Large scale instability of 3D helical flows

A. CAMERON ; A. ALEXAKIS ; M.-É. BRACHET ENS Paris

29th July, 2016

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows
Table of contents			

Magnetic and kinetic similarities

2 FLASH

- Derivation
- 3M model
- 3 Fr87 benchmark

4 Helical flows

- Roberts flow
- Equilateral ABC flow
- λABC flows
 - Linear problem
 - Full non-linear problem

FLASH 00000C Fr87 benchmark

Helical flows

Large scale magnetic fields

Magnetic	and	kinetic	simi	larities
----------	-----	---------	------	----------

Fr87 benchmark

Helical flows

The induction and vorticity equations

Magnetic	Kinetic
$\boldsymbol{\nabla} \cdot \boldsymbol{B} = \boldsymbol{0}$	$\nabla \cdot \omega = 0$
$\partial_t B = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \Delta \boldsymbol{B}$	$\partial_t \omega = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{\omega}) + \boldsymbol{v} \Delta \boldsymbol{\omega}$
	$\omega = \boldsymbol{\nabla} \times \boldsymbol{u}$

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows
Hand-waving			

Fr87 benchmark

Helical flows

First order effects: α **and** *AKA*

Scales

$$\partial_t \to \partial_t + \epsilon^4 \partial_T \quad , \quad \nabla_x \to \nabla_x + \epsilon^2 \nabla_y.$$

T 		– –		1 1	n
	moti	r R		CU	ы.
		- D	_	C /	
				_	_

 α -effect: $\eta = \epsilon \eta_0$

 $(\partial_t - \eta_0 \nabla^2) B = \epsilon \nabla \times (U \times B),$

 $(\partial_t - \eta_0 \nabla_x^2) B_1 = (B_0 \cdot \nabla_x) U,$ $(\partial_T - \eta_0 \nabla_y^2) B_0 = \nabla_y \times \langle U \times B_1 \rangle.$ **Kinetic:** $u = U + \epsilon V$; $V = \epsilon^i V_i$

AKA-effect: $v = \epsilon v_0$

$$\begin{aligned} (\partial_t - v_0 \nabla^2) V &= \\ \epsilon \left[-(U \cdot \nabla) V - (V \cdot \nabla) U \right], \\ (\partial_t - v_0 \nabla_x^2) V_1 &= -(V_0 \cdot \nabla_x) U, \\ (\partial_T - v_0 \nabla_y^2) V_0 &= -\langle (U \cdot \nabla_y) V_1 \rangle. \end{aligned}$$

[Frisch et al. Phys. D 87]

Growth rate

$$\sigma = \alpha q - \nu q^2$$
 with $\alpha = a Re U$

Magnetic	and	kinetic	similarities	

Fr87 benchmark

Helical flows

Second order effects: β -effect and eddy viscosity

Magnetic

 β -effect

Kinetic

Negative eddy viscosity [Dubrulle & Frisch PRA91]

Growth rate

$$\sigma = \beta q^2 - \nu q^2 \quad \text{with} \quad \beta = b R e^2 \nu \,.$$

Fr87 benchmark

Helical flows

Recap

First order		Second order	
• $\sigma = \alpha q - v q$	τ^2	• $\sigma = \beta q^2 - v$	q^2
• $\alpha = aReU_0$		• $\beta = bRe^2 v$	
• $Re^c = vq/(a)$	uU_0)	• $Re^c = b^{-1/2}$	
• $q^c = \alpha / v$		• Switch	
Magnetic	Kinetic	Magnetic	Kinetic
• α	• AKA	• β	• v < 0
• <i>B</i> , η, <i>Rm</i>	• v, v, Re	• <i>B</i> , η, <i>Rm</i>	• v, v, Re

Magnetic	and	kin	etic	ilar	ities	
magnette						

Fr87 benchmark

Helical flows

Table of contents

Magnetic and kinetic similarities

2 FLASH

- Derivation
- 3M model
- **3** Fr87 benchmark

4 Helical flows

- Roberts flow
- Equilateral ABC flow
- λABC flows
 - Linear problem
 - Full non-linear problem

	N
ł	٢
×	a
н	n
	ic
11	37
10	10
	ł
2	V
	n
L.	
	s†
	r
	n
10	1.
	r
11	iı
4	
5	0

Fr87 benchmark

Helical flows

Derivation

Linearised Navier-Stokes & Floquet Framework

Non-Linear equation

$$\partial_t \boldsymbol{u} = \boldsymbol{u} \times \boldsymbol{\nabla} \times \boldsymbol{u} - \boldsymbol{\nabla} P + \boldsymbol{v} \Delta \boldsymbol{u} + \boldsymbol{F} \quad , \quad \boldsymbol{\nabla} \cdot \boldsymbol{u}.$$

Linearised equation:

$$\boldsymbol{u} = \boldsymbol{U} + \boldsymbol{v}$$
 with $||\boldsymbol{v}|| \ll ||\boldsymbol{U}||$

$$\partial_t \boldsymbol{U} = \boldsymbol{U} \times \boldsymbol{\nabla} \times \boldsymbol{U} - \boldsymbol{\nabla} P_K + v \Delta \boldsymbol{U} + \boldsymbol{F} \quad , \quad \boldsymbol{\nabla} \cdot \boldsymbol{U} = 0 ,$$

$$\partial_t \boldsymbol{v} = \boldsymbol{U} \times \boldsymbol{\nabla} \times \boldsymbol{v} + \boldsymbol{v} \times \boldsymbol{\nabla} \times \boldsymbol{U} - \boldsymbol{\nabla} P + v \Delta \boldsymbol{v} \quad , \quad \boldsymbol{\nabla} \cdot \boldsymbol{v} = 0$$

Floquet framework

$$\boldsymbol{\nu}(\boldsymbol{r},t) = \tilde{\boldsymbol{\nu}}(\boldsymbol{r},t) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} + c.c. , \quad \boldsymbol{\rho}(\boldsymbol{r},t) = \tilde{\boldsymbol{\rho}}(\boldsymbol{r},t) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} + c.c.$$

$$\partial_{\boldsymbol{\chi}}\boldsymbol{\nu} = \left[\partial_{\boldsymbol{\chi}}\tilde{\boldsymbol{\nu}}^{r} - q_{\boldsymbol{\chi}}\tilde{\boldsymbol{\nu}}^{i} + \iota(q_{\boldsymbol{\chi}}\tilde{\boldsymbol{\nu}}^{r} + \partial_{\boldsymbol{\chi}}\tilde{\boldsymbol{\nu}}^{i})\right] e^{i\boldsymbol{q}\cdot\boldsymbol{r}} + c.c. .$$

Linearised Navier-Stokes equations with the Floquet framework

$$\partial_t \tilde{\boldsymbol{\nu}} = (\boldsymbol{\nabla} \times \boldsymbol{U}) \times \tilde{\boldsymbol{\nu}} + (\iota \boldsymbol{q} \times \tilde{\boldsymbol{\nu}} + \boldsymbol{\nabla} \times \tilde{\boldsymbol{\nu}}) \times \boldsymbol{U} - (\iota \boldsymbol{q} + \boldsymbol{\nabla}) \tilde{\boldsymbol{p}} + \nu (\Delta - \boldsymbol{q}^2) \tilde{\boldsymbol{\nu}},$$

with $\iota \boldsymbol{q} \cdot \tilde{\boldsymbol{\nu}} + \boldsymbol{\nabla} \cdot \tilde{\boldsymbol{\nu}} = 0.$

Magnetic and kinetic similarities	FLASH ⊙●○○○○	Fr87 benchmark	Helical flows
Derivation			

Floquet Linear Analysis of Spectral Hydrodynamics (FLASH)

Linearised Navier-Stokes equations with the Floquet framework

$$\partial_t \tilde{\boldsymbol{v}} = (\boldsymbol{\nabla} \times \boldsymbol{U}) \times \tilde{\boldsymbol{v}} + (\iota \boldsymbol{q} \times \tilde{\boldsymbol{v}} + \boldsymbol{\nabla} \times \tilde{\boldsymbol{v}}) \times \boldsymbol{U} - (\iota \boldsymbol{q} + \boldsymbol{\nabla}) \tilde{\boldsymbol{p}} + \nu(\Delta - \boldsymbol{q}^2) \tilde{\boldsymbol{v}},$$

with $\iota \boldsymbol{q} \cdot \tilde{\boldsymbol{v}} + \boldsymbol{\nabla} \cdot \tilde{\boldsymbol{v}} = 0.$

Numeric method

- i. Compute the linear terms in Fourier space.
- **ii.** Compute convective terms in physical space.
- iii. Use 4th order explicit RK for the time evolution.

Magnetic and kinetic similarities	FLASH 00000	Fr87 benchmark	Helical flows
3M model			
Hand-waving			

Magnetic and kinetic similarities	FLASH ○○○●○○	Fr87 benchmark	Helical flows
3M model			

Formalism & Simplification

Mode selection

$$v(r, t) = v_q(r, t) + v_Q(r, t) + v_>(r, t), \qquad (1)$$

$$\boldsymbol{v}_{\boldsymbol{q}}(\boldsymbol{r},t) = \tilde{\boldsymbol{v}}(\boldsymbol{q},t)e^{l\boldsymbol{q}\boldsymbol{r}} + c.c., \qquad (2)$$

$$\boldsymbol{\nu}_{\boldsymbol{Q}}(\boldsymbol{r},t) = \sum_{||\boldsymbol{k}||=1} \tilde{\boldsymbol{\nu}}(\boldsymbol{q},\boldsymbol{k},t) e^{i(\boldsymbol{q}\cdot\boldsymbol{r}+\boldsymbol{k}\cdot\boldsymbol{r})} + c.c., \qquad (3)$$

$$\boldsymbol{\nu}_{>}(\boldsymbol{r},t) = \sum_{||\boldsymbol{k}||>1} \tilde{\boldsymbol{\nu}}(\boldsymbol{q},\boldsymbol{k},t) e^{i(\boldsymbol{q}\cdot\boldsymbol{r}+\boldsymbol{k}\cdot\boldsymbol{r})} + c.c.$$
(4)

Additional hypothesis

- Smallest are greatest:
- Adiabatic hypothesis:
- Helical flow:

$$\begin{split} ||\boldsymbol{v}_{>}|| \ll ||\boldsymbol{v}_{\boldsymbol{q}}|| \, . \\ \partial_{t} \boldsymbol{v}_{\boldsymbol{Q}} \ll \boldsymbol{v} \Delta \boldsymbol{v}_{\boldsymbol{Q}} \, . \\ \boldsymbol{U}_{hel}(\boldsymbol{r}) = K^{-1} \boldsymbol{\nabla} \times \boldsymbol{U}_{hel}(\boldsymbol{r}) \, . \end{split}$$

Magnetic and kinetic similarities	FLASH ○○○○●○	Fr87 benchmark	Helical flows 000000000000000000000000000000000000
3M model			
Hand-waving			

Magnetic and kinetic similarities	FLASH ○○○○○●	Fr87 benchmark	Helical flows
3M model			
Equations			

Equations before simplification

$$\partial_t \boldsymbol{v}_{\boldsymbol{q}} = \boldsymbol{U} \times \boldsymbol{\nabla} \times \boldsymbol{v}_{\boldsymbol{Q}} + \boldsymbol{v}_{\boldsymbol{Q}} \times \boldsymbol{\nabla} \times \boldsymbol{\mathcal{U}}^{\mathsf{K} \boldsymbol{U}_{hel}} - \boldsymbol{\nabla} p_{\boldsymbol{q}} + \boldsymbol{v} \Delta \boldsymbol{v}_{\boldsymbol{q}}.$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{Q}} = \boldsymbol{U} \times \boldsymbol{\nabla} \times (\boldsymbol{v}_{\boldsymbol{q}} + \boldsymbol{v}_{\boldsymbol{S}}) + (\boldsymbol{v}_{\boldsymbol{q}} + \boldsymbol{v}_{\boldsymbol{S}}) \times \boldsymbol{\nabla} \times \boldsymbol{\mathcal{U}}^{\mathsf{K} \boldsymbol{U}_{hel}} - \boldsymbol{\nabla} p_{\boldsymbol{Q}} + \boldsymbol{v} \Delta \boldsymbol{v}_{\boldsymbol{Q}}.$$

Simplified vorticity equations

$$v\Delta\omega_{\boldsymbol{Q}} = -\boldsymbol{\nabla} \times \left[\boldsymbol{U}_{hel} \times (\boldsymbol{\omega}_{\boldsymbol{q}} - K\boldsymbol{v}_{\boldsymbol{q}}) \right], \tag{5}$$

$$\partial_t \boldsymbol{\omega}_{\boldsymbol{q}} = \boldsymbol{\nabla} \times \left[\boldsymbol{U}_{hel} \times (\boldsymbol{\omega}_{\boldsymbol{Q}} - K \boldsymbol{\nu}_{\boldsymbol{Q}}) \right] + \boldsymbol{\nu} \Delta \boldsymbol{\omega}_{\boldsymbol{q}}.$$
(6)

Prediction for λ -*ABC* **flows (**A=1:B=1:C= λ **)**

$$\sigma = \beta q^2 - \nu q^2 \quad \text{with} \quad \beta = bRe^2 \nu, \tag{7}$$
$$b = \frac{1 - \lambda^2}{4 + 2\lambda^2} \quad \text{and} \quad Re = \frac{U}{K\nu}. \tag{8}$$

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows
Table of contents			

Magnetic and kinetic similarities

2 FLASH

- Derivation
- 3M model

3 Fr87 benchmark

4 Helical flows

- Roberts flow
- Equilateral ABC flow
- λABC flows
 - Linear problem
 - Full non-linear problem

Fr87 benchmark

Helical flows

Flow & Theoretical prediction

Flow equation

$$U_x^{Fr87} = U_0 \cos(Ky + \nu K^2 t),$$
 (9)

$$U_{y}^{Fr87} = U_{0} \sin\left(Kx - vK^{2}t\right),$$
 (10)

$$U_z^{Fr87} = U_x^{Fr87} + U_y^{Fr87}.$$
 (11)

Growth rate of the large scale instability

$$\sigma = \alpha q - \nu q^2$$
 with $\alpha = a Re U_0$ and $a = \frac{1}{2}$. (12)

Determining *a* in the $q \ll 1$ limit

$$\alpha = \left\langle \frac{\sigma}{q} \right\rangle \iff \frac{\alpha}{U_0} = \frac{1}{U_0} \left\langle \frac{\sigma}{q} \right\rangle \iff a = \frac{1}{ReU_0} \left\langle \frac{\sigma}{q} \right\rangle = \frac{1}{2}.$$
 (13)

Fr87 benchmark

Helical flows

FLASH: Large scale energy ratio

Magnetic and kinetic similarities	FLASH	Fr87 benchmark	Helical flows

FLASH: Large scale energy ratio

Helical flows

FLASH: Growth rate

Magnetic and kinetic similarities	Magnetic and kinetic similarities	
fagnetic and kinetic similarities	fagnetic and kinetic similarities	
agnetic and kinetic similarities	agnetic and kinetic similarities	
gnetic and kinetic similarities	gnetic and kinetic similarities	a
netic and kinetic similarities	netic and kinetic similarities	g
etic and kinetic similarities	etic and kinetic similarities	
tic and kinetic similarities	tic and kinetic similarities	
c and kinetic similarities	c and kinetic similarities	ti
and kinetic similarities	and kinetic similarities	
nd kinetic similarities	nd kinetic similarities	
d kinetic similarities	d kinetic similarities	
kinetic similarities	kinetic similarities	
kinetic similarities	kinetic similarities	
inetic similarities	inetic similarities	k
netic similarities	netic similarities	i
etic similarities	etic similarities	
tic similarities	tic similarities	e
ic similarities	ic similarities	t
similarities	similarities	
similarities	similarities	
milarities	milarities	
nilarities	nilarities	n
ilarities	ilarities	
arities	arities	l
		la
ities	ities	
		i
		ti

Fr87 benchmark

Helical flows

FLASH: Power-law

|--|

Fr87 benchmark

Helical flows

Table of contents

Magnetic and kinetic similarities

2 FLASH

- Derivation
- 3M model
- 3 Fr87 benchmark
- 4

Helical flows

- Roberts flow
- Equilateral ABC flow
- λABC flows
 - Linear problem
 - Full non-linear problem

Roberts flow

Flow & Theoretical prediction

Flow equation

$$U_x^{Rob} = \cos(Ky), \qquad (14)$$

$$U_{y}^{Rob} = \sin(Kx), \qquad (15)$$

$$U_z^{Rob} = \sin(Kx) + \cos(Ky).$$
(16)

Growth rate of the large scale instability

$$\sigma = \beta q^2 - v q^2 \quad \text{with} \quad \beta = b R e^2 v, \tag{17}$$
$$b = \frac{1}{4} \quad \text{and} \quad R e = \frac{U}{K v}. \tag{18}$$

Determining *b*

$$\beta - v = \left\langle \frac{\sigma}{q^2} \right\rangle \iff \frac{\beta}{v} = \frac{1}{v} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + v \right) \iff b = \frac{1}{Re^2 v} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + v \right).$$
(19)

Fr87 benchmark

Helical flows ○●○○○○○○○○○○○○○○○○

Roberts flow

FLASH: Large scale energy ratio

Fr87 benchmark

Helical flows

Roberts flow

FLASH: Large scale energy ratio

	Magnetic	and kir	netic si	milari	ties
--	----------	---------	----------	--------	------

Fr87 benchmark

Helical flows

Roberts flow

FLASH: Growth rate

Fr87 benchmark

Helical flows

Roberts flow

FLASH: Power-law

Equilateral ABC flow

Flow & Theoretical prediction

Flow equation

$$U_x^{equi} = \sin(Kz) + \cos(Ky), \qquad (20)$$

$$U_{y}^{equi} = \sin(Kx) + \cos(Kz), \qquad (21)$$

$$U_z^{equi} = \sin(Ky) + \cos(Ky).$$
⁽²²⁾

Growth rate of the large scale instability

$$\sigma = \beta q^2 - v q^2 \quad \text{with} \quad \beta = b R e^2 v, \tag{23}$$
$$\boxed{b=0} \quad \text{and} \quad R e = \frac{U}{K v}. \tag{24}$$

Determining *b*

$$\beta - \nu = \left\langle \frac{\sigma}{q^2} \right\rangle \iff \frac{\beta}{\nu} = \frac{1}{\nu} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + \nu \right) \iff b = \frac{1}{Re^2\nu} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + \nu \right).$$
(25)

Fr87 benchmark

Helical flows

Equilateral ABC flow

FLASH: Large scale energy ratio

Fr87 benchmark

Helical flows

Equilateral ABC flow

FLASH: Large scale energy ratio

Helical flows

Equilateral ABC flow

FLASH: Growth rate

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows
Equilateral ABC flow			
FLASH: Power-law			

$\lambda - ABC$ flows

Flow & Theoretical prediction

Flow equation

$U_x^{\lambda} = \lambda \sin(Kz) + \cos(Ky)$,	(26)
$U_x^{\lambda} = \lambda \sin(Kz) + \cos(Ky),$	(26

$$J_{y}^{\lambda} = \sin(Kx) + \lambda \cos(Kz), \qquad (27)$$

$$U_z^{\lambda} = \sin(Ky) + \cos(Kx).$$
⁽²⁸⁾

Growth rate of the large scale instability

$$\sigma = \beta q^2 - \nu q^2 \quad \text{with} \quad \beta = bRe^2 \nu, \tag{29}$$
$$b = \frac{1 - \lambda^2}{4 + 2\lambda^2} \quad \text{and} \quad Re = \frac{U}{K\nu}. \tag{30}$$

Determining *b*

$$\beta - v = \left\langle \frac{\sigma}{q^2} \right\rangle \iff \frac{\beta}{v} = \frac{1}{v} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + v \right) \iff b = \frac{1}{Re^2 v} \left(\left\langle \frac{\sigma}{q^2} \right\rangle + v \right).$$
(31)

Fr87 benchmark

Helical flows

λ –ABC flows

FLASH: Power-law pre-factor

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows
$\lambda - ABC$ flows			

Fr87 benchmark

Helical flows

 λ –ABC flows

GHOST : Instability spectrum *KL* = 20

Fr87 benchmark

Helical flows

λ –ABC flows

GHOST : Instability spectra

Fr87 benchmark

Helical flows

λ –ABC flows

GHOST: Small scale instability

[Dombre et al. 86; Podvigina & Pouquet Phys. D 94]

Fr87 benchmark

Helical flows

λ –ABC flows

GHOST: Small scale instability zoom

Magnetic	and	kine	tic	sim	ilarit	

Fr87 benchmark

Helical flows

 λ –ABC flows

Critical Reynolds number

At the onset of the instability

$$\sigma = \beta q^2 - v q^2 \quad \text{with} \quad \beta = b R e^2 v, \quad (32)$$
$$\sigma = 0 \iff \beta^c = v \iff b^c = (R e^c)^{-2}. \quad (33)$$

Magnetic and kinetic similarities	FLASH 000000	Fr87 benchmark	Helical flows ○○○○○○○○○○○○○○○○○○●
$\lambda - ABC$ flows			
$\lambda - ABC$ flows graph			

On arXiv, submitted to PR Fluids

Thank you for your attention

• Also investigated in HD:

- Turbulent ABC flow
- Study of E_0/E_{tot}

• Also investigated in Induction:

- Study of the *ABC*-dynamo
- Study of magnetic response to non-helical flow
- Study of magnetic response to $\delta\text{-correlated}$ flows

On arXiv, submitted to PRL

Thank you for your attention