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At the heart of today’s solar magnetic field evolution models lies the alpha dynamo description. In this
work, we investigate the fate of alpha dynamos as the magnetic Reynolds number Rm is increased. Using
Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by
rigorously distinguishing dynamo modes that involve large-scale components from the ones that only
involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with
minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random
flows with short correlation time. Our results determine that the alpha description is valid for Rm smaller
than a critical value Rmc at which small-scale dynamo instability starts. When Rm is above Rmc, the
dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes
independent of the scale separation, while the energy in the large-scale modes is inversely proportional to
the square of the scale separation. The results in this second regime do not depend on the presence of
helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions
for mean-field modeling are proposed.
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Dynamo instability refers to the spontaneous amplifica-
tion of magnetic energy due to the stretching and refolding
of magnetic field lines by a flow. It explains the presence of
magnetic fields throughout the Universe from planetary to
galactic scales. In many of these cases, dynamo action
produces ordered fields of scale L much larger than the
typical underlying turbulent scales l. A prominent example
is the Sun, whose magnetic field possesses a time and
spatial coherence much larger than the typical turbulent
time and length scales [1–3]. A mechanism for the
generation of such large-scale magnetic fields by small-
scale turbulent eddies was proposed by Parker in [4], where
he considered the evolution of large-scale fields due to
the averaged effect of small-scale eddies that lack parity
invariance. This idea has led to the concept of mean-field
magnetohydrodynamics [5–8], where the averaged effect of
small-scale velocity field is taken into account through the
calculation of transport coefficients.
The starting point for these calculations is the magnetic

induction equation for the magnetic field B,

∂tB ¼ ∇ × ðu ×BÞ þ η∇2B; ð1Þ

that is advected by a small-scale velocity u under the effect
of magnetic diffusion η. The magnetic field is then split in a
mean part hBi (averaged over the small scales) and a
fluctuating part b so that B ¼ hBi þ b and hbi ¼ 0. The
averaged equation for the large-scale magnetic field reads

∂thBi ¼ ∇ × E þ η∇2hBi; ð2Þ

where the mean electromotive force E ¼ hu × bi is a
measure of the cross-correlation of the small scale velocity
u and magnetic b fields. It can be found by solving for the
evolution of the small-scale field b,

∂tb − η∇2b ¼ ∇ × ðu × hBiÞ þ∇ ×G; ð3Þ

whereG ¼ u × b − hu × bi. IfG can be neglected, b has a
linear dependence on hBi that acts as the only source term
for small-scale fluctuations. In this case, the mean electro-
motive force can be expanded in a series of the gradients of
the large-scale magnetic field as

Ei ¼ αijhBij þ βijk∇jhBik þ � � � : ð4Þ

The tensors α; β;… are transport coefficients that depend
on the properties of the small-scale velocity field. In
particular, the first tensor α is nonzero if the flow is helical.
It can drive large-scale magnetic field amplification with a
growth rate γ that is proportional to the scale separation
γ ∝ l=L. These types of dynamos are referred to as
alpha dynamos in the literature. In the absence of helicity,
large-scale dynamos are also known to exist through an
instability related to the second tensor β [9]. This effect
leads to a growth rate proportional to the square of the scale
separation ðl=LÞ2. Both cases are examples of large-scale
dynamos (LSD).
Given the value of these tensors and inserting Eq. (4) in

Eq. (2), one obtains a closed equation for the large-scale
magnetic field. This allows us to compute the large-scale
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evolution without knowing the precise details of small-
scale turbulence. This procedure is commonly used in solar
[10–12] and planetary models [13]. Because of limited
computational power, these models only compute the
large scale magnetic field while the effect of small scale
fluctuations is modeled through the transport coefficients.
If these coefficients are properly parametrized, these
models reproduce the observed behavior of the solar
magnetic field. Global models that solve the full stellar
system without parametrization still fall short of reproduc-
ing quantitatively the solar cycle, despite the great advance-
ment in recent calculations [14–19].
However, calculating the transport coefficients from first

principles remains nontrivial. It can be achieved when the
magnetic Reynolds number: Rm ¼ Ul=η (where U is the
rms value of the velocity field) is much smaller than unity
Rm ≪ 1. In this case, the small-scale induction equation
can be simplified to η∇2b ¼ −∇ × ðu × hBiÞ and easily
solved by spectral methods [5]. Another frequent approxi-
mation consists in assuming that the velocity field has a
very short correlation time τ compared to the eddy turnover
time [20,21]. The solution is then approximated to
b ≈ τ∇ × ðu × hBiÞ. Both cases lead to a linear depend-
ence of b on hBi in agreement with α-modeling, and lead to
a nonzero alpha effect provided that the flow is helical. In
particular, for the small Rm, the α-tensor can be rigorously
calculated using multiscale methods [6]. However, for
natural flows, neither of these assumptions hold, and
different methods have been devised to measure the trans-
port coefficients by numerical simulations of small-scale
turbulence [22–27].
For large values of Rm, which correspond to astrophysi-

cal regimes, neglecting theG term is not necessarily a valid
assumption. Indeed, at sufficiently large Rm, small-scale
dynamo (SSD) action is expected to take place and small-
scale magnetic fields to be self-generated, exponentially
amplifying the value of the electromotive force. This is
against the basic assumption made above that the electro-
motive force has a linear dependence on the large-scale
field hBi. Indeed, many authors have questioned the
validity of alpha modeling beyond the critical value of
Rmc, where SSD takes place [28–32] even as early as
in [33].
Part of their objections can be elegantly summed up in

the following two-mode model. We consider the evolution
of a large-scale mode bq at wave number q ∝ 1=L and a
small-scale mode bk at wave number k ∝ 1=l, with q ≪ k,
that are coupled by an alpha effect as follows:

_bq ¼ −ηq2 bq þ αq bk;

_bk ¼ αk bq þ γSSD bk; ð5Þ

where γSSD ¼ ukk − ηk2 is the growth rate of the SSD
obtained by setting α ¼ 0. It is positive if Rm ¼ uk=ηk > 1

that marks the SSD onset. Looking for exponential sol-
utions ðbq; bkÞ ∝ eγt, the growth rate γ of the two modes
can be explicitly calculated and it is given by
γ ¼ 1

2
½γSSD − νq2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2SSD þ 4αkqþ 2γSSDηq2 þ η2q4
p �.

One notices directly that in the q ≪ k limit, if γSSD < 0, the
system has one negative eigenvalue γ ≃ γSSD and one
positive eigenvalue γ ≃ α2kq=jγSSDj. The growing eigen-
mode satisfies bq=bk ≃ ðjγSSDj=αkÞ ¼ Oð1Þ. On the other
hand, if γSSD > 0, the system has one positive eigenvalue
γ≃γSSD and its eigenmode satisfies bq=bk≃ðαq=jγSSDjÞ¼
Oðq=kÞ. Thus, beyond the SSD dynamo onset, the growth
rate does not satisfy the scaling γ ∝ q, while the projection
of the unstable eigenmode on the large scales decreases
with scale separation.
To demonstrate the above arguments and the possible

failure of the LSD description, the notion of scale separation
needs to be clearly formulated. This has been attempted in
the past using direct numerical simulations [27,34], but only
for moderate scale separations. A precise way to quantify the
evolution of large scales can be done using Floquet theory
[35], also known as Bloch theory in quantum mechanics
[36]. Floquet theory can be applied to the linear evolution of
the magnetic fieldBðx; tÞ, driven by a spatially periodic flow
uðx; tÞ of a given spatial period l ¼ 2π=k. Under these
assumptions, Floquet theory states that the magnetic field
can be decomposed as Bðx; tÞ ¼ eiq·x ~bðx; tÞ þ c:c:, where
~bðx; tÞ is a complex vector field that satisfies the same
spatial periodicity as the velocity field u, and q is an arbitrary
wave number. For q ¼ jqj ≪ k, the volume average h ~bi
over one spatial period ð2π=kÞ3 gives the amplitude of ~b at
large scales L ∝ 1=q. Thus, fields with q ¼ 0 and h ~bi ¼ 0
correspond to purely small- scale fields. If such fields are
dynamo unstable, the system has a SSD instability and we
will denote its growth rate as γSSD. For 0 < q < 1, the
dynamo mode has in general, a finite projection to the large
scales measured by h ~bi. Substituting in the induction Eq. (1),
we obtain

∂t
~b ¼ iq × ðu × ~bÞ þ∇ × ðu × ~bÞ þ ηð∇þ iqÞ2 ~b: ð6Þ

Note that now q is a control parameter that can be taken to be
arbitrarily small. The gain in using the Floquet framework is
twofold: (i) it provides a clear way to disentangle dynamos
that involve only small scales (for which q=k ∈ Z3) from
dynamos that involve large scales (0 < q=k ≪ 1); (ii) it
allows us to investigate numerically arbitrary large-scale
separations q ≪ k with no additional numerical cost.
In this work, we consider the velocity fields parametrized

as

u ¼ U

2

6

4

sinðkyþ ϕ2Þ þ cosðkzþ ψ3Þ;
sinðkzþ ϕ3Þ þ cosðkxþ ψ1Þ;
sinðkxþ ϕ1Þ þ cosðkyþ ψ2Þ

3

7

5

: ð7Þ
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Three cases are examined. In the first case A, ϕi ¼ ψ i ¼ 0
for all i ∈ ð1; 2; 3Þ, the flow corresponds to the well-studied
helical ABC flow [33,37–41], in the second case B,
ϕi ¼ ψ i − π=2 ¼ 0 is a nonhelical flow, and in the last
case C, the phases ϕi ¼ ψ i change randomly every time τ
and corresponds to random helical flow. For the time-
independent flows (cases A and B), the magnetic Reynolds
number is defined as Rm ¼ U=kη and the growth rate is
measured in units of Uk. For the random flow (case C), the
definition Rm ¼ ðU=kηÞ × ðτUkÞ ¼ U2τ=η is used and
the growth rate is measured in units of U2k2τ. The latter
definition takes into account that a fast decorrelation time
reduces the rate at which the flow shears the magnetic field
lines. As will be shown in Fig. 1, this scaling makes the
results collapse on the same curve for small τ. Equation (6)
was solved numerically and the dynamo growth rate γ of
the most unstable mode was measured for various values of
Rm and q ¼ ẑq using a pseudospectral code in a cubic
periodic domain of side 2π with k ¼ 1 and spatial reso-
lution ranging from 323 to 1283 depending on Rm. Details
on the Floquet code can be found in [42]. The results are
compared with the SSD growth rate γSSD obtained from a
tested dynamo code [43].
The calculated growth rates are plotted in Fig. 1 as a

function of the Reynolds number for the three different
velocity fields used. Crosses correspond to the results
obtained from the Floquet code with q ¼ 10−3, while
γSSD is shown with a solid green line. In the first flow
A, the γSSD reproduces the classical “two-window” result of

the ABC dynamo [33,37–41] for which SSD exists for Rm
in the range R1 < Rm < R2 and Rm > R3. For the non-
helical case B, SSD appears for Rm > R4 ≃ 12. In the case
C, different values of τ were used in the range (0.02,0.5), as
mentioned in the legend. For the Floquet results, the value
of τ used was τ ¼ 0.1. SSD appears above a critical value
R5 that weakly depends on the value of τ. At sufficiently
small τ, the critical value of Rm ¼ R5, at which SSD
appears, becomes independent of τ with R5 ≃ 15. All three
cases show the same feature: when γSSD > 0, the Floquet
and SSD results have the same growth rate, while when
γSSD < 0, the Floquet results have a positive growth rate but
of order q (or q2).
This observation is illustrated better by examining the

dependence of the growth rate on q shown in the three
panels of Fig. 2. For each line in these figures, a series of
simulations of fixed Rm and varying q was performed.
Each line corresponds to a different value of Rm. Panel A
shows the growth rate for the ABC flow. For the values of
Rm < R1 and R2 < Rm < Rm3 (where there is no SSD),
the growth rate is plotted with dotted lines, the first dynamo
window R1 < Rm < Rm2 is plotted using dashed lines,
while in the range Rm > R3 solid lines are used. It is clear
that for the no-small-scale-dynamo range, a γ ∝ q scaling
is followed (alpha dynamos), while in the presence of
SSD γ, is independent of the value of q. Similarly, for the

FIG. 1. Growth rate as a function of Rm for the different flows
considered. The SSD results are given by the solid lines, while
the results from the Floquet code with q ¼ 10−3 are denoted by
crosses. In the bottom panel, the value of τ ¼ 0.1 was used for the
Floquet code, and different values of τ were used for the SSD as
indicated.

FIG. 2. The growth rate as a function of q. Different colors
correspond to different values of Rm. The line types are as
follows. Panel A: For Rm < R1 and R2 < Rm < R3 (dotted
lines), for R1 < Rm < R2 (dashed lines), for Rm > R3 (solid
lines). Panel B: For Rm < R4 (dotted lines), for Rm > R4

(solid lines). Panel C: For Rm < R5 (dotted lines), for Rm > R5

(solid lines). The inset D shows a typical signal for the evolution
of energy from case C for Rm < R5.
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nonhelical runs, in the absence of SSD (Rm < R4 dotted
lines), the growth rate follows the scaling: γ ∝ q2, which
indicates a β-type dynamo instability, while in the presence
of SSD (solid lines), there is no dependence of the growth
rate on q. Even in the random flow, the same feature is
observed: for Rm < R5 (dotted lines) the results show a
γ ∝ q scaling that suggest the presence of a random α
effect, but for Rm > R5 this behavior transitions to a
q-independent growth rate (solid lines). We note that
due to the random nature of this flow, the accuracy of
our measurements is limited and we only examine values of
q > 5 × 10−4. The inset D shows a typical signal for the
evolution of energy from case C.
At first, a finite growth rate γ > 0 in the limit of q → 0

seems to violate the flux conservation. Indeed, flux con-
servation enforces modes with q ¼ 0, corresponding to
uniform fields, not to grow. The explanation is found by
looking at the projection of the unstable modes to the large
scales. In Fig. 3, we plot the ratio of the energy contained in
the large scale mode eiq·x that is given by E0 ¼ 1

2
jh ~bij2 to

the total energy Etot ¼ 1
2
hj ~bj2i as a function of q for the

same values of Rm as used in Fig. 2 and the same line types.
For LSD (of the type α or β), the projection to the large
scales becomes independent of q for q → 0 (although it still
depends on the value of Rm). As Rm approaches the SSD
onset, this projection decreases. For values of Rm larger
than the onset of the SSD, the projection to the large-scale
modes becomes dependent on q and follows the scaling
γ ∝ q2 in most cases or γ ∝ q4 for the case of the first
dynamo window in the ABC flow. This result can be

obtained by a regular expansion of Eq. (6) for small q such
that γ ¼ γ0 þ qγ1 þ � � � and ~b ¼ ~b0 þ q ~b1…. At zeroth
order, one obtains γ ¼ γSSD and h ~b0i ¼ 0. At next order, by
averaging over space, one obtains

γ0h ~bi ¼ iq × hu × ~b0i: ð8Þ

This last result shows that the energy in the large-scale
mode scales like q2, provided that the mean electromotive
force hu × ~b0i due to the SSDmode is not zero. If it is zero,
then the next order term leads to a q4 scaling and so on.
Note that this argument does not depend on the presence or
absence of helicity in the flow. In fact, as shown in the top
panel of Fig. 3, the same flow results in different scaling of
E0=Etot, depending on which dynamowindow is examined.
Indeed, in the first window R1 < Rm < R2, the most
unstable mode possesses different symmetries than the
most unstable mode for Rm > R3 [41].
The results above give a clear description of the

transition from SSD to LSD. Below the SSD onset, the
mean-field predictions are valid and lead to a growth rate
proportional to q or q2 depending on whether an α- of
β-dynamo is present. Above the SSD onset, large scales
grow with the γSSD growth rate, but with a projection to the
large scales that decreases with scale separation. This
behavior cannot be modeled with terms that are linear in
the amplitude of the large scale field as Eqs. (2) and (4)
imply. On the contrary, the behavior of the large-scales
mode depends on SSD. Despite its small projection, it has a
faster growth rate than mean-field dynamos. Therefore,
even for the linear kinematic dynamo that is examined here,
the evolution of large scale fields for Rm ≫ 1 cannot be
modeled by transport coefficients alone, but the introduc-
tion of nonhomogeneous terms in the mean-field dynamo
equation are required. Such terms originating from a
turbulent SSD could be modeled as noise. This possibility
however requires further investigations.
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