Fonctions usuelles Exercices

Lycée Carnot, E1A

Exponentielle et logarithme

1. Soit x un réel strictement positif. Simplifier autant que possible les expressions suivantes :

- $\begin{array}{lll} \bullet & \ln(8) \\ \bullet & \ln(\sqrt{2}) \\ \bullet & \ln(6) \ln(3) \\ \bullet & \ln(2e^2) \\ \bullet & e^{2\ln(x)} \\ \bullet & \ln(2x) \ln(x) \\ \end{array} \begin{array}{lll} \bullet & \ln\left(\frac{1}{x^2}\right) & \bullet & \frac{\ln(e^5)}{\ln(e^3)} \\ \bullet & \ln(\sqrt{3} + \sqrt{2}) + \ln(\sqrt{3} \sqrt{2}) & \bullet & e^{-x}\sqrt{e^{2x}} \\ \bullet & 2\ln(\sqrt{3} + \sqrt{2}) \ln(5 + 2\sqrt{6}) & \bullet & \frac{e^{x^2 2x}(e^x)^2}{(e^{2x})^3} \\ \bullet & \ln(e^4) \ln(e^2) + \ln(\sqrt{e}) \\ \bullet & \ln(e^2\sqrt{e}) + \ln(\frac{1}{e}) & \bullet & \frac{e^{x^2 + 2x}}{e^{(x+1)^2}} \end{array}$
- **2.** Soient λ un réel et E_{λ} l'ensemble des fonctions f dérivables sur \mathbb{R} telles que : $\forall x \in \mathbb{R}, \ f'(x) = \lambda f(x)$.
 - (a) Pour tout $f \in E_{\lambda}$, montrer que $x \mapsto e^{-\lambda x} f(x)$ est constante.
 - (b) Expliciter l'ensemble E_{λ} .
- **3.** On a vu dans le cours que : $\forall x \in \mathbb{R}_+^*$, $\ln(x) \leqslant x 1$.
 - (a) Rappeler brièvement la démonstration de cette inégalité.
- (b) Soit $x \in \mathbb{R}_+^*$. Montrer que $\ln(\sqrt{x}) = \frac{1}{2}\ln(x)$, puis en déduire que : $\ln(x) < 2\sqrt{x}$.
- (c) Justifier finalement que la fonction $x \mapsto \frac{x}{\ln(x)}$ n'est pas majorée sur \mathbb{R}_+^* .

Puissances réelles

- 4. Simplifier $4^{\frac{\ln(3)}{\ln(2)}}$.
- 5. Soit q>0 un réel et soit $f:\mathbb{R}\to\mathbb{R}_+^*$ définie par $x\mapsto q^x.$
 - (a) Déterminer une fonction $g: \mathbb{R} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}, \ q^x = e^{g(x)}$.
 - (b) En déduire que f est monotone et préciser son sens de variation selon la valeur de q.
 - (c) Montrer que f est majorée si et seulement si q=1.
- **6.** Pour chacune des fonctions ci-dessous, déterminer son domaine de définition, calculer sa dérivée et en déduire ses variations :
- (a) $x \mapsto 2^{-x}$ (c) $x \mapsto x^{\frac{1}{x}}$ (b) $x \mapsto x^{x}$ (d) $x \mapsto \left(1 + \frac{1}{x}\right)^{x}$

Valeur absolue

- 7. Déterminer le domaine de définition puis la dérivée de la fonction $x \mapsto \ln(|x|)$.
- **8.** Soient x et y deux réels.
 - (a) Montrer que : $|x| \le |y| + |x y|$ et $|y| \le |x| + |x y|$.
 - (b) À l'aide d'un encadrement, en déduire que : $||x| |y|| \le |x y|$.

- **9.** Soient f, g deux fonctions définies sur \mathbb{R} .
 - (a) Montrer que f est bornée si et seulement s'il existe $K \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}, |f(x)| \leq K$.
 - (b) En déduire que si f et g sont bornées, alors f+g et $f\times g$ sont bornées.
- 10. En discutant suivant la valeur du réel x, exprimer les quantités suivantes sans valeur absolue :
 - (a) |x+1| + |x+2|, (b) $|x^2-1| - |x^2+1| + |2x^2-x+1|$,
- (c) $\frac{|2x+7|+3}{7-|3x+2|}$.
- 11. Résoudre les équations et inéquations suivantes d'inconnue x dans $\mathbb R$:
 - (a) |x+1| = 7,

(c) |x+1| + |2x+3| + |4x+5| = 7,

(b) |x+1| + |x+2| = 1,

(d) $|x^2 + x - 7| + |x| < 5$.

Partie entière

- ${f 12.}$ Soit x un réel strictement positif. Montrer que :
 - Le plus grand entier $n \in \mathbb{Z}$ tel que $\sqrt{|n|} \leqslant e^x$ est $|e^{2x}|$
 - Le plus *petit* entier $n \in \mathbb{N}$ tel que $\frac{1}{n+1} < x$ est $\left\lfloor \frac{1}{x} \right\rfloor$.
 - Le plus petit entier $n \in \mathbb{N}$ tel que $n^2 > x$ est $\lfloor \sqrt{x} \rfloor + 1$.
 - Le plus grand entier $n \in \mathbb{Z}$ tel que $\left(\frac{1}{2}\right)^n \geqslant x$ est $\left[-\frac{\ln(x)}{\ln(2)}\right|$.
- 13. Soient a et b deux réels tels que $a \leq b$.
 - (a) Pour tout $n \in \mathbb{Z}$, justifier que $n \leq b$ si et seulement si $n \leq \lfloor b \rfloor$.
 - (b) En déduire qu'il y a exactemet |b| |a| entiers dans l'intervalle |a, b|.
 - (c) Montrer de même que le nombre d'entiers dans le segment [a, b] est |b| + |-a| + 1.
- **14.** Pour tout $x \in \mathbb{R}$, on pose d(x) = x |x|.
 - (a) Montrer $d(\mathbb{R}) = [0; 1]$.
- (b) Montrer que pour tous n entier relatif et x réel, d(x+n)=d(x).
- (c) Tracer le graphe de la fonction $x \mapsto d(x)$.

Compléments techniques : études de signe et inéquations

- 15. Soient x et y deux réels positifs.
 - (a) Déterminer des réels a et b tels que $(x+y)^2-4xy=a^2$ et $2(x^2+y^2)-(x+y)^2=b^2$.
- (b) En déduire l'encadrement $\sqrt{xy} \le \frac{x+y}{2} \le \sqrt{\frac{x^2+y^2}{2}}$, puis préciser le ou les cas d'égalité.
- 16. Résoudre les inéquations suivantes d'inconnue x dans $\mathbb R$:
- (a) $5x^2 7x + 2 \le 0$,

(c) $x^2 - 5x + 4 \ge -2$,

(b) $\frac{2x^2 + 7x + 3}{5x^2 - 2x - 16} \ge 0,$

(d) $\frac{2x-3}{x^2-4} < 1$.

On exprimera l'ensemble des solution sous la forme d'une réunion d'intervalles.

- 17. Résoudre les inéquations suivantes d'inconnue x dans $\mathbb R$:
 - (a) $x + 2 > \sqrt{x + 5}$

(c) $x-2 < \sqrt{x-1}$

(b) $-x+1 > \sqrt{3x^2 - 2x - 7}$

(d) $\sqrt{x+3} < -x+4$