15 Dérivabilité

Calcul de dérivées

15.1 Étudier l'ensemble de définition, la continuité puis la dérivabilité des fonctions suivantes. Puis exprimer la dérivée, quand elle existe.

a)
$$f: x \mapsto \frac{1}{(x+1)^3}$$

b)
$$f: x \mapsto x\sqrt{2-x}$$

c)
$$f: x \mapsto x \ln(x) - x$$

d)
$$f: x \mapsto x^{3x}$$

e)
$$f: x \mapsto \ln(3x^2 + 2x)$$

$$f) \ f: x \mapsto e^{x^3 - x}$$

g)
$$f: x \mapsto \frac{x^2 - 3x + 2}{3x + 5}$$

h)
$$f: x \mapsto (1 - 2x)e^{-2x}$$

$$i) \ f: x \mapsto \frac{x}{\ln(x) + 1}$$

$$\mathbf{j)} \ \ f: x \mapsto x^x$$

k)
$$f: x \mapsto \frac{x}{\ln(x+1)}$$

1)
$$f: x \mapsto x \lfloor x \rfloor$$

$$\mathbf{m)} \ f: x \mapsto x^{x^x}$$

n)
$$f: x \mapsto x^2 - 2|x|$$

o)
$$f: x \mapsto 3^{4x^2-1}$$

p)
$$f: x \mapsto \frac{x^3 + 2x^2 - x + 3}{2x^3 - 3x^2 + x}$$

q)
$$f: x \mapsto \sqrt{x} \ln(x) e^x$$

$$\mathbf{r)} \ \ f: x \mapsto \frac{2x\sqrt{x}}{x+1}$$

s)
$$f: x \mapsto \sqrt{3x + 5 - x^2}$$

$$t) \ f: x \mapsto x^{\ln(x)}$$

$$\mathbf{u)} \ \ f: x \mapsto \ln(1+|x|)$$

$$\mathbf{v)} \ \ f: x \mapsto \sqrt{x^2 - x^3}$$

$$\mathbf{w)} \ \ f: x \mapsto x|x|$$

$$\mathbf{x)} \ \ f: x \mapsto \frac{x}{|x|+1}$$

$$\mathbf{y}) \ \ f: x \mapsto \sqrt{x}^x$$

Tangentes

15.2 Calculer l'équation des tangentes en 0, 1, -2 et $\sqrt{3}$ (quand elles existent) des fonctions sui-

a)
$$f: x \mapsto x^2 - 3x + 1$$

b)
$$f: x \mapsto \sqrt{2x-1}$$

c)
$$f: x \mapsto x \ln(x+3)$$

d)
$$f: x \mapsto \sqrt{x^2 + 1} e^x$$

Études de fonctions

15.3 Étude complète des fonctions suivantes (ensemble de définition, limites, éventuels prolongements par continuité, variations, allure de la courbe):

a)
$$f: x \mapsto \sqrt{x+1} \ln(x+1)$$

b)
$$f: x \mapsto x + \sqrt{x^2 - 1}$$

c)
$$f: x \mapsto \ln(e^{2x} - e^x + 1)$$

d)
$$f: x \mapsto \frac{x^2 - 3x + 1}{2x^2 - 5x - 3}$$

e) $f: x \mapsto x^{1/x}$

e)
$$f: x \mapsto x^{1/2}$$

f)
$$f: x \mapsto \frac{e^{2x}}{x^2 - 1}$$

Dérivée d'une bijection réciproque

15.4 On considère la fonction $f: x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- a) Montrer que f est une bijection de $\mathbb R$ vers un intervalle à préciser.
- **b**) Dresser le tableau de variations de f^{-1} .
- c) Quel est l'unique antécédent de 0 par f ? En déduire $(f^{-1})'(0)$.
- **d**) Vérifier que : $\forall x \in \mathbb{R}$, $f'(x) = 1 f(x)^2$. En déduire une expression de $(f^{-1})'$.

15.5 On note $f(x) = xe^x$.

- a) Quel est l'ensemble de définition de f ? Étudier ses variations.
- **b)** Montrer que f réalise une bijection de \mathbb{R}_+ dans I, où I est un intervalle à préciser.
- c) On note h la bijection réciproque. Déterminer sa dérivée h'.
- **d**) Faire une étude complète de h (variations, allure de la courbe).
- e) Justifier que l'équation $e^{-x} = 2x$ admet une unique solution réelle, et exprimer cette solution à l'aide de h.

Développement limité

15.6 Soit *f* une fonction dérivable en *a*.

Le but de l'exercice est de déterminer : $\lim_{h\to 0} \frac{(f(a+3h))^2 - (f(a-h))^2}{h}$.

- a) Montrer que la fonction $h: x \mapsto f(a+x)$ est dérivable en 0.
- **b**) Écrire le dévelppement limité à l'ordre 1 de la fonction *h* en 0.
- c) En déduire que $f(a+x)^2 = f(a)^2 + 2f(a)f'(a)x + o(1)x$ lorsque $x \to 0$.
- d) Conclure.