = V x £ + Rm~1V?3(B),
0tb =V x (ux (B)) + ¥<xG+ Rm1V?b
where

€ =(uxb) and G=uxb—(uxb)

e OK, when Rm« 1
e Maybe OK if 7 < £/u if Rm is not to big.
@ Not OK when small scale dynamo exists.

If G # 0 the linear relation £ = a(B) + ... does not hold!
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A simple example

g < k
b= —nq® by +aq by,
bk: ak bq +’)/55D bk

where 7., = ugk — nk? is the growth rate of the small scale dynamo
obtained by setting o = 0.

1

V=5 Vs — 19" E \/ Vasp T 402k + 2755,19% + g
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A simple example

1
=5 [VSSD —ng’ £ \/ Voo T 40%kq + 27555m% + nzq“}
Yssp <0 Ysop > 0
7= aqu/|’7550| = 0(q) T~ Yssp = O(1)
ba/be = (aspl/ak) = O(1)  by/bic = (q/I7aspl) = O(a/)
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The Floquet (Bloch) Formalism for periodic flows
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The Floquet (Bloch) Formalism for periodic flows

Let u(x, t) be a spatially periodic flow of a given spatial period ¢ = 27/ k.

The Floquet theory states that the magnetic field can be decomposed as
B(x, t) = e/9%b(x, t) + c.c. where b(x, t) is a complex vector field that
satisfies the same spatial periodicity as the velocity field u, and q is an
arbitrary wave number.
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A.CAMERON & A. ALEXAKIS Alpha Dynamos



The Floquet (Bloch) Formalism for periodic flows

Let u(x, t) be a spatially periodic flow of a given spatial period ¢ = 27/ k.

The Floquet theory states that the magnetic field can be decomposed as
B(x, t) = e/9%b(x, t) + c.c. where b(x, t) is a complex vector field that
satisfies the same spatial periodicity as the velocity field u, and q is an
arbitrary wave number.

dtb = iq x (u x b) + V x (u x b) + n(V + iq)’b
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The Floquet (Bloch) Formalism for periodic flows

Let u(x, t) be a spatially periodic flow of a given spatial period ¢ = 27/ k.

The Floquet theory states that the magnetic field can be decomposed as
B(x, t) = e/9%b(x, t) + c.c. where b(x, t) is a complex vector field that
satisfies the same spatial periodicity as the velocity field u, and q is an
arbitrary wave number.

dtb = iq x (u x b) + V x (u x b) + n(V + iq)’b

Fields with ¢ = 0 and (b) = 0 correspond to purely small scale fields.
For 0 < g/k < 1 the dynamo mode has in general a finite projection to
the large scales measured by (b).
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A twofold gain

@ it provides with a clear way to disentangle dynamos that involve only
small scales (for which q/k € Z3) from dynamos that involve large
scales (0 < g/k < 1)

@ it allows to investigate numerically arbitrary large scale separations
g < k with no additional numerical cost.

A.CAMERON & A. ALEXAKIS Alpha Dynamos 2nd February 2017 26 / 36



The examined Flows

sin(ky + ¢2) + cos(kz + 3),
u=U | sin(kz+¢3) + cos(kx+ 1),
sin(kx + ¢1) + cos(ky + 12)

e (A) ¢i =1 = 0 ie the helical ABC flow
e (B) ¢i =i — m/2 =0 a non-helical flow
Rm = U/kn
and « is measured in units of Uk

e (C) ¢; = 1; change randomly every time 7
Rm = (U/kn) x (tUk) = U?7/n
and v is measured in units of U2kt
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Results: (A) ABC flow, g = 1073
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Results: (A) ABC
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Results: (B) Non-helical flow, g = 103
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Results: (B) Non-helical flow
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Results: (R) Random helical flow, g = 1073
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(C) Random helical flow
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Large scale projection

qg—egkl
b = jeq x (u x b) + V x (u x b) + n(V + ieq)’b

Let vy =70+ ey + ... and b =bg +¢b; . ..

@ Oth order

Yo ="ssp and (bg)=0
@ 1st order

Yolb1) = iqx (uxby)  and 41 =i(b}-(qxuxbp))
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Large scale projection

qg—egkl
b = jeq x (u x b) + V x (u x b) + n(V + ieq)’b

Let vy =0+ €ey1+... and b =bg + b . ..
@ Oth order

Yo ="ssp and (bg)=0
@ 1st order

Yolb1) = iqx (uxby)  and 41 =i(b}-(qxuxbp))

Eo/E = (b)2/(b®) xx > if  (uxbg)#0
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The Large scale behavior

Back to the gradient expansion ...
E =&+l (BY 4 pIRI(BYk ...
then for isotropic flows

9:(B) =& +aV x (B) + (Rm™ 1 + B)V3(B) +...,

where
Eo e(Isspt)

and could be modeled as noise for a turbulent flow.
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Thank you for your attention
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