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Large-scale instabilities of helical flows
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Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number
K are investigated using three-dimensional Floquet numerical computations. In the Floquet
formalism the unstable field is expanded in modes of different spacial periodicity. This
allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study
modes of wave number q of arbitrarily large-scale separation q � K . Different flows are
examined including flows that exhibit small-scale turbulence. The growth rate σ of the most
unstable mode is measured as a function of the scale separation q/K � 1 and the Reynolds
number Re. It is shown that the growth rate follows the scaling σ ∝ q if an AKA effect
[Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987)] is present or a negative
eddy viscosity scaling σ ∝ q2 in its absence. This holds both for the Re � 1 regime where
previously derived asymptotic results are verified but also for Re = O(1) that is beyond
their range of validity. Furthermore, for values of Re above a critical value Rec

S beyond
which small-scale instabilities are present, the growth rate becomes independent of q and
the energy of the perturbation at large scales decreases with scale separation. The nonlinear
behavior of these large-scale instabilities is also examined in the nonlinear regime where
the largest scales of the system are found to be the most dominant energetically. These
results are interpreted by low-order models.
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I. INTRODUCTION

Hydrodynamic instabilities are responsible for the frequent encounter of turbulence in nature.
Although instabilities are connected to the onset of turbulence and the generation of small scales,
in many situation, instabilities are also responsible for the formation of large-scale structures. In
such situations, flows of a given coherence length scale are unstable to larger scale perturbations
transferring energy to these scales. A classical example of a large-scale instability is the α-effect
[1,2] in magneto-hydrodynamic (MHD) flows to which the origin of large-scale planetary and solar
magnetic field is attributed. In α-dynamo theory, small-scale helical flows self-organize to generate
magnetic fields at the largest scale of the system.

While large-scale instabilities have been extensively studied for the dynamo problem, limited
attention has been drawn to large-scale instabilities of the pure hydrodynamic case. Hence, most
direct numeric simulations (DNSs) and turbulence experiments are designed so that the energy
injection scale � is close to the domain size L. This allows us to focus on the forward energy cascade
and the formation of the Kolmogorov spectrum [3]. Scales larger that the forcing scale, where no
energy cascade is present, are expected [4,5] to reach a thermal equilibrium with a k2 spectrum [6–9].
Recent studies, using (hyperviscous) simulations of turbulent flows randomly forced at intermediate
scales [10], have shown that the energy spectrum at large scales deviates from the thermal equilibrium
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FIG. 1. Sketch of the three-mode model. U represents the small-scale driving flow of wave number K (full
arrow), vq is the large-scale perturbation of wave vector q (dashed arrow), and vQ is the small-scale perturbation
of wave vector Q = K ± q (doted arrow).

prediction and forms a strong peak at the largest scale of the system. A possible explanation for this
intriguing result is that a large-scale instability is present.

In pure hydrodynamic flows, the existence of large-scale instabilities has been known for some
time. An asymptotic expansion based on scale separation was used in Refs. [11,12] to demonstrate the
existence of a mechanism similar to the MHD α-dynamo called the anisotropic-kinetic-alpha (AKA)
instability. The AKA instability is present in a certain class of non-parity-invariant, time-dependent,
and anisotropic flows. It appears for arbitrary small values of the Reynolds number and leads to
a growth rate σ proportional to the wave number q of the unstable mode: σ ∝ q. However, the
necessary conditions for the presence of the AKA instability are stricter than those of the α-dynamo.
Thus, most archetypal flows studied in the literature do not satisfy the AKA conditions for instability.
This, however, does not imply that the large scales are stable since other mechanisms may be present.

In the absence of an AKA effect higher-order terms in the large-scale expansion may lead to
a so-called eddy viscosity effect [13]. This eddy viscosity can be negative and thus produce a
large-scale instability [14,15]. The presence of a negative eddy viscosity instability appears only
above a critical value of the Reynolds number. It results in a weaker growth rate than the AKA
effect, proportional to the square of the wave number of the unstable mode σ ∝ q2. Furthermore, the
calculations of the eddy viscosity coefficient can be much more difficult than those of the AKA α

coefficient. This difficulty originates at the order at which the Reynolds number enters the expansion
as we explain below.

In the present paper, the Reynolds number is defined as Re ≡ Urms�/ν where Urms is the root
mean square value of the velocity and ν is the viscosity. Note that we have chosen to define the
Reynolds number based on the energy injection scale �. An alternative choice would be to use the
domain length scale L, which would lead to the large-scale Reynolds number that we will denote
as ReL = UL/ν = (L/�)Re. For the AKA effect, the large-scale Reynolds number ReL is large,
while the Reynolds number Re, based on the forcing scale �, is small. This allows to explicitly solve
for the small-scale behavior and obtain analytic results. This is not possible for the eddy viscosity
calculation where there are two regimes to consider. Either the Reynolds number is small and the
eddy viscosity provides only a small correction to the regular viscosity, or the Reynolds numbers is
large and the inversion of an advection operator is needed. This last case can be obtained analytically
only for very simple one-dimensional shear flows [14,15].

To illustrate the basic mechanisms involved in such multiscale interactions, we depict in Fig. 1
a toy model demonstrating the main ideas behind these instabilities. This toy model considers a
driving flow, U at wave number |K| ∼ 1/�, that couples to a small amplitude large-scale flow, vq at
wave number |q| ∼ 1/� with |q| � |K|. The advection of vq by U and vice versa will then generate
a secondary flow v Q at wave vectors Q = K ± q. This small-scale perturbation in turn couples to the
driving flow and feeds back the large-scale flow. If this feedback is constructive enough to overcome
viscous dissipation, it will amplify the large-scale flow, and this process will lead to an exponential
increase of vq and v Q . This toy model has most of the ingredients required for the instabilities to
occur.
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For the full flow, in order to study independently the large-scale instabilities, they must be
isolated from other small-scale competing instabilities that might coexist. This can be achieved
using Floquet theory [16] (also referred as Bloch theory in quantum mechanics [17]). Indeed,
Floquet theory decomposes the unstable flow to modes of different spacial periodicity that evolve
independently. This enables us to study precisely large and small spatial periodicity separately. In
addition the formalism of Floquet theory allows the study of arbitrary large-scale separation between
the smallest scale of the driving flow and the largest scale of the unstable mode without including the
intermediate scales. This minimizes the computational cost and permits us to have a systematic study
for a wide range of both scale separation and Reynolds numbers without using any approximations.

In what follows, we use direct numerical simulations (DNSs) in the Floquet framework to study
large-scale instabilities for different flows. Our aim is to go beyond the range of validity of the
asymptotic results (obtained rigorously only at the Re � 1 limit) and measure the values of the α

coefficient and eddy viscosity for arbitrary Re when this description is applicable. In addition we
extend our investigation to turbulent flows that respect a given periodicity, which in general cannot
be treated analytically. This allows us to quantify the effect of small-scale turbulence in the large
scales. Finally, we compare the results of the Floquet DNS to those of the full Navier-Stokes DNS
to test nonlinear effects on the instabilities.

This paper is structured as follows. Section II describes in detail the setup of the problem we
are studying and the methods used. Section III gives the results for the linear instability of four
different flows, as well us the results from the nonlinear evolution of the instability. Our conclusions
are drawn in Sec. IV.

II. METHODS

A. Navier-Stokes

Our starting point is the incompressible Navier-Stokes equation in the periodic [0,2πL]3 cube:

∂t V = V × ∇ × V − ∇P + ν�V + F, (1)

with ∇ · V = 0 and where V , F, P , and ν denote the velocity field, the forcing field, the generalized
pressure field, and the viscosity coefficient, respectively. The geometry imposes that all fields be
2πL-periodic. We further assume that the forcing has a shorter spatial period 2π� with L/� an
arbitrary large integer. We denote the wave vector of this periodic forcing as K, with K = |K| = 1/�

for the flows examined. If the initial conditions of V satisfy the same periodicity as F, then
this periodicity will be preserved by the solutions of the Navier-Stokes and corresponds to the
preservation of the discrete symmetries x → x + 2π�, y → y + 2π�, and z → z + 2π�. However,
these solutions can be unstable to arbitrary small perturbations that break this symmetry and grow
exponentially. To investigate the stability of the periodic solutions, we decompose the velocity and
pressure field in a driving flow and a perturbation component:

V = U + v, P = PU + Pv, (2)

where U denotes the driving flow that has the same periodicity as the forcing 2π� and v is the velocity
perturbation. The linear stability analysis amounts to determining the evolution of small-amplitude
perturbations so that only the first order terms in v are kept. The evolution equation of the driving
flow is thus

∂t U = U × ∇ × U − ∇PU + ν�U + F. (3)

The remaining terms give the linearized Navier-Stokes equation for the perturbation:

∂tv = U × ∇ × v+v × ∇ × U − ∇pv + ν�v, (4)

The two pressure terms enforce the incompressibility conditions ∇ · U = 0 and ∇ · v = 0. The U
flow is not necessarily a laminar flow (but respects 2π� periodicity). In general, the linear perturbation
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v does not only consist of modes that break the periodicity of the forcing. Linear unstable modes
respecting the periodicity may also exist: they correspond to small-scale instabilities. We show how
these modes can be distinguished from periodicity-breaking large-scale modes in the following
section devoted to Floquet analysis.

B. Floquet analysis

Studying large-scale flow perturbations with a code that solves the full Navier-Stokes equation
requires considerable computational power as resolution of all scales from domain size L to the
smallest viscous scales �ν � � must be achieved. This is particularly difficult in our case where scale
separation � � L is required. In order to overcome this limitation, we adopt the Floquet framework
[16]. In Floquet theory, the velocity perturbation can be decomposed into modes that are expressed
as the product of a complex harmonic wave, eiq·r, multiplied by a periodic vector field ṽ(r,t) with
the same periodicity 2π� as that of the driving flow:

v(r,t) = ṽ(r,t)eıq·r + c.c., (5)

and similar for the pressure,

pv(r,t) = p̃(r,t)eıq·r + c.c., (6)

where c.c. denotes the complex conjugate of the previous term.
Perturbations whose values of q are such that at least one component is not an integer multiple

of 1/� break the periodicity of the driving flow. The perturbation field v then involves all Fourier
wave vectors of the type Q = q + k, where k is a wave vector corresponding to the 2π�-periodic
space dependence of ṽ. We restrict the study to values of q = |q| satisfying 0 < q � K . For finite
domain sizes q is a discrete vector with q � 1/L, while for infinite domain sizes q can take any
arbitrarily small value. In the limit q/K � 1 the perturbation involves scales much larger than �.
Therefore, scale separation is achieved without solving intermediate scales as would be required
if the full Navier-Stokes equations were used. Furthermore, this framework has the advantage of
isolating perturbations that break the forcing periodicity (q� /∈ Z3), from other small-scale unstable
modes with the same periodicity (q� ∈ Z3) that might also exist in the system.

A drawback of the Floquet decomposition is that some operators have somewhat more complicated
expressions than in the simple periodic case. For instance, taking a derivative requires to take into
account the variations of both the harmonic and the amplitude. Separating the amplitude in its real
and imaginary parts ṽ(r,t) = ṽr + ıṽi , we obtain

∂xv = [∂x ṽ
r − qx ṽ

i + ı(qx ṽ
r + ∂x ṽ

i)]eıq·r + c.c., (7)

where ∂x denotes the x derivative and qx denotes the x component of the q wave vector.
Using Eqs. (4) and (7), the linearized Navier-Stokes equation can be written as a set of 3 + 1

complex scalar equations:

∂t ṽ = (∇ × U) × ṽ + (ıq × ṽ + ∇ × ṽ) × U − (ıq + ∇)p̃ + ν(−q2 + �)ṽ, (8)
with

ıq · ṽ + ∇ · ṽ = 0. (9)

We use standard pseudospectral methods to solve this system of equations in the 2π�-periodic
cube. The complex velocity field ṽ is decomposed in Fourier space where derivatives are reduced
to a multiplication by ık, where k is the Fourier wave vector. Multiplicative term are computed
in real space. These methods have been implemented in the Floquet Linear Analysis for Spectral
Hydrodynamics (FLASHy) code, and details are given in the Appendix.

In order to find the growth rate of the most unstable mode, we integrate Eqs. (8) and (9) for a time
long enough for a clear exponential behavior to be observed. The growth rate of this most unstable
mode can then be measured by linear fitting. Note that this process leads only to the measurement
of the fastest growing mode.
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C. Three-mode model

Although the Floquet framework is very convenient to solve equations numerically, it does not
easily yield analytic results. Rigorous results must be based on asymptotic expansions and can be
derived only in the limit of large Reynolds number [18] or small Reynolds number [14] or for simple
shear layers [15]. To obtain a basic understanding of the processes involved, we will use the idea
represented in the toy model of Fig. 1. This model also has the major advantage of using a formalism
that can easily be related to the physical aspect of the problem.

In our derivation, we only consider the evolution of the two most intense modes of the perturbation
and of the driving flow. The velocity perturbation is thus decomposed as a series of velocity fields
of different modes:

v(r,t) = vq(r,t) + v Q(r,t) + v>(r,t), (10)

vq(r,t) = ṽ(q,t)eıqr + c.c., (11)

v Q(r,t) =
∑

||k||=1

ṽ(q,k,t)eı(q·r+k·r) + c.c., (12)

v>(r,t) =
∑

||k||>1

ṽ(q,k,t)eı(q·r+k·r) + c.c., (13)

where q denotes the wave vector of the large-scale modes and Q denotes the modes directly coupled
to q via the driving flow, since K = 1. At wave vector q, the linearized Navier-Stokes equation can
be rewritten as

∂tvq = U × ∇ × v Q + v Q × ∇ × U − ∇pq + ν�vq . (14)

Assuming that the coupling with the truncated velocity, v>, is negligible with respect to the coupling
with the large-scale velocity, vq , the linearized equation at Q reads

∂tv Q = U × ∇ × vq + vq × ∇ × U − ∇pQ + ν�v Q, (15)

where pq and pQ denote the pressure enforcing the incompressible conditions: ∇ · vq = 0 and
∇ · v Q = 0, respectively.

As of now, the derivation is restricted to stationary positive helical driving flows, satisfying
UH(r) = K−1∇ × UH(r). The problem can then be solved by making use of the vorticity fields:

ωq = ∇ × vq and ω Q = ∇ × v Q, (16)

and the adiabatic approximation, ∂tv Q � ν�v Q . The system of equations of the three-mode model
is thus

ν�ω Q = −∇ × [UH × (ωq − Kvq)], (17)

∂tωq = ∇ × [UH × (ω Q − Kv Q)] + ν�ωq . (18)

The greatest eigenvalue of the system, σ , gives the growth rate of the perturbation. The growth rate
can be derived analytically for an ABC large-scale flow:

UABC
x = C sin(Kz) + B cos(Ky), (19)

UABC
y = A sin(Kx) + C cos(Kz), (20)

UABC
z = B sin(Ky) + A cos(Kx). (21)
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FIG. 2. Growth rate of the perturbation plotted as a function of the Floquet wave number in log-log scale
for a Fr87 flow [Eq. (24)]. The different markers represent data for different Reynolds numbers. The solid lines
placed above the different sets of markers represent the theoretical prediction.

For A = 1 : B = 1 : C = λ flows (λ − ABC), one finds

σ = βq2 − νq2 with β = bRe2ν, (22)

b = 1 − λ2

4 + 2λ2
and Re = U

Kν
, (23)

where Re denotes the small-scale Reynolds number defined using the driving flow. The fastest
growing mode is found to be fully helical.

This simple model indicates that some driving flows, not satisfying the hypotheses of the AKA
effect, described in Ref. [11], can generate a negative eddy viscosity instability satisfying σ ∝ q2.
The largest growth rate is obtained for λ = 0 while no q2 instability is predicted for λ = 1. For
λ �= 1 the flow becomes unstable when the β term can overcome the viscosity β > ν. This happens
when Re is above a critical value: Rec = b−1/2.

III. RESULTS

A. AKA

We begin by examining a flow that satisfies the conditions for an AKA instability. Such a flow
was proposed in Ref. [11] (hereafter Fr87) and is given by

UFr87
x = U0 cos(Ky + νK2t),

UFr87
y = U0 sin(Kx − νK2t), (24)

UFr87
z = UFr87

x + UFr87
y .

The growth rate of large-scale unstable modes can be calculated in the small Reynolds number limit
and is given by

σ = αq − νq2, (25)

with α = aU0 and a = 1
2 . The fastest growing mode has negative helicity and q along the z direction.

Setting q along the z direction, we integrated Eq. (9) numerically and measured the growth rate
σ . Figure 2 displays the growth rate of the most unstable mode as a function of the wave number
amplitude q = |q| for three different values of Re measured by the Floquet code and compared to
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FIG. 3. The observable related to the α-coefficient [〈σ/q〉/U0 using Eq. (25)] plotted as a function of the
Reynolds number in log-log scale for an instability generated by a Fr87 flow. The solid line represents the
prediction, and the crosses the numeric results collected with the FLASHy code. In the inset, evolution of
the growth rate of the perturbation represented as a function of the Floquet wave number. The results are plotted
in log-log scale at various Reynolds numbers for a Fr87 flow [Eq. (24)]. The solid line represents the theoretical
scaling law.

the theoretical prediction. The agreement is good for small values of q and for small values of Re
where the asymptotic limit is valid. For q small enough, the flow is unstable and satisfies σ ∝ q.
The inset of Fig. 3 shows in log-log scale the growth rate of the perturbation as a function of q

for different Reynolds numbers. The solid line in the graph indicates the σ ∝ q scaling, which is
satisfied for all Re. In Fig. 3 we compare the theoretical and numerically calculated prefactor a of
the α coefficient. This coefficient increases linearly with Re and is seen to be in good agreement
with the theoretical prediction up to Re � 10. For larger values of Re, a deviates from the linear
prediction and saturates.

A positive growth rate for a small q mode does not guarantee the dominance of large scales. We
should also consider what fraction of the perturbation energy is concentrated in the large scales.
Figure 4 shows the energy spectra for different Reynolds numbers. The energy spectrum for the
complex Floquet field ṽ is defined as E(k) = ∑

k− 1
2 �|k|�k+ 1

2
|ṽ|2 with E(k = 0) the energy at large

scales 1/q. While at small Reynolds numbers, the smallest wave number k = 0 dominates, as the
Reynolds number increases, more energy is concentrated in the wave number of the driving flow
k = 1.

To quantify this behavior, we plot in the inset of Fig. 5 the fraction of the energy in the zero mode
E0 = E(0) divided by the total energy of the perturbation Etot = ∑∞

k=0 E(k), as a function of the
wave number q for different values of Re. In the small q limit, this ratio reaches an asymptote that
depends on the Reynolds number. This asymptotic value is shown as a function of the Re in Fig. 5.
The small-scale energy (Etot − E0) is then shown to follow a power law 1 − E0

Etot
∝ Re2 for small

values of Re. Therefore, for the AKA instability, at small Re, the energy is concentrated in the large
scales, whereas, at large Re, the most unstable mode has a small projection in the large scales.

B. Roberts flow: λ = 0

We now investigate non-AKA-unstable flows. We consider the family of the ABC flow, for which
we expect large-scale instabilities of the form given in Eq. (23). The three-mode model predicts that
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FIG. 4. The energy spectrum of the Floquet perturbation of wave vector q = (0; 0; 0.025) represented as a
function of the Fourier wave number in semilog scale. The Floquet perturbation was generated by a Fr87 flow
[Eq. (24)]. Markers of different shapes represent data with different Reynolds numbers.

from the family of ABC flows the most unstable is the A = 1 : B = 1 : C = 0 flow that is commonly
referred to as the Roberts flow in the literature [19]. The model predicts a positive growth rate when
Re > 2. Figure 6 shows the growth rate σ as a function of q for various Reynolds numbers calculated
using the Floquet code. For small values of the Reynolds number all modes q have negative growth
rate. Above a critical value Rec � 2 unstable modes appear at small values of q in agreement with
the model predictions.

To investigate the behavior of the instability for small values of q we plot in the inset of Fig. 7
the absolute value of the growth rate as a function of q, in a logarithmic scale, for Reynolds number
ranging from 0.312 to 160. Dashed lines indicate positive growth rates, while dotted lines indicate
negative growth rates. The solid black line indicates the σ ∝ q2 scaling followed by all curves.

FIG. 5. Large-scale energy ratio represented as a function of the Reynolds number in log-log scale for a
Fr87 flow [Eq. (24)]. The solid line shows the theoretical scaling. In the inset, evolution of the large-scale
energy ratio of the perturbation represented as a function of the Floquet wave number. The results are plotted
in log-log scale at for different Reynolds numbers for a Fr87 flow.
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FIG. 6. Growth rate plotted as a function of the Floquet wave number in log-log scale for a Robert flow.
The different markers represent data with different Reynolds numbers.

Therefore, the scaling predicted by the model [Eqs. (22) and (23)] is verified. We will refer to the
instabilities that follow this scaling σ ∝ q2 as negative eddy viscosity instabilities. To further test
the model predictions we measure the proportionality coefficient for the q2 power law obtained from
the Floquet code. Figure 7 compares the b coefficient predicted by the three-mode model with the

FIG. 7. The observable related to the β-coefficient [〈σ/q2〉/ν + 1 using Eq. (22)] of the Floquet perturbation
generated by a Roberts flow is plotted as a function of the Reynolds number in semilog scale. In the inset,
evolution of the growth rate of the perturbation of a Roberts flow represented as a function of the Floquet wave
number. The data are presented in log-log scale to highlight the power law. The different markers on the graph
represent different Reynolds numbers. The full markers with dashed lines represent the value of positive growth
rates, and the empty markers with dots represent the absolute value of negative growth rates. The solid line
represents the theoretical predication.
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FIG. 8. The large-scale energy ratio represent as a function of the Reynolds number for the most unstable
Floquet mode of the Roberts flow. In inset, evolution of the large-scale energy ratio of the perturbation as a
function of the Floquet wave number plotted in log-log scale at different Re for a Roberts flow.

results of the Floquet code. The figure shows (〈σ/q2〉 + ν)/ν measured from the data for different
values of Re, while the Re2/4 prediction of the model is shown by a solid black line. The two
calculations agree on nearly two orders of magnitude. Positive growth rate for the large-scale modes
implies 〈σ/q2〉/ν + 1 > 1. The critical value of the Reynolds number, for which the instability
begins, can be obtained graphically at the intersection of the numerically obtained curve with the
〈σ/q2〉/ν + 1 = 1 line plotted with a dash-dot green line. The predictions of the model Rec = 2 and
the numerically values obtained are in excellent agreement.

Similarly to the AKA flow, the fraction of energy concentrated in the large scales (k = 1) becomes
independent of q in the small q limit. This is demonstrated in the inset of Fig. 8 where the ratio
of E0/Etot is plotted as a function of q. In Fig. 8 we show the asymptotic value of this ratio as a
function of the Reynolds number. As in the case of the AKA instability, the projection to the large
scales depends on the Reynolds number, and at large Re, it follows the power law E0

Etot
∝ Re−2.

C. Equilateral ABC flow: λ = 1

For the A = 1 : B = 1 : C = 1 flow, the three-mode model predicts that the b coefficient is zero.
Therefore, the model does not predict a negative eddy viscosity instability with σ ∝ q2. Figure 9
shows the growth rate as a function of the wave number q calculated using the Floquet code for
different values of the Reynolds number. Clearly the small q modes still become unstable, but the
dependence on Re appears different from the previously examined cases. We thus examine separately
the small Re and large Re behaviors.

1. Small values of Re

First, we examine the instability for small values of Re � 10 for which the growth rate σ tends
to zero as q → 0. The inset of Fig. 10 shows the growth rate of the instability for the equilateral
ABC flow as a function of the wave number q in logarithmic scale for different values of Re
ranging from 0.312 to 10. In this range, the growth rate behaves much like the Roberts flow and
contradicts the three-mode model. The numerically calculated growth rates show a clear negative
eddy viscosity scaling σ ∝ q2. The growth rate becomes positive above a critical value of Re. In
Fig. 10 the measured value of 〈σ/q2〉/ν + 1 is represented as a function of the Reynolds number. In
the inset, the plotted lin-log of 〈σ/q2〉+ν

Re2ν
provides a measurement of the b coefficient. This expression
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FIG. 9. Growth rate evolution of the perturbation represented as a function of the Floquet wave number for
the equilateral ABC flow. The different markers represent the evolution of the growth rate of data with different
Reynolds numbers.

becomes larger than one (signifying the instability boundary that is marked by a dash-dot line) for
Re � 3. This value Rec � 3 is slightly higher than the critical Reynolds number of the Roberts flow
Rec = 2. At very small Reynolds number, the value of b = 〈σ/q2〉+ν

Re2ν
approaches zero very quickly,

which indicates that the model prediction is recovered at Re → 0.
To investigate further the discrepancy of the Floquet results with the three-mode model. Figure 11

shows the b coefficient (measured as b = 〈σ/q2〉+ν

Re2ν
) for different λ parameter from 0 (Roberts flow)

to 1 (equilateral ABC flow). All the DNS are carried out at Re = 10. The results indicate that the
three-mode model and the results from the Floquet code agree for λ � 0.5 but deviate as λ becomes
larger. To identify where this discrepancy between the model and the DNS occurs, we modified
the FLASHy code in order to test the assumptions of the model. This is achieved by enforcing the

FIG. 10. The observable related to the β-coefficient [〈σ/q2〉/ν + 1 using Eq. (22)] of the Floquet
perturbation generated by a equilateral ABC flow, represented as a function of the Reynolds number in
log-log scale. In the inset, evolution of growth rate of the perturbation of a equilateral ABC flow represented
as a function of the Floquet wave number in log-log scale to highlight the power law. The different markers
on the graph represent different Reynolds numbers. The full markers with dashed lines represent the value of
positive growth rates, and the empty markers with dots represent the absolute value of negative growth rates.
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FIG. 11. The measured values of the b coefficient represented as a function of the λ-parameter of the flow
(ABC flow with A = 1 : B = 1 : C = λ ) for Re = 10. The dashed curves with crosses represents the numeric
data collected with the FLASHy code. The full line curve with circle represents the prediction given by the
three-mode model.

adiabatic approximation in the Floquet code and by controlling the number of modes that play a
dynamical role. The latter is performed by using a Fourier truncation of the Floquet perturbation at
a value kcut so that only modes with k < kcut are present. Figure 12 shows the dependence of the b

coefficient on the truncation mode, kcut. For kcut � 3, the growth rate reaches the asymptotic value
that is also observed in the inset of Fig. 10 for Re = 10 obtained from the “untampered” FLASHy
code. This confirms the assumption that modes in the smallest scales have little impact on the
evolution of the large-scale perturbation. However, the b coefficient strongly varies for kcut � 3. The
model predictions are recovered only when kcut = 1, which amounts to keeping only the modes used
in the model. Therefore, the hypothesis of the model to restrict the interaction of the perturbation to
its first two Fourier modes does not seem to hold for the equilateral ABC flow at moderate Reynolds

FIG. 12. The values of the b coefficient computed by the FLASHy code are represented as a function of
the truncation imposed in the code. The perturbation was generated by equilateral ABC flow at Re = 10.
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FIG. 13. Evolution of growth rate of the perturbation generated by an equilateral ABC flow at large values
of Re represented as a function of the Floquet wave number. The different markers represent data with different
Reynolds number.

number, 1 � Re � 10. The adiabatic hypothesis does not appear to affect the results. Therefore, the
discrepancy between the three-mode model and the numeric results is due to the coupling of the
truncated velocity v> that was neglected in the model.

2. Large values of Re

We now turn our focus to large values of the Reynolds number that display a finite growth rate σ

at q → 0; see Fig. 9. Figure 13 shows the growth rate σ in a lin-log scale for four different values of
the Reynolds number. Unlike the small values of Re examined before here it is clearly demonstrated
that above a critical value of Re the growth rate σ reaches an asymptotic value independent of q.
At first, this finite growth rate seems to violate the momentum conservation. Indeed, momentum
conservation enforces modes with q = 0, corresponding to uniform flows, not to grow.

The resolution of this conundrum can be obtained by looking at the projection of the unstable
modes to the large scales. In Fig. 14 we plot the ratio E0/Etot as a function of q for the same values of
Re as used in Fig. 13. Unlike the small Re cases examined previously, for large Re, this energy ratio
decays to zero at small values of q and appears to follow the power law E0/Etot ∝ q4. Therefore, at
q = 0, the energy at large scales E0 is zero and the momentum conservation is not violated in the
q = 0 limit.

3. Small- and large-scale instabilities

The results of the previous sections indicate that there are two distinct behaviors: the first one
for which limq→0 σ = 0 and limq→0 E0/Etot > 0 when Re is small, and the second one for which
limq→0 σ > 0 and limq→0 E0/Etot = 0 when Re is large. We argue that there is a second critical
Reynolds number Rec

S such that flows for which Rec < Re < Rec
S show the first behavior, while

flows with Rec
S < Re show the second behavior. This second critical value is related to the onset of

small-scale instabilities.
To demonstrate this claim we are going to use a simple model. We consider the evolution of two

modes, one at large scales vq and one at small scales v
Q

. These modes are coupled together by an
external field U . In the absence of this coupling, the large-scale mode vq decays while the evolution
of the small-scale mode v

Q
depends on the value of the Reynolds number. The simplest model

satisfying these constraints, dimensionally correct and leading to an AKA type σ ∝ q instability or
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FIG. 14. Evolution of the large-scale energy ratio of the perturbation generated by an equilateral ABC flow
at large values of Re represented as a function of the Floquet wave number. The different markers represent
data with different Reynolds number.

a negative eddy viscosity instability σ ∝ q2, is

d

dt
vq = −νq2vq +UqnQ1−nv

Q
, (26)

d

dt
vQ = UQvq +σ

Q
v

Q
. (27)

The index n takes the values n = 1 if an AKA instability is considered and n = 2 if an instability
of negative eddy viscosity is considered. Note that for q = 0 the growth of vq is zero, as required
by momentum conservation. σ

Q
= sUQ − νQ2 gives the small-scale instability growth rate that is

positive if Re = U/(νQ) > 1/s = Rec
S .

The simplicity of the model allows for an analytic calculation of the growth rate
and the eigenmodes. Despite its simplicity, it can reproduce most of the results obtained
here in the q � Q limit. The general expression for the growth rate is given by σ =
1
2 [(σ

Q
− νq2 ±

√
(σ

Q
+ νq2)2 + 4Q2−nqnU 2 ] and eigenmode satisfies vq/vQ

= UqnQ1−n/(σ +
νq2).

First, we focus on large values of ν such that σ
Q

= −νQ2 < 0. For n = 1, the growth rate σ and
the energy ratio E0/Etot = v2

q/(v2
q + v2

Q
) are given to the first order in q

σ � U 2q

νQ
and

E0

Etot
� 1

1 + Re2 . (28)

In the same limit for n = 2 we obtain

σ � ν(Re2 − 1)q2 and
E0

Etot
� 1

1 + Re2 . (29)

The critical Reynolds number for the large-scale instability is given by Rec = 1. Both of these results
in Eqs. (28) and (29) are in agreement with the results demonstrated in Figs. 3, 5, 7, and 8.

The behavior changes when a small-scale instability exists σ
Q

> 0. This occurs when UQ > sνQ2

at the critical Reynolds number: Rec
S = 1/s. For large Re  Rec

S we thus expect σ
Q

� sUQ > 0.
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In this case for n = 1 to first order in q, we have

σ � σ
Q

and
E0

Etot
� q2

s2Q2
, (30)

while for n = 2, we obtain

σ � σ
Q

and
E0

Etot
� q4

s2Q4
. (31)

The model is thus in agreement also with the scalings observed in Figs. 13 and 14. The transition
from one behavior to the other occurs at the onset of small-scale instability Rec

S . It is thus worth
pointing out that the results of the FLASHy codes showed that the transition from limq→0 σ = 0
modes to limq→0 σ > 0 occurs at the value of Re for which small-scale instability of the ABC flow
starts at Rec

S � 13; see Refs. [20,21]. This further verifies that the transition observed is due to the
development of small-scale instabilities.

We also note here that both the Roberts flow and the Fr87 flow given in Eq. (24) are invariant in
translations along the z direction. This implies that each qz mode evolves independently with out
coupling to other kz modes. The onset of small-scale instabilities Rec

S for q = 0 in this case then
corresponds to the onset of two-dimensional instabilities. Two-dimensional flows, however, forced
at the largest scale of the system are known to be stable at all Reynolds numbers [22]. This result
originates from the fact that two-dimensional flows conserve both energy and enstrophy, and small
scales cannot be excited without exciting large scales at the same time. This is the reason why no
Rec

S were observed in these flows.

D. Turbulent equilateral ABC flows

As discussed in the introduction the driving flow does not need to be laminar to use Floquet theory.
It is only required to obey the 2π�-periodicity. It is worth thus considering large-scale instabilities in
a turbulent ABC flow that satisfies the forcing periodicity. This amounts to the turbulent flow forced
by an ABC forcing in a periodic cube of the size of the forcing period 2π�. Due to the stationarity of
the laminar ABC flow, it can be excluded as a possible candidate for an AKA instability. However,
this is not true of a turbulent ABC flow since it evolves in time. We cannot thus a priori infer that a
turbulent ABC flow results in an AKA instability or not.

To test this possibility, we consider the linear evolution of the large-scale perturbations v driven
by an equilateral ABC flow at Re = 50, which is beyond the onset of the small-scale instability
Rec

S � 13. The turbulent equilateral ABC flow U is obtained solving the Navier-Stokes equations
(3) in the domain (2π�)3 driven by the forcing function FABC = UABC . The code is executed until
the flow reaches saturation. The evolution of the large scale perturbations is then examined solving
Eq. (9) with the FLASHy code coupled to the Navier-Stokes equations (3).

The kinetic energy EU of the turbulent equilateral ABC flow U is shown in Fig. 15. The energy
EU strongly fluctuates around a mean value. The evolution of the energy Etot of the perturbations v
for different values of q is shown in the inset of Fig. 16. Etot shows an exponential increase, from
which the growth rate can be measured. The growth rate σ as a function of the wave number q

is shown in Fig. 16, and the ratio E0/Etot is shown in Fig. 17. The growth rate of the large-scale
instabilities appears to reach an finite value in the limit q → 0 just like laminar ABC flows above
the small-scale critical Reynolds Rec

S . However, the ratio E0/Etot does not scale like q4 as laminar
equilateral ABC flows but like q2. This indicates that the turbulent equilateral ABC flow has a
stronger effect on the large scales than its laminar version. This can have possible implications for
the saturated stage of the instability that we examine next.
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FIG. 15. Temporal evolution of the energy of the turbulent equilateral ABC driving flow at Re = 122.

E. Nonlinear calculations and bifurcation diagram

We further pursue our investigation of large-scale instabilities by examining the nonlinear behavior
of the flow close to the instability onset. We restrict ourselves to the case of the equilateral ABC flow
whose nonlinear behavior has been extensively studied in the absence, however, of scale separation
[23]. The linear stability of the ABC flow in the minimum domain size has been studied in Ref. [20]
and more recently in Ref. [24]. These studies have shown that the ABC flow destabilizes at Rec

S � 13.
To investigate the nonlinear behavior of the flow in the presence of scale separation, we perform

a series of DNSs of the forced Navier-Stokes equation [Eq. (1)] in triple periodic cubic boxes of size
2πL using the GHOST code [25,26]. The forcing maintaining the flow is FABC =

√
2√
3
ν|K|2UABC

so that the laminar solution of the flow is the ABC flow [23] normalized to have unit energy. Four

FIG. 16. The growth rate of the perturbation generated by the turbulent equilateral ABC driving flow is
represented as a function of the Floquet wave number. In the inset, the exponential growth of the energy of the
large-scale perturbations represented as a function of time for various q.
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FIG. 17. The large-scale energy ratio is represented as a function of the Floquet wave number for a
perturbation forced by a turbulent equilateral ABC flow. The dashed line with the crosses represents the
numeric results and the solid line the scaling law.

different boxes sizes are considered: KL = 1, 5, 10, and 20. For each box size and for each value of
Re, the flow is initialized with random initial conditions and evolves until a steady state is reached.

Figure 18 shows the saturation level of the total energy EV at steady state as a function of Re
for the four different values of KL. At low Reynolds number, the laminar solution V = UABC is the
only attractor, and so the energy is EV = 1. At the onset of the instability the total energy decreases.
A striking difference appears between the KL = 1 case and other three cases. For the KL = 1 case
the first instability appears at Rec

S � 13 in agreement with the previous work [20,24]. By definition,
only small-scale instabilities are present in the KL = 1 case (i.e., instabilities that do not break the
forcing periodicity). For the other three cases, which allow the presence of modes of larger scale

FIG. 18. Bifurcation: the total energy of the flow is represented as a function of the Reynolds number
for different scale separation K ∈ {1; 5; 10; 20}. In the inset, zoom of the graph of the total energy near the
large-scale bifurcation for Re ∈ [2; 5].
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FIG. 19. The energy spectra of the flow in the large-scale instability bifurcation plotted for different scale
separations K ∈ {1; 5; 10; 20}.

than the forcing scale, the flow becomes unstable at a much smaller value: Rec � 3. This value of
Rec is in agreement with the results obtained in Sec. III C for large-scale instability by a negative
eddy viscosity mechanism. The energy curves for the forcing modes KL � 5 all collapse on the
same curve. This indicates that not only the growth rate but also the saturation mechanism for these
three simulations are similar.

Further insight on the saturation mechanism can be obtained by looking at the energy spectra.
Figure 19 shows the energy spectrum of the velocity field at the steady state of the simulations.
Two types of spectra are plotted. In Fig. 19, spectra plotted using lines and denoted as k-bin display
energy spectrum collected in bins where modes k satisfy n1 − 1/2 < |k|L � n1 + 1/2, with n1 a
positive integer. E(k) then represents the energy in the bin n1 = k. In Fig. 19 spectra plotted using
red dots and denoted by k2-bin display the energy spectrum collected in bins where modes k satisfy
|k|2L2 = n2, with n2 a positive integer. Since kL is a vector with integer components mx , my , and mz,
its norm k2L2 = m2

x + m2
y + m2

z is also a positive integer. E(k) then represents the energy in the bin
n2 = k2L2. This type of spectrum provides more precise information about the energy distribution
among modes. In our case, they help separate K modes from K ± 1/L modes and highlight the
three-mode interaction. The k = K ± 1/L modes as well as the largest scale mode kL = 1 that
were used in the three-mode model are shown by blue circles in the spectra. The drawback of k2-bin
spectra is their memory consumption. They have a number of bins equal to the square of the number
of bins of standard k-bin spectra. However, since spectra are not outputted at every time step, this
inconvenience is limited.

The plots of the spectra show that the most energetic modes are the modes close to the forcing
scale and the largest scale mode kL = 1. This is true even for the largest scale separation examined
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KL = 20. We note that the largest scale mode is not the most unstable one as seen in all the cases
examined (see Figs. 2, 6, and 9). Despite this fact, it appears that the kL = 1 is the dominant
mode that controls saturation. The exact saturation mechanism, however, is beyond the scope of this
work.

IV. CONCLUSION

In this work, using the Floquet framework as well as simplified models, we examined in detail
the large-scale hydrodynamic instabilities for a variety of flows. The Floquet framework allowed us
to distinguish small- from large-scale instabilities in a rigorous manner and study the evolution of
the latter independently for a wide parameter range. The results depend on the type of flow under
study and the value of the Reynolds number.

More precisely it was shown that for the Fr87 flow [see Eq. (24)] and for small values of
Re, the instability growth rate scales like σ ∝ q Rec , with most of the energy in the large scales
1 − E0/Etot ∝ Re2. It is present for any arbitrarily small value of the Reynolds number provided
that scale separation is large enough. The linear scaling of the growth rate with q persisted for values
of Re beyond the asymptotic regime with the prefactor becoming independent of Re at sufficiently
large Re.

Flows without an AKA instability, like the ABC and Roberts flow, show a negative eddy viscosity
scaling. The instability appears only above a critical value of the Reynolds number Rec that was
found to be Rec � 2 for the Roberts flow and Rec � 3 for the equilateral ABC flow. The growth
rate follows the scaling σ ∝ ν(bRe2 − 1)q2. The value of b can be calculated based on a three-mode
model for the Roberts flow and was found to be b = 1/4. The three-mode model however failed to
predict the b coefficient of the equilateral ABC flow because more modes were contributing to the
instability.

For the equilateral ABC flow the negative eddy viscosity scaling σ ∝ q2 was shown to stop at a
second critical Reynolds number Rec

S , where the flow becomes unstable to small-scale perturbations.
For values of Re larger than Rec

S the growth rate remains finite and independent of q (σ ∝ q0) at
the q → 0 limit. On the contrary, the fraction of energy at the largest scale becomes dependent on
q decreasing as E0/Etot ∝ q4 as q → 0. This behavior is well described by a two-mode model that
is explained in Sec. III C 3.

The scaling of the growth rate σ ∝ q0 was also observed for the turbulent ABC flow that was
also examined in this work. However, the projection on the large scales of the unstable mode was
stronger than the laminar flow following the scaling E0/Etot ∝ q2, implying that the turbulent flow
is more effective at exciting large scales. We note that a turbulent or chaotic flow is by definition
small-scale unstable with a growth rate of the unstable modes proportional to the Lyaponov exponent
of phase-space trajectories. For this reason, any flow with Re that is large enough for the flow to
be turbulent cannot display a σ ∝ q or σ ∝ q2 scaling. We further note that the observed scaling
cannot be expressed in terms of a turbulent α effect or a turbulent viscosity. This can have important
implications on subgrid models commonly used in numerical codes. These models mimic the effect
of unresolved turbulent scales on large eddies and typically have only a damping effect. Our work
indicates that small scales are also responsible for the excitation of large scales, an effect that needs
to be taken in to account.

Finally our study was carried out further to the nonlinear regime where the saturation of
the large-scale instabilities was examined for four different box sizes. The presence of scale
separation alters the bifurcation diagram, with the large-scale modes playing a dominant role in
the saturation mechanism. The saturation amplitude of the energy of the large-scale instability
appears to be independent of the scale separation and of larger amplitude than in the absence of
scale separation. This indicates that studying small-scale turbulence isolated from any large-scale
effects could also be misleading. The persistence of this behavior at larger values of Re remains to be
examined.
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APPENDIX: FLASHY

A pseudospectral method is adopted to compute numerically Eqs. (8) and (9). The linear term is
computed in Fourier space. All the terms involving the driving flow are computed in physical space
made incompressible by solving in periodic space the Poisson problem, using

�(2) = −�−1(∇×)2�(1). (A1)

The main steps of the algorithm are given below. In this algorithm, F and F−1 denote direct and
inverse fast Fourier transforms. AU X (1) and AU X (2) are two auxiliary vector fields.

Floquet Linear Analysis of Spectral Hydrodynamic FLASHy

Require: ν,T ,dt,q,v(0),U
1: � = ∇ ×U
2: n = 0
3: V (n) = F(v(n))
4: while t < T do
5: AU X (1) = U × F−1(ı(k + q) × V (n)) − � × F−1(V (n))
6: AU X (2) = −||k + q||−2(k + q) × (k + q) × F[AU X (1)]
7: V (n+1) = V (n) + dt(AU X (2) − ν||k + q||2vV (n))
8: n = n + 1,t = t + dt

9: end while

To carry out the computations with greater precision, a fourth order Runge-Kutta method is used
instead of the simple Euler method at line 7 of the algorithm. The Fourier parallel expansions are
also truncated at 1/3 to avoid aliasing error. The code is parallelized with MPI and uses many routine
from the GHOST code [25,26]. Most of the DNSs are done at a 323 and 643 resolution. Convergence
tests show that this resolution is sufficient for the range of Reynolds number studied.
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