Limites de fonctions Exercices

E1A 2016-2017

Calcul de limites

I Déterminer les limites des fonctions suivantes en $+\infty$ et $-\infty$.

a.
$$f(x) = x^4 - 2x^3 + 1$$
 b. $g(x) = x^5 - e^{2x}$ **c.** $h(x) = (3 + x^2) e^x$

b.
$$g(x) = x^5 - e^{2x}$$

c.
$$h(x) = (3 + x^2) e^x$$

II Déterminer les limites des fonctions suivantes.

a. Limite de
$$f(x) = \frac{-5x^2 + 37x - 4}{8x^2 - 2}$$
 en $+\infty$.

b. Limite de
$$g(x) = \frac{x^7 - 1}{52x^6 + 3x^2 - 2x}$$
 en $-\infty$.

c. Limite de
$$f(x) = \frac{x^7 e^x - x e^{2x}}{x^3 (\ln x) + x (\ln x)^5}$$
 en $+\infty$.

d. Limite de
$$g(x) = \frac{xe^x + x^2 + e^{x^3}}{x^7 + 5}$$
 en $-\infty$.

e. Limite de
$$h(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$
 en $+\infty$.

f. Limite de
$$f(x) = \sqrt{x^2 + 2x} - \sqrt{x^2 + x}$$
 en $+\infty$.

g. Limite de
$$g(x) = \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}$$
 en $+\infty$.

h. Limite de
$$f(x) = \sqrt{\ln(x^2 + 1)} - \sqrt{\ln(x^2 - 1)}$$
 en $+\infty$.

i. Limite de
$$g(x) = \frac{x^3}{\sqrt{1-x}} e^{\frac{1}{x(x-1)}}$$
 en 0^+ .

III Déterminer les limites suivantes.

a.
$$\lim_{x \to +\infty} \frac{e^{2x}}{9x^3}$$

h.
$$\lim_{x \to +\infty} \frac{(x^3)^x}{(3^x)^3}$$

$$\mathbf{b.} \lim_{x \to +\infty} \frac{\mathrm{e}^{2x-1}}{(\ln x)^4}$$

i.
$$\lim_{x \to 0^+} \frac{(x^3)^x}{(3^x)^3}$$

c.
$$\lim_{x \to 3^+} \frac{2x^2 - 3x + 2}{x^2 - 9}$$

c.
$$\lim_{x \to 3^+} \frac{2x^2 - 3x + 2}{x^2 - 9}$$
 j. $\lim_{x \to +\infty} \ln(x+3) - \ln(x-1)$

d.
$$\lim_{x \to 1} \ln(x+3) - \ln(x-1)$$

d.
$$\lim_{x \to 1} \ln(x+3) - \ln(x-1)$$
 k. $\lim_{x \to +\infty} \ln(x^2+1) - 2\ln x$

e.
$$\lim_{x \to +\infty} \sqrt{x+6} - \sqrt{x-2}$$
 l. $\lim_{x \to 0^+} \frac{x \ln x}{\sqrt{x}+1}$

$$\lim_{x \to 0^+} \frac{x \ln x}{\sqrt{x} + 1}$$

f.
$$\lim_{x \to 3^+} \frac{1}{x-3} - \frac{1}{x^2-9}$$
 m. $\lim_{x \to +\infty} x^4 e^{-\sqrt{x}}$

$$\mathbf{m.} \lim_{x \to +\infty} x^4 e^{-\sqrt{3}}$$

$$\int \mathbf{g.} \lim_{x \to 0^+} x^x$$

$$\lim_{x\to +\infty} \frac{e^{x^3}}{x}$$

Composition des limites

IV Déterminer les limites suivantes.

a.
$$\lim_{x\to 0^+} x \ln(x)$$
 (on pourra poser $X = \frac{1}{x}$)

b.
$$\lim_{x \to 1^+} (x-1)^2 \ln(x-1)$$
 (on pourra poser $X = x-1$)

c.
$$\lim_{x\to 0^+} x^2 e^{\frac{1}{x}}$$
 (on pourra poser $X = \frac{1}{x}$)

d.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$
 (on pourra poser $X = \sqrt{x}$)

Limite à droite, limite à gauche

V Soit $a \in \mathbb{R}$.

a. La fonction $x \mapsto \lfloor x \rfloor$ est-elle continue en a?

b. La fonction $x \mapsto |x| + (x - |x|)^2$ est-elle continue en a?

VI Étudier la continuité au point x_0 des fonctions suivantes.

a.
$$x_0 = 2$$
 et $f(x) = \begin{cases} x+1 & \text{si } x < 2 \\ x^2 - 1 & \text{si } x \ge 2 \end{cases}$

b.
$$x_0 = -\frac{1}{2}$$
 et $f(x) = \begin{cases} \frac{4x^2 + 5x - 4}{2x + 1} & \text{si} \quad x \neq -\frac{1}{2} \\ 0 & \text{si} \quad x = -\frac{1}{2} \end{cases}$

c.
$$x_0 = 0$$
 et $g(x) = \begin{cases} \frac{x^2}{x - e^{1/x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

$$\mathbf{d.} \ x_0 = 0 \text{ et } h(x) = \begin{cases} x \ln\left(\frac{x^2 + 1}{x}\right) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

e.
$$x_0 = 1$$
 et $j(x) = \begin{cases} \ln(\sqrt{x} - 1) - \ln(x - 1) & \text{si } x > 1 \\ 0 & \text{si } x = 1 \end{cases}$

Prolongement par continuité

VII Déterminer l'ensemble de définition des fonctions suivantes, puis rechercher si elles admettent un prolongement par continuité aux bornes de cet ensemble de définition :

a.
$$f_1(x) = \frac{2}{x-2} - \frac{3}{(x-2)^2}$$

d.
$$f_4(x) = \frac{x \ln x}{x - 1}$$

b.
$$f_2(x) = \frac{x^2 - 2x - 8}{x + 2}$$

e.
$$f_5(x) = \frac{x-1}{\ln x}$$

c.
$$f_3(x) = \frac{x^2 - 2x - 8}{\sqrt{x+2}}$$

f.
$$f_6(x) = e^{-1/x^2}$$

Utilisation d'inégalités

VIII Déterminer les limites suivantes.

$$\mathbf{a.} \lim_{x \to +\infty} \frac{2x + \lfloor x \rfloor}{1 - |x|}$$

b.
$$\lim_{x \to 0} \frac{1}{\left\lfloor \frac{3}{x} \right\rfloor}$$

IX Déterminer les limites suivantes.

a.
$$\lim_{x \to +\infty} \frac{e^{x^3}}{x}$$

b.
$$\lim_{x \to +\infty} \frac{xe^x + x^2 + e^{x^3}}{x^3 + 5}$$

X On considère la fonction $f: x \mapsto (x-1)e^{\frac{1}{\ln(x)}}$.

Le but est de trouver la limite de f en 1^- .

a. Effectuer le changement de variable X = 1 - x.

b. Démontrer que : $\forall u > -1$, $\ln(1+u) \le u$.

c. En déduire que : $\forall u > -1, \ u \times e^{\frac{1}{\ln(1+u)}} \ge u \times e^{\frac{1}{u}}$.

d. Déterminer $\lim_{u\to+\infty} u \times e^{\frac{1}{u}}$ et conclure.

XI On considère la fonction $f: x \mapsto \frac{x^3}{\sqrt{1-x}} e^{\frac{1}{x(x-1)}}$

Le but est de trouver la limite de f en 1^+ .

a. Effectuer le changement de variable X = 1 - x.

b. Démontrer que : $\forall u > 0, \ 0 < \frac{(1-u)^3}{\sqrt{u}} \times e^{\frac{1}{-u+u^2}} \le (1-u)^3 \times \frac{e^{-\frac{1}{u}}}{\sqrt{u}}.$

c. Déterminer $\lim_{u\to 0^+} \frac{e^{-\frac{1}{u}}}{\sqrt{u}}$ et conclure.

Taux d'accroissement du logarithme

XII On calcule ici une limite très classique et très utile. À connaître!

a. Montrer que pour tout $x \in]-1; +\infty[$, $\frac{x}{1+x} \le \ln(1+x) \le x$.

b. En déduire la limite de $\frac{\ln(1+x)}{x}$ lorsque $x \to 0$.

XIII Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I et soit $x_0 \in \mathbb{R}$. On suppose que f est non nulle au voisinage de x_0 .

On suppose enfin que $\lim_{x \to x_0} f(x) = 0$.

a. Démontrer que $\lim_{x \to x_0} \frac{\ln(1 + f(x))}{f(x)} = 1$.

b. En déduire $\lim_{x\to 0} \frac{\ln(1+x^3)}{x}$ et $\lim_{x\to +\infty} x \ln(1+e^{-x})$.

XIV Déterminer les limites suivantes

a.
$$\lim_{x \to 0^+} (1+x^3)^{1/x}$$

$$\mathbf{f.} \lim_{x \to 0} \quad \frac{\ln(x^2 + 1)}{x}$$

b.
$$\lim_{x \to 0^+} \frac{\ln(1 - 5x)}{x}$$
 g. $\lim_{x \to 0} \frac{\ln(x + 1)}{x^2}$

$$\mathbf{g.} \lim_{x \to 0} \frac{\ln(x+1)}{x^2}$$

c.
$$\lim_{x \to +\infty} \quad x \ln \left(1 + \frac{1}{x} \right)$$

h.
$$\lim_{x \to 0} (1+x)^{\ln x}$$

$$\mathbf{c.} \lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right) \qquad \qquad \mathbf{h.} \lim_{x \to 0} (1+x)^{\ln x}$$

$$\mathbf{d.} \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \qquad \qquad \mathbf{i.} \lim_{x \to 0^+} \frac{2\sqrt{x}}{\ln(1+x)}$$

i.
$$\lim_{x \to 0^+} \frac{2\sqrt{x}}{\ln(1+x)}$$

e.
$$\lim_{x \to 0^+} (1+x)^{\frac{1}{2}}$$

e.
$$\lim_{x \to +\infty} (1+x)^{\frac{1}{x}}$$
 j. $\lim_{x \to +\infty} x \ln\left(\frac{x+5}{x+3}\right)$

XV Déterminer les limites suivantes.

a.
$$\lim_{x\to 0} (\ln(e+x))^{\frac{1}{x}}$$

b.
$$\lim_{x \to +\infty} (\ln(1 + e^{-x}))^{\frac{1}{x}}$$

XVI On considère la fonction $f(x) = (\ln x)^{\ln(e-x)}$ et on se propose de déterminer sa limite pour $x \to e^-$ (e par valeurs strictement inférieures).

a. On pose $X = \frac{x}{e}$. Exprimer f(x) en fonction de X.

b. Montrer que $\lim_{X \to 1^-} \frac{\ln(1 + \ln X)}{X - 1} = 1$.

c. Montrer que $\lim_{X\to 1^-} \frac{1+\ln(1-X)}{\ln(1-X)} = 1$.

d. En déduire que f(x) peut s'écrire sous la forme :

$$f(x) = \exp(-(1-X)\ln(1-X) H(X))$$

où H(X) est une fonction telle que $\lim_{X \to 1^-} H(X) = 1$.

e. En déduire $\lim_{x\to e^-} f(x)$. (on pourra poser T = 1 - X)

Démonstrations du cours

XVII Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

Montrer que :

$$\begin{cases}
f \text{ bornée} \\
\lim_{x \to x_0} g(x) = 0
\end{cases} \to \lim_{x \to x_0} (f \times g)(x) = 0$$

XVIII Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ et $x_0 \in \overline{I}$.

a. Montrer que :

$$\lim_{\substack{x \to x_0 \\ \lim_{x \to x_0} g(x) = +\infty}} f(x) = +\infty$$
 $\rightarrow \lim_{x \to x_0} (f+g)(x) = +\infty$

b. Montrer que :

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty} g(x) = \ell_2}} f(x) = \ell_1$$
 $\rightarrow \lim_{x \to +\infty} (f+g)(x) = \ell_1 + \ell_2$

c. Montrer que :

$$\lim_{\substack{x \to x_0 \\ \lim_{x \to x_0} g(x) = \ell_2}} f(x) = \ell_1$$

$$\lim_{x \to x_0} g(x) = \ell_2$$

$$\Rightarrow \lim_{x \to x_0} (f \times g)(x) = \ell_1 \ell_2$$

On pourra remarquer que:

$$f(x)g(x) - \ell_1\ell_2 = f(x)(g(x) - \ell_2) + \ell_2(f(x) - \ell_1).$$