Polynômes réels *Exercices*

Lycée Carnot, E1A

Calculs dans l'ensemble des polynômes

- 1. Développer $(3X + 2)^3$ et $(2X 1)^4$.
- 2. Factoriser directement les polynômes suivants, sans en chercher de racines :
 - (a) $2X^2 12X + 18$,
 - (b) $8X^2 32$,
 - (c) (2X-6)(X+2)-(X+1)(X-3)+2X(3-X),
 - (d) $(2X+1)^3 + (2X+1)^2 + 2X + 1$.
- 3. Calculer de tête :
 - (a) le coefficient de degré 1 du polynôme $(X-2)^2 + 5X$,
 - (b) le coefficient de degré 2 du polynôme $(2-X)^2 + (X+1)(3-5X)$.

Degré d'un polynôme

- **4.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, $\deg(P^n) = n \deg(P)$.
- 5. Soient P et Q deux polynômes. À l'aide du degré, montrer que :
 - (a) Si PQ = 0, alors P ou Q est le polynôme nul.
 - (b) Si PQ = 1, alors P et Q sont constants.

Second degré, relations coefficients-racines

- **6.** (a) Mettre $X^2 6X + 45$ sous forme canonique.
 - (b) Soit a un réel. Mettre $X^2 2aX + 5a^2$ sous forme canonique.
 - (c) Que peut-on en déduire pour le signe de $x^2 2ax + 5a^2$ si $x \in \mathbb{R}$?
- 7. Déterminer l'ensemble des réels (x,y) tels que : $\begin{cases} x + y = 9 \\ \ln(x) + \ln(y) = \ln(14) \end{cases}$

Identification

- **8.** Soit *P* le polynôme $X^3 + 4X^2 + X 6$.
 - (a) Identifier trois réels a, b et c tels que $P = (X 1)(aX^2 + bX + c)$.
 - (b) En déduire les racines de P.
 - (c) Résoudre l'équation $e^{2x} + 4e^x + 1 6e^{-x} = 0$ (d'inconnue x dans \mathbb{R}).
- **9.** Identifier a et b réels tels que : $\forall x \in \mathbb{R} \setminus \{-1,1\}, \quad \frac{2x-1}{x^2-1} = \frac{a}{x+1} + \frac{b}{x-1}$.
- **10.** Identifier a, b et c réels tels que : $\forall x \in \mathbb{R} \setminus \{-1\}, \quad \frac{x^2}{x+1} = ax + b + \frac{c}{x+1}.$

- **11.** (a) Identifier a, b et c réels tels que : $\forall x \in \mathbb{R} \setminus \{0, -1, 1\}, \quad \frac{1}{x^3 x} = \frac{a}{x 1} + \frac{b}{x} + \frac{c}{x + 1}$.
 - (b) Pour tout $n \geqslant 2$, en déduire la valeur de $\sum_{k=2}^{n} \frac{4}{k^3 k}$ par simplifications télescopiques.
- **12.** Pour tout $n \in \mathbb{N}$, on pose $P_n = \prod_{k=1}^n (X+k)$ et on note respectivement a_n et b_n ses coefficients de degré n-1 et n-2.
 - (a) Soit $n \in \mathbb{N}$. Déterminer le degré de P_n , ses racines et ses coefficients de degrés n et 0.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $P_{n+1} = XP_n + (n+1)P_n$.
 - (c) En déduire par récurrence que, pour tout $n \in \mathbb{N}$, $a_n = \sum_{1 \le k \le n} k$ et $b_n = \sum_{1 \le k < \ell \le n} k\ell$.
 - (d) Calculer a_n et b_n pour tout $n \in \mathbb{N}$.

Division euclidienne

- 13. Effectuer la division euclidienne de $X^4 5X^3 + 6X^2 + 4X 5$ par $(X 2)^2$.
- **14.** Soient $A = 2X^4 X^3 + X 2$ et $B = X^2 2X + 4$.
 - (a) Effectuer la division euclidienne de A par B.
 - (b) En déduire une relation entre A et B.
- **15.** (a) Soit $n \in \mathbb{N}$. Écrire l'égalité de division euclidienne de $P = X^n 2$ par $X(X^2 1)$. Préciser les conditions que doit remplir le reste de cette division.
 - (b) En exprimant P(0), P(1) et P(-1) de deux façons différentes, déterminer le reste.

Racines et factorisation

- **16.** Soit $n \in \mathbb{N}$. Montrer que si $P \in \mathbb{R}_n[X]$ admet au moins n+1 racines, alors P=0.
- 17. Factoriser le polynôme $3X^2 X 2$ en trouvant une racine évidente, puis en déduire le domaine de définition de la fonction $x \mapsto \sqrt{3x^2 x 2}$.
- 18. Factoriser le polynôme $X^4 6X^2 + 7X 6$, sachant qu'il admet deux racines évidentes. En déduire le domaine de définition de la fonction $x \mapsto \ln(x^4 6x^2 + 7x 6)$.
- **19.** Soit $P = X^5 + 5X^4 + 10X^3 + 11X^2 + 7X + 2$.
 - (a) Factoriser complètement P (commencer par chercher des racines évidentes).
 - (b) Résoudre l'inéquation $P(x) \ge 0$ d'inconnue x dans \mathbb{R} .
 - (c) Résoudre l'inéquation $\ln(x)^5 + 5\ln(x)^4 + 10\ln(x)^3 + 11\ln(x)^2 + 7\ln(x) + 2 > 0$.
- **20.** Pour quelles valeurs de $m \in \mathbb{R}$ les polynômes $X^2 + 2X + m 4$ et $X^2 + X 7m + 1$ ont-ils une racine commune? Quelle est alors cette racine?
- **21.** Soit P le polynôme $225X^4 240X^3 + 94X^2 16X + 1$. On suppose qu'il existe a et b réels tels que $P = 225(X a)^2(X b)^2$ et 0 < a < b.
 - (a) En exprimant P(0) de deux façons différentes, montrer que $ab = \frac{1}{15}$.
 - (b) Montrer que P a pour dérivé P' = 450(X a)(X b)(2X a b).
 - (c) En exprimant P'(0) de deux façons différentes, montrer que $a+b=\frac{8}{15}$.
 - (d) En déduire a et b. L'hypothèse est-elle bien vérifiée?

Équations polynomiales

- **22.** Résoudre les équations polynomiales suivantes (d'inconnue x dans \mathbb{R}):
 - (a) $x^2 + x + 1 = 0$,
 - (b) $2x^3 4x^2 + 3x 1 = 0$,
 - (c) $x^4 + 3x^2 10 = 0$,
 - (d) $(2x-3)^2 = (7x+5)^2$
 - (e) $(x^2 3x + 4)^2 = (x^2 + 2x 5)^2$,
 - (f) $(17x 13)^2 + (2x + 15)^2 = (4x + 30)(17x 13)$.
- **23.** Résoudre les équations suivantes (d'inconnue x dans \mathbb{R}), en se ramenant à une équation polynomiale. On prendra garde au domaine de définition des expressions manipulées.
 - (a) $\frac{5}{3-x} = 3 \frac{x+4}{3}$

(c) $\frac{2}{x-3} = 3$

(b) $x + \frac{2}{6 - \frac{3}{x - 1}} = 1$

- (d) $\frac{5}{3x-2} = \frac{1}{x-4}$
- **24.** Résoudre les équations suivantes (d'inconnue x dans \mathbb{R}), en se ramenant à une équation polynomiale. On prendra garde au domaine de définition et au signe des expressions.
 - (a) $x = \sqrt{x} + 2$,

(d) $\sqrt{2-x} = x+4$,

(b) $x - 7 = \sqrt{x - 5}$,

(e) $\sqrt{x+1} + \sqrt{x-3} - \sqrt{3x-1} = 0$,

(c) $\frac{1}{\sqrt{x}-2} = -x$,

- (f) $x+1 = \sqrt{\frac{x}{6}+6}$.
- **25.** Pour tout réel m, résoudre l'équation $m^2x + 2m = 9x 6$ d'inconnue x dans \mathbb{R} . On pourra discuter selon la valeur du paramètre m.
- **26.** Pour tout réel m, résoudre l'équation $m x^2 + (1 m)x 1 = 0$ d'inconnue x dans \mathbb{R} . On pourra discuter selon la valeur du paramètre m.
- **27.** On cherche à résoudre l'équation $x^4 + 8x^3 + 2x^2 + 8x + 1 = 0$ d'inconnue x dans \mathbb{R} .
 - (a) Justifier qu'on peut supposer $x \neq 0$.
 - (b) Montrer que cette équation équivaut alors à $x^2 + 8x + 2 + \frac{8}{x} + \frac{1}{x^2} = 0$.
 - (c) On pose $u = x + \frac{1}{x}$. Développer u^2 en fonction de x.
 - (d) Résoudre et conclure.