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Introduction
We consider the linear instability of a spa-
tial periodic flow UK(x) with wave number
K to large scale modes (small wave num-
bers q). The instability occurs through the
coupling with nearby modes Q = K ± q.
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Linearised HD equations
Incompressible Navier-Stokes equations:
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U = U⇥r⇥U �rP

K

+ ⌫4U + F , (1)
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v = U⇥r⇥v + v⇥r⇥U �rP + ⌫4v , (2)

r ·U = 0 , r · v = 0 . (3)

Floquet framework:

v(r, t) = ṽ(r, t)eıq·r + c.c. , (4)

The perturbation evolution equation (PEE) is:
@
t

ṽ = (r⇥U)⇥ṽ+(ıq⇥ṽ+r⇥ṽ)⇥U�rp+⌫(��q2)ṽ .

Theory
In [1], Frisch et al. showed that an anisotropic
kinetic alpha (AKA) effect exists and drives
large scale instabilities for flows satisfying cer-
tain conditions. It leads to a growth rate:

� = ↵q � ⌫q

2
. (5)

In the absence of an AKA-effect, large scale in-
stabilities are expected to be driven by negative
eddy viscosity effects [3, 4, 5] and results in:

� = �q

2 � ⌫q

2
. (6)

The coefficients ↵ and � however can only be
calculated in certain limits (e.g. Re ! 1).

Three modes model
In the limit of small Re= U

K⌫ , for ABC flows,
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= C sin(Kz) +B cos(Ky) , (7)
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= A sin(Kx) + C cos(Kz) , (8)
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z

= B sin(Ky) +A cos(Ky) . (9)

the instability can be reduced to three modes:

⌫4!Q = �r⇥[U ⇥ (!q �Kvq)] , (10)
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!q = r⇥[U⇥(!Q �KvQ)] + ⌫4!q , (11)

!q = r⇥vq , !Q = r⇥vQ . (12)

For A = 1 : B = 1 : C = � flows:

� = �q

2 � ⌫q

2
, � = bRe

2
⌫ , b =

1� �
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4 + 2�

2
. (13)
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AKA-instability
An example flow that results in an AKA-effect is:
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The growth rate satisfies: � = ↵q� ⌫q

2
, ↵ = 1

2ReU0 . We confirmed these results using our
Floquet Linear Analysis of Spectral Hydrodynamics code solving (PEE) in Fourrier space.

Roberts flow: � = 0
The Roberts flow does not satisfy the conditions to generate an AKA-effect. The growth rate
predicted by the model is: � = ⌫q

2(Re

2
/4�1).

Equilateral ABC flow: � = 1
The equilateral ABC flow does not satisfy the conditions to generate an AKA-effect and the theory
predicts that it should not generate a q

2-large scale instability : � = �⌫q

2.

ABC flows: � variable
The b-coefficient computed via the FLASH code and the three modes model have a discrepancy
for � & 0.5. As shows the study with variable kcut, the error comes from the impact of modes of
higher wave number not taken into account in the model. This is confirmed by the critical Reynolds
number found using the GHOST code modelling the full non-linear Navier-Stokes equation. The
critical small scale instability matches the results in [2].
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