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These are lecture notes for a minicourse given at the workshop Random
matrices, maps and gauge theories held at ENS de Lyon on June 25-28, 2018. I
try to present the general approach from [1] and illustrate it on some examples
(1D lattice walks and planar maps). Due to lack of time and competence I do
not discuss equations with several catalytic variables, on which there has been
some important progress. These notes contain probably typos, imprecisions
or mistakes, please let me know if you find any.

1 Introduction: two illustrative examples

1.1 Simple walks on the half-line

As a very simple introductory example, we consider the classical problem of counting
simple walks on N = {0, 1, 2, . . .} with n steps that start and end at 0. By such a walk
we mean a sequence (x0, x1, . . . , xn) ∈ Nn+1 such that x0 = xn = 0 and xt − xt−1 = ±1
for any t = 1, . . . , n.
Suppose that we are very naive and do not know about the reflection method nor any

other clever combinatorial tricks. If we attempt to enumerate walks by constructing them
step by step, we are naturally led to generalize the counting problem and consider the
number an,k of walks which have n steps, still start at 0 but end at an arbitrary position
k ≥ 0. This number is determined by the recurrence relation

an,k =


an−1,k−1 + an−1,k+1 for n ≥ 1 and k ≥ 1,
an−1,k+1 for n ≥ 1 and k = 0,
1 for n = 0 and k = 0,
0 for n = 0 and k ≥ 1.

(1)

This recurrence relation appeared essentially in Bertrand’s 1887 paper on the classical
ballot problem, hence the an,k are sometimes called the ballot numbers. Bertrand solved
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the recurrence by conjecturing a general formula1 for an,k and checking it by induction,
but how could we proceed even without a guess? A possible approach is to introduce the
univariate series

Ak(t) :=
∑
n≥0

an,kt
n (2)

which is convergent for |t| < 1/2 (as we clearly have an,k ≤ 2n), and satisfies

Ak =

{
t (Ak−1 +Ak+1) k ≥ 1,

1 + tA1 k = 0.
(3)

(For brevity we write Ak instead of Ak(t), and we will very often do similar elisions in
the following.)
We see that Ak satisfies a homogeneous linear recurrence with constant coefficients,

and as such we look for a solution of the form

Ak = αXk + βX−k (4)

where X and X−1 are the two roots of the characteristic equation

1 = t(X +X−1). (5)

We assume X to be the root with smaller modulus, which is actually a series in t:

X =
1−
√

1− 4t2

2t
= t+ t3 + 2t5 + 5t7 + 14t9 + o(t9). (6)

The constants α and β are fixed by the boundary conditions. It seems at first that we
only have one equation A0 = 1+tA1 for two unknowns, but in fact we should take β = 0:
colloquially this is because Ak should not “blow up” for k →∞ (and we have |X| < 1 for
any t < |1/2|), more precisely it is because Ak should be a formal power series in t for
all k, but X−k is a Laurent series containing negative powers of t, hence must be ruled
out (we will be more precise about such “formalities” later). We then find α = X/t so
that Ak = Xk+1/t. In particular, the Taylor expansion of A0 = X/t involves the famous
Catalan numbers

a2n,0 =
1

n+ 1

(
2n

n

)
(7)

which yields the solution to our initial counting problem.
It is instructive to redo the same computation using the bivariate generating function

A(t, u) :=
∑
n≥0

∑
k≥0

an,kt
nuk. (8)

Then, the recurrence relation (1) amounts to the functional equation

A(t, u) = 1 + tuA(t, u) + t
A(t, u)−A(t, 0)

u
. (9)

1Which was in fact known to Moivre as early as 1708.
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Here, the second term corresponds to the contribution of the an−1,k+1 in the rhs of (1):∑
n≥1

∑
k≥0

an−1,k+1t
nuk =

t

u

∑
n≥0

∑
k≥1

an,kt
nuk = t

A(t, u)−A(t, 0)

u
. (10)

Note that we are missing the term k = 0 when doing the reindexing, and this is crucial in
order to get a series without negative powers of u. Such divided differences will be very
common in the functional equations that we will encounter, and are what makes them
non trivial. In particular, taking u = 0 in (9) does not seem to bring useful information.
Following the terminology of Zeilberger, u is called a catalytic variable.
The following method is basically due to Knuth [2, p.537] and is now called the kernel

method. We rewrite (9) in the form

K(t, u)A(t, u) = R(t, u) (11)

where
K(t, u) := 1− t(u+ u−1), R(t, u) := 1− tu−1A0(t) (12)

(K being called the kernel).
The key observation is that the kernel vanishes when we take u = X, with X the

root of the characteristic equation considered above2. Therefore, if we substitute u = X
in (11), we deduce that R(t,X) vanishes too, which yields a short proof of the formula
A0(t) = X/t. An important technical detail is that the substitution u = X in (11) must
be well-defined, which is the case because X is a series in t with only positive powers of
t so that A(t,X) makes sense. In contrast, substituting u = X−1, the other root of the
characteristic equation, is not allowed.
Furthermore, in constrast with the previous approach, the kernel method brings di-

rectly to an expression for A(t, 0) (which solves our initial counting problem). Computing
the full bivariate series A(t, u) (i.e. solving the extended counting problem) is not a pre-
requisite but may be done in a second step: using again (11) and factoring the kernel we
get

A(t, u) =
R(t, u)

K(t, u)
=

1−X/u
X
t (1−Xu)(1−X/u)

=
X

t
· 1

1−Xu
=
∑
k≥0

Xk+1

t
uk. (13)

1.2 Rooted planar maps

A planar map is a connected graph embedded in the sphere (without edge crossings),
and considered up to continuous deformation. Loops and multiple edges are allowed. A
map is rooted if one of its edges is marked and oriented. We denote by mn the number
of rooted planar maps with n edges.
It is not clear how to write down a recurrence equation for mn but, following Tutte,

we introduce the number mn,k of rooted planar maps with n edges and outer degree k,
where the outer degree is defined as the number of edges incident to the face on the right

2Of course it is no coincidence that K(t,X) = 0 is precisely the characteristic equation.
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Figure 1: Tutte’s recursive decomposition of a rooted planar map.

of the root, counted with multiplicity (a bridge contributes 2 to the outer degree). By
convention we set m0,0 = 1 (correspond to the vertex-map reduced to a single vertex
with no edge) and m0,k = 0 for k 6= 0. Then, for n ≥ 1, we have the recurrence relation

mn,k =
n−1∑
n′=0

k−2∑
k′=0

mn′,k′mn−n′−1,k−k′−2 +
∑

k′≥k−1
mn−1,k′ . (14)

The interpretation of this relation is displayed on Figure 1: if we remove the root edge
in a map counted by mn,k, two situations may occur:

• if the root edge is a bridge (which happens only for k ≥ 2), then we obtain two
maps (both canonically rooted) whose numbers of edges add up to n− 1 and outer
degrees add up to k − 2,

• otherwise, we obtain a single map with n− 1 edges and outer degree ≥ k− 1 (with
equality if the root edge is a loop).

By passing to the generating function

M(t, u) :=
∑
n≥0

∑
k≥0

mn,kt
nuk (15)

we obtain the functional equation

M(t, u) = 1 + tu2M(t, u)2 + tu
uM(t, u)−M(t, 1)

u− 1
. (16)

Note that M(t, 1) =
∑

n≥0mnt
n is the series we want to determine.

In contrast with the functional equation (9) encounted previously, the main difference
is that (16) is not linear but quadratic (the fact that it involves a specialization at u = 1
rather than u = 0 is inessential). We may rewrite it in the form

P (M(t, u),M(t, 1), t, u) = 0 (17)

4



with P the polynomial

P (M,µ, t, u) = tu2(1− u)M2 + (u− 1− tu2)M + 1− u+ tuµ. (18)

The trick to solve such an equation is the following. Let us differentiate (17) with
respect to the variable u: by the chain rule we get

∂P

∂M
(M(t, u),M(t, 1), t, u)

∂M

∂u
(t, u) +

∂P

∂u
(M(t, u),M(t, 1), t, u) = 0. (19)

The quantity ∂P
∂M (M(t, u),M(t, 1), t, u) is the nonlinear analogue of the kernel (we recover

the same notion for P linear in M). Pursuing the analogy, let us assume3 that we may
find a series U in the variable t such that the substitutionM(t, U) makes sense, and such
that

∂P

∂M
(M(t, U),M(t, 1), t, U) = 0. (20)

Then it follows from (19) that we have also

∂P

∂u
(M(t, U),M(t, 1), t, U) = 0. (21)

This relation is analogous to the equation R(t,X) = 0 of the previous section. But the
new feature is that (20) and (21) still involve the unknown series M(t, U). However, if
we add the relation (17) at u = U (which is not a consequence of the two others), then
we obtain a system of three polynomial equations for the three “unknowns” M(t, U),
M(t, 1), U and the variable t. With some chance, it is possible to solve this system and
deduce an expression for M(t, 1). This turns out to be the case, and we leave the actual
computation as an exercise (which, as often here, is more easily done with a computer
algebra system).

Exercise 1. Show that M(t, 1) is given by

M(t, 1) =
(1− 12t)3/2 − 1 + 18t

54t2
=
∑
n≥0

2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
tn. (22)

(Hint: use the fact that (20) and (21) are respectively linear in M(t, U) and M(t, 1) to
express them in terms of t and U . Deduce from (17) a polynomial equation satisfied by
U . Pick the correct solution from the requirement that M(t, 1) is a series in t without
negative powers.)

3It is actually not difficult to justify this assumption, using the considerations from the next section.
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2 Solving polynomial equations with one catalytic variable

2.1 Formalities on formal power series

In this section, R denotes an integral domain4 and t a formal variable. A formal power
series in t with coefficients in R is an expression of the form

A(t) =

∞∑
n=0

ant
n = a0 + a1X + a2X

2 + · · · (23)

where (an)n∈N is an arbitrary sequence of elements of R. The summation symbol is here
formal and it usually makes no sense to substitute t with a nonzero element of R. We
denote by [tn]A(t) := an the coefficient of tn in A(t) and, by analogy with Taylor series,
we often write

a0 = A(0), a1 = A′(0), a2 =
A′′(0)

2
, etc. (24)

Ring structure Let A(t) =
∑∞

n=0 ant
n and B(t) =

∑∞
n=0 bnt

n be two formal power
series. We define their sum and product by

A(t) +B(t) :=
∞∑
n=0

(an + bn)tn, A(t)×B(t) :=
∞∑
n=0

(
n∑
k=0

akbn−k

)
tn. (25)

These operations are the same as addition and multiplication for polynomials in t, but
in a formal power series we drop the requirement that only a finite number of coefficients
are nonzero.
We denote by R[[t]] the set of formal power series in t with coefficients in R, equipped

with the above addition and multiplication. It is a commutative ring (with unit 1),
containing the ring R[t] of polynomials in t as a subring.

Example 1. The series 1 + t+ t2 + t3 + · · · is the multiplicative inverse of 1− t. It is an
example of a rational formal power series, namely a series A(t) such that q(t)A(t) = p(t)
for some nonzero polynomials p(t) and q(t).

Example 2. The series X(t) of (6) satisfies X(t) = t + X(t)2. It is an example of an
algebraic formal power series, namely a series A(t) such that p0(t) + p1(t)A(t) + · · · +
pr(t)A(t)r = 0 for some r > 0 and some nonzero polynomials p0(t), p1(t), . . . , pr(t).
Algebraic formal power series enjoy many nice properties and, in particular, studying
the asymptotic behaviour of their coefficients (for R = C) can be done in a systematic
way. (One may consider the more general classes of D-finite and D-algebraic series, but
we will not encounter them here.)

4Commutative ring with unit 1 and without nonzero zero divisors.
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Distance, topology, composition, Lagrange inversion The valuation of a nonzero se-
ries A(t) is the smallest n such that [tn]A(t) 6= 0. It is denoted ν(A) and, by convention,
ν(0) = +∞. We have ν(AB) = ν(A) + ν(B) and ν(A + B) ≥ min(ν(A), ν(B)). Given
two series A and B, we define their distance as

d(A,B) := 2−ν(A−B) (26)

with the convention 2−∞ = 0. This endows R[[t]] with the structure of a complete
ultrametric space. Let us note the following facts:

• a sequence of series (Am)m≥0 converges iff, for any n, the sequence ([tn]Am)m≥0 is
eventually constant,

• in particular A is indeed the limit of its “polynomial approximations”
∑m

n=0 ant
n

as m→∞,

• a mapping A 7→ Φ(A) is contracting iff, for any n, the coefficient of tn in Φ(A)
depends only of those of smaller degree in A,

• an infinite sum of series
∑

mAm(t) converges iff Am(t)→ 0.

Let A(t) =
∑∞

n=0 ant
n and B(t) be two series. We define their composition by the formula

A(B(t)) :=
∞∑
n=0

an(B(t))n (27)

provided that the sum is convergent. By the previous convergence criterion, this is the
case if A(t) is a polynomial, or if ν(B) > 0.
Let Φ(t) =

∑∞
n=0 φnt

n. By the Banach fixed point theorem, there exists a unique
series Z(t) with zero constant coefficient such that

Z(t) = tΦ(Z(t)). (28)

Indeed, the mapping A(t) 7→ tΦ(A(t)) is contracting with respect to d in the closed sub-
space of series with zero constant coefficient. The Lagrange-Bürmann inversion formula
gives an explicit expression for the coefficients of Z(t) and its powers, namely

[tn]Z(t)k =
k

n
[wn−k]Φ(w)n, n, k ≥ 0. (29)

Three different proofs (two of them combinatorial) are given in [3].

Remark 3. If φ0 is a unit of R then A(t) = t/Φ(t) is a well-defined series, and we have
A(Z(t)) = t, in other words Z is the compositional inverse of A. Conversely any series
A with A(0) = 0 and A′(0) invertible can be written in the form A(t) = t/Φ(t), hence
the Lagrange-Bürmann formula is a way to perform series reversion.

7



Series in two (or more) variables Let u be another formal variable. A formal power
series in t and u with coefficients in R is an expression of the form

A(t, u) =
∞∑
n=0

∞∑
k=0

an,kt
nuk (30)

where the an,k are arbitrary elements of R. Addition and multiplication are easy to
define, and we denote by R[[t, u]] the corresponding ring. Note that we may identify

R[[t, u]] ' R[[t]][[u]] ' R[[u]][[t]]. (31)

We denote by [tn], [uk], [tnuk] the partial or complete extraction of coefficients.
We may define a natural topology5 on R[[t, u]], but the notion of distance (useful for

contractivity arguments) is less clear. However, most of the bivariate series that we con-
sider lie actually in the subring R[u][[t]] of series in t whose coefficients are polynomials in
u. This is the case if the coefficients in (30) are such that, for fixed n, only a finite number
of an,k are nonzero. This situation naturally occurs in enumeration when considering a
“refined” counting problem. We have the proper inclusions

R[[t]][u] ⊂ R[u][[t]] ⊂ R[[t, u]]. (32)

The natural notion of valuation and distances for series in R[u][[t]] is that corresponding
to the variable t. For any series A(t, u) ∈ R[u][[t]], it makes sense to substitute u with
any element of R. More generally, for U(t) ∈ R[[t]], the univariate series

A(t, U(t)) :=
∞∑
n=0

( ∞∑
k=0

an,kU(t)k

)
tn (33)

is well-defined and, furthermore, the mapping U(t) 7→ A(t, U(t)) is 1-Lipschitz.

Exercise 2. Prove that the equation (20) considered for the enumeration of rooted planar
maps indeed admits a unique solution U(t) ∈ Z[[t]]. (Hint: rewrite the equation as a
fixed point equation of a manifestly contractive mapping.)

Fractional power series Returning to the case of one variable, we may actually en-
counter generalized series of the form

A(t) =
∞∑

n=n0

ant
n/d (34)

with d a positive integer and n0 a possibly negative integer. If an0 6= 0 then n0/d is the
valuation of A(t). These are called Puiseux series and form a ring denoted Rfr((t)). It
has two subrings of interest:

5A sequence (Ai(t, u))i≥0 converges iff, for any n, k, the sequence of coefficients [tnuk]Ai(t, u) is even-
tually constant.
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• the ring R((t)) of formal Laurent series (series of the form (34) with d = 1),

• the ring Rfr[[t]] of fractional power series (series of the form (34) with n0 ≥ 0).

Let us mention two well-known facts:

• if K is a field, then K((t)) is the field of fractions of K[[t]],

• if K is an algebraically closed field of characteristic zero, then Kfr((t)) is the
algebraic closure of K((t)) (this is the Newton-Puiseux theorem).

We also mention the following useful fact.

Proposition 4. Let Φ(t, u) ∈ K[u]fr[[t]] (i.e. a fractional power series in t with coef-
ficients polynomial in u), with K an algebraically closed field of characteristic 0. If the
polynomial Φ(0, u) is nonzero and has degree k, then there exists k fractional power series
U1, . . . , Uk ∈ Kfr[[t]] such that

Φ(t, u) = (u− U1) · · · (u− Uk)Ψ(t, u) (35)

with Ψ(0, u) a nonzero constant. In particular we have Φ(t, Ui) = 0 for all i = 1, . . . , k.

(This is a slight adaptation of the Newton-Puiseux theorem that only applies to the
case where Φ(t, u) ∈ Kfr[[t]][u].)

2.2 General strategy

We now unify the two examples considered in Section 1 within a general framework.
Here, K denotes a field of characteristic 0 (typically C or C(x, y, . . .) if we have extra
parameters x, y, . . .), and K̄ denotes its algebraic closure.
In the general framework, we consider a (k+1)-tuple of series (F (t, u), F1(t), . . . , Fk(t)) ∈

K[u][[t]]×K[t]k which is completely determined by an equation of the form

P (F (u), F1, . . . , Fk, t, u) = 0 (36)

with P (x0, x1, . . . , xk, t, v) a polynomial in k + 3 variables with coefficients in K (in this
section we will often drop the explicit dependence on t for concision). We call an equation
of the form (36) a polynomial equation with one catalytic variable, and equality should
hold in the ring K[u][[t]].
It is often the case that the Fi are specializations of F (u) or its derivatives at u = 0 or

1, but we need not assume it a priori. Actually, it is typically a consequence of (36), for
instance in our second introductory example, at u = 1 we have P (x0, x1, t, 1) = t(x1−x0)
which implies that F1 = F (1).
We redo the same observation as in Section 1.2: if we differentiate (36) with respect

to u we get

F ′(u)
∂P

∂x0
(F (u), F1, . . . , Fk, t, u) +

∂P

∂v
(F (u), F1, . . . , Fk, t, u) = 0 (37)
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and, if we substitute u = U(t) a series such that

∂P

∂x0
(F (U), F1, . . . , Fk, t, U) = 0 (38)

then we also have ∂P
∂v (F (U), F1, . . . , Fk, t, U) = 0 and P (F (U), F1, . . . , Fk, t, U) = 0. In

general, we should look for such fractional power series in K̄fr[[t]] and there might be
several distinct solutions U1, . . . , U`, so that we get a system of 3` polynomial equations

P (F (Ui), F1, . . . , Fk, t, Ui) = 0

∂P

∂x0
(F (Ui), F1, . . . , Fk, t, Ui) = 0

∂P

∂v
(F (Ui), F1, . . . , Fk, t, Ui) = 0.

(39)

The unknowns in this system are F1, . . . , Fk, U1, . . . , Uk, F (U1), . . . , F (Uk). If we are
“lucky”, we will have ` = k so that there are as many equations as unknowns, and the
system will uniquely determine F1, . . . , Fk.
More precisely, we are in a good situation if the two following conditions are satisfied:

1. (existence) there exists k distinct series U1, . . . , Uk ∈ K̄fr[[t]] such that (38) holds,

2. (unicity) the solution in (K̄fr[[t]])3n of the system (39) with distinct Ui’s, which
exists by the previous condition, is unique up to a permutation of them.

If so, we may conclude that the F1, . . . , Fk determined by (36) are necessarily equal to
those determined by (39).
In practice, the first existence condition should be proved without knowing the solution

of (39). This may be done using contractivity (see Exercise 2) or algebraic (Proposition 4)
arguments.

An applicability result We now state a general sufficient condition under which the
above scheme works and we are in a good situation. (Of course, we may already apply
it to specific examples and verify that it works on a case-by-case basis.)
We denote by ∆ the divided difference operator with respect to u:

∆F (u) :=
F (u)− F (0)

u
. (40)

The action of its iterates read

∆iF (u) =
F (u)− F (0)− uF ′(0)− · · · − ui−1

(i−1)!F
(i−1)(0)

ui
. (41)

Note that ∆ is 1-Lipschitz on K[u][[t]].
We then consider a functional equation of the form

F (t, u) = F0(u) + tQ
(
F (u),∆F (u), . . . ,∆kF (u), t, u

)
(42)
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with F0(u) and Q(y0, y1, . . . , yk, t, u) given polynomials in respectively 1 and k + 3 vari-
ables. By contractivity this equation determines a unique series F (t, u), and using (41)
and multiplying by a large enough power of u the functional equation can be put in the
form (36) with Fi = F (i−1)(0). Then, it is shown in [1, Section 4] that we are basically
in a good situation, which leads to the following result.

Theorem 5 ([1]). The series F (t, u) is algebraic over K(t, u).

We do not provide a detailed proof here. Let us just remark that the Ui must be roots
of

uk = t
k∑
j=0

uk−j
∂Q

∂yj

(
F (u),∆F (u), . . . ,∆kF (u), t, u

)
(43)

hence, by Proposition 4 (both sides belonging to K[u][[t]]), there are indeed k solutions.

Remark 6. If Q is divisible by u then (42) implies that F (t, 0) = F0(t). Hence we readily
“get rid” of one unknown. Correspondingly, the equation (43) admits U = 0 as a trivial
root. We still have as many nontrivial roots as nontrivial unknowns.

3 Applications

3.1 1D lattice walks

We now return to the case of walks on the half-line N but we now allow for wider
steps. Let S be a finite subset of Z containing at least one positive and one negative
element. We wish to enumerate sequences (x0, . . . , xn) ∈ Nn+1 such that x0 = xn = 0
and xt − xt−1 ∈ S for any t = 1, . . . , n. Following the terminology of [4] these walks
are called excursions. As in Section 1.1, we shall consider the more general family of
meanders where the endpoint xn is not necessarily at 0: we denote by an,k the number
of meanders with n steps ending at k. (We could of course consider weighted paths but
we will not do it here for simplicity.)
It is a simple exercise to check that the bivariate generating function A(t, u) :=∑
an,kt

nuk is determined by the functional equation

A(t, u) = 1 + t
∑
i∈S
i≥0

uiA(t, u) + t
∑
i∈S
i<0

∆−iu A(t, u).
(44)

This equation is of the form (42) so we are in a good situation. The kernel equation
reads

1 = t
∑
i∈S

ui (45)

or in polynomial form
uc = t

∑
i∈S

ui+c, c := −minS. (46)
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By Proposition 4 we will find exactly c roots U1, . . . , Uc in Cfr[[t]] and actually they are
given by Ui(t) = V (ωit

1/d) with ωi a c-th root of unity and V (τ) the unique series in
C[[τ ]] such that

V = τ

(∑
i∈S

V i+c

)1/c

. (47)

Because we are in a linear situation we may proceed more directly than solving the
general system (39). The functional equation can be rewritten in the form(

uc − t
∑
i∈S

ui+c

)
A(t, u) = R(t, u) (48)

where R(t, u) ∈ C[[t]][u] is a monic6 polynomial of degree c in u, which therefore imme-
diately factorizes as

R(t, u) =

c∏
i=1

(u− Ui(t)) . (49)

We deduce that
A(t, u) =

∏c
i=1 (u− Ui(t))

uc − t
∑

i∈S u
i+c

(50)

and in particular excursions are counted by

A(t, 0) =
(−1)c−1

t

∏
i=1

Ui(t). (51)

Exercise 3 (The libertine club). Take S = {−2, 3}. Show that X = A(t, 0) satisfies

X = 1 + t5(2X5 −X6 +X7) + t10X10. (52)

It is possible to obtain an explicit expression for the general term, see [4, Example 5].

3.2 Rooted planar maps

We now return to the case of rooted planar maps considered in Section 1.2 but we now
want to add face weights: let (zi)0≥1 be a set of variables (which may be formal or
complex), and consider the generating function

F (t, u) =
∑
M

te(M)ud(M)z
v(M)
0

∏
i≥1

z
fi(M)
i (53)

where the sum is over all rooted planar maps, and d(M), e(M), , v(M), fi(M) denote
respectively the outer degree, the number of edges, the number of vertices, and the
number of inner faces of degree i ofM.

6This comes immediately from the constant term 1 in (44).
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By the Tutte recursive decomposition explained in Section 1.2, we find the functional
equation

F (t, u) = z0 + tu2F (t, u)2 + tu
∑
i≥1

zi∆
i−1F (t, u) (54)

where ∆ is the divided difference operator (40) acting on the variable u. This is a
refinement of (16) which we recover when all zi’s are equal to 1.

We now concentrate on the case of bounded degrees, i.e. we fix m ≥ 3 and assume that
zi = 0 for i > m. Then we have a functional equation of the good form (42) hence we
know that F (t, u) is algebraic. We are furthermore in the situation of Remark 6 so the
equation ∂P

∂x0
(F (U), F1, . . . , Fm−2, t, U) = 0 admits m − 2 nontrivial roots U1, . . . , Um.

We note that the functional equation is quadratic in F (t, u) hence may be rewritten in
the form

(2aF + b)2 = D (55)

where D = b2 − 4ac is the discriminant and

a = tum, b = t
m∑
i=1

ziu
m−i − um−2, c = z0u

m−2 − t
m∑
i=2

ziu
m−i(· · · ) (56)

which are polynomials in u of respective degrees m,m − 1,m − 2 (with coefficients in
K[[t]]) so that D has degree 2m− 2. But note that the roots Ui cancel by definition the
factor 2aF + b hence are double roots of D. We conclude that D may be factored as

D(t, u) = C(t)κ(t, u)
m−2∏
i=1

(u− Ui(t))2 (57)

where κ(t, u) is a polynomial of degree 2 in u. But, since D(0, u) has degree only 2m−4,
we see that κ(0, u) is of degree 0 in u, and may be taken equal to 1 up to a redefinition
of C(t), so that we may write

D(t, u) = (1 + κ1(t)u+ κ2(t)u
2)Q(t, u)2 (58)

with Q of degree m− 2 in u. By taking the square root of (55) we conclude that F (t, u)
takes the one-cut form

F (t, u) =
1

2

(
1

tu2
−

m∑
i=1

zi
tui

+
Q(t, u)

tum

√
1 + κ1(t)u+ κ2(t)u2

)
. (59)

But recall that F (t, u) must have coefficients polynomial in u so all the terms with
negative powers of u in (59) must vanish, and in addition F (t, 0) = 1: this yields a system
of m + 1 equations determining Q and κ1,2. It is possible to perform this computation
in a very explicit manner and arrive at a general formula for [uk]F (t, u) with a nice
combinatorial interpretation, see [5, Section 3.2] for details.
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Let us do this computation in the bipartite case where all face degrees are even (zi = 0
for i odd and m→ 2m). Then, F (t, u) is a series in v = u2 so that the solution may be
rewritten in the simpler form

F (t, v) =
1

2

(
1

tv
−

m∑
i=1

z2i
tvi
− Q(t, v)

tvm

√
1− 4Rv

)
(60)

with Q now of degree m− 1 in v. Note the series expansions

√
1− 4Rv = 1− 2

∑
k≥0

Catn(Rv)k+1,
1√

1− 4Rv
=
∑
k≥0

(
2k

k

)
(Rv)k. (61)

Dividing (60) by
√

1− 4Rv we get

F (t, v1/2)√
1− 4Rv

=
1

2

(
1

tv
−

m∑
i=1

z2i
tvi

)∑
k≥0

(
2k

k

)
(Rv)k

− Q(t, v)

2tvm
. (62)

But the lhs does not contain negative powers of v and its constant coefficient is z0: this
yields a total of m+ 1 conditions which determine the m coefficients of Q (from the no
negative powers condition) and give an equation for R (constant term 1):

z0 =
1

2

(
2R

t
−

m∑
i=1

z2i
t

(
2i

i

)
Ri

)
(63)

hence

R = tz0 + t

m∑
i=1

z2i
1

2

(
2i

i

)
Ri. (64)

By plugging the expression for Q into (60) and expanding, we obtain an explicit ex-
pression of [uk]F (t, v) as a polynomial in R involving binomial coefficients and Catalan
numbers, having nice combinatorial interpretation and applications [5]. But it turns out
that R has all the information we want, indeed it may be shown that

F •(t, v) =
1√

1− 4Rv
=
∑
k≥0

(
2k

k

)
Rkvk (65)

is the generating function for pointed rooted maps (i.e. an extra vertex is marked). By
the Lagrange inversion and the multinomial formula we get that

1

v
[tnzv0z

f2
2 · · · z

f2m
2m ]

(
2k

k

)
Rk =

k

nv

(
2k

k

)(
n− k

v, f2, · · · , f2m

) m∏
i=1

(
2i− 1

i

)f2i
δv−n+

∑
fi,1

(66)
which is the number of rooted bipartite planar maps with outer degree 2k, n edges, v
vertices and fi faces of degree 2i for each i.
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