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Planar map: definition

A planar map is a connected (multi)graph
embedded in the sphere, considered up to
continuous deformation. It is made of
vertices, edges and faces.

A rooted map has a distinguished oriented
edge. A pointed map has a distinguished
vertex.
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Tutte’s “Census” papers (1962-63)

A CENSUS OF PLANAR TRIANGULATIONS 
W. T. TUTTE 

1. Triangulations. Let P be a closed region in the plane bounded by a 
simple closed curve, and let 5 be a simplicial dissection of P. We may say 
that 5 is a dissection of P into a finite number a of triangles so that no vertex 
of any one triangle is an interior point of an edge of another. The triangles 
are ''topological" triangles and their edges are closed arcs which need not be 
straight segments. No two distinct edges of the dissection join the same two 
vertices, and no two triangles have more than two vertices in common. 

There are k > 3 vertices of S in the boundary of P , and they subdivide 
this boundary into k edges of S. We call these edges external and the remaining 
edges of 5, if any, internal. If r is the number of internal edges we have 
(1.1) Sa = 2r + k, 
(1.2) r = k (mod 3). 

Let us call S a triangulation of P if it satisfies the following condition: no 
internal edge of S has both its ends in the boundary of P. We note that in the 
case k = 3 every simplicial dissection is a triangulation. 

Let T\ and T% be triangulations of P having the same external edges. We 
call them isomorphic if there is a 1 — 1 mapping / of the vertices of T\ onto 
those of T2 which satisfies the following conditions. 

(i) Each vertex in the boundary of P is mapped by f onto itself. 
(ii) Two distinct vertices v and w of 7\ are joined by an edge of 7\ if and 

only if f{v) and f(w) are joined by an edge of T2. 
(iii) Three distinct vertices u, v, and w of 7\ define a triangle of T\ if and 

only iff(u),f(y), andfiw) define a triangle of 7Y 
The triangulations of the polygon abed shown in Figures I A and I B are 

isomorphic, but those of Figures I B and I C are not. 

Received January 30, 1961. 
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A CENSUS OF HAMILTONIAN POLYGONS 
W. T. T U T T E 

Summary. In this paper we deal with trivalent planar maps in which 
the boundary of each country (or "face") is a simple closed curve. One vertex 
is distinguished as the root and its three incident edges are distinguished as the 
first, second, and third major edges. We determine the average number of 
Hamiltonian polygons, passing through the first and second major edges, in 
such a "rooted map" of 2n vertices. Next we consider the corresponding 
problem for 3-connected rooted maps. In this case we obtain a functional 
equation from which the average can be computed for small values of n. 

1. Rooted maps. For the purposes of this paper a planar map M is a 
representation of the 2-sphere (or closed plane) as a union of a finite number 
of disjoint point-sets called cells. The cells are of three kinds, vertices, edges, 
and faces, said to have dimension 0, 1, and 2 respectively. Each vertex consists 
of a single point. Each edge is an open arc whose ends are distinct vertices. 
Each face is a simply connected domain whose boundary is a simple closed 
curve made up of edges and vertices. We denote the numbers of cells, vertices, 
edges, and faces of M by C(M), V(M), E(M), and F(M) respectively. 

Two cells whose dimensions differ are incident with one another if one is 
contained in the boundary of the other. We note that each edge must be 
incident with just two faces. 

Let M and A7 be planar maps. An isomorphism of M onto N is a 1-1 mapping 
f of C(M) onto C(N) with the following properties. 

(i) / preserves dimension, 
(ii) Both f and / - 1 preserve incidence relations. 

If such a mapping exists we say that M and N are isomorphic. 
If X and Y are complementary non-null subsets of V(M) we write Q(X,Y) 

for the set of all edges of M with one end in X and one in Y. This set is the 
cut between X and Y. A cut with just k edges is a k-cut. 

(1.1) Each cut of M has at least two edges. 

Proof. Suppose Q(X, Y) is a 0-cut. Define U{X) as the union of the vertices 
of X and their incident edges, and let U(Y) be defined analogously. By the 
connection of the 2-sphere M has a face K whose boundary meets both U(X) 
and U(Y). But then the boundary of K is not connected, contrary to the 
definition of a face. 

Received August 22, 1961. Part of this work was done at the Combinatorial Symposium 
held by the RAND Corporation, July-August 1961. 
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A CENSUS OF SLICINGS 
W. T. T U T T E 

1. Introduction. A band is a closed connected set in the 2-sphere, 
bounded by one or more disjoint simple closed curves. 

Consider a band B with bounding curves Ju J2, . . . , Jk. On each curve Jt 

let there be chosen m^ > 0 points to be called vertices, with the restriction 
that the sum of the k integers mt is to be even. Write 

* 
(1) Z tnt = 2». 

Next consider a set of n disjoint open arcs in the interior of B which join the 
2n vertices in pairs and partition the remainder of the interior of B into 
simply connected domains. We call the resulting dissection of B a slicing with 
respect to the given set of vertices. The arcs are the internal edges of the slicing 
and the simply connected domains are its internal faces, or slices. 

The external edges of a slicing are the open segments into which the vertices 
separate the curves Ji.lini = 0 we count the complete curve Jt as a "singular" 
external edge. It is clear, however, that this happens only in the singular case 
(k = 1, n = 0). The external faces of a slicing are the components of the 
complement of B. 

In the non-singular case the number of external edges is 2n and the number 
of external faces is k. The number/of internal faces can be calculated from the 
Euler polyhedron formula. 

(2) f = n - k + 2. 

In the singular case n = 0 and k = 1. There is just one internal face, the 
interior of B, and just one external one. So formula (2) is still valid. 

Figure 1 shows a slicing of a region bounded by four simple closed curves. 
The external faces are shaded. 

Two slicings of B are equivalent if one can be transformed into the other by a 
topological mapping of R onto itself which leaves each vertex invariant. 

We propose the problem of determining the number of inequivalent slicings 
of a band corresponding to a given sequence of numbers m*. In what follows 
we dispose of the case in which the numbers mt are all even. We call this the 
case of even slicings. 

In this special case we write m* = 2nt for each i, and we denote the number 

Received November 3, 1961. Some of this work was done at the Combinatorial Symposium 
held by the RAND Corporation, July-August 1961. 
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Tutte’s recursive approach to counting planar maps

Let Mn be the number of rooted planar maps with n edges.

It satisfies no
obvious recurrence relation!
Let Mn,k be the number of rooted planar maps with n edges and outer
degree k . Now we can do something.
We will find and solve an equation satisfied by the generating function

M(x , y) :=
∑
n,k≥0

Mn,kx
nyk

though we are ultimately interested only in M(x , 1) (y is a “catalytic”
variable).
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Tutte’s recursive approach to counting planar maps
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Tutte’s recursive approach to counting planar maps

Mn,k =
∑

n1+n2=n−1
k1+k2=k−2

Mn1,k1Mn2,k2 +
∑

k ′≥k ′−1

Mn−1,k ′
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Tutte’s recursive approach to counting planar maps

Mn,k =
∑

n1+n2=n−1
k1+k2=k−2

Mn1,k1Mn2,k2 +
∑

k ′≥k−1

Mn−1,k ′

(holds for n ≥ 1, with M0,0 = 1, M0,k = 0 for k ≥ 1)
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Tutte’s recursive approach to counting planar maps

M(x , y) = 1 + xy2M(x , y)2 + xy
yM(x , y)−M(x , 1)

y − 1
.
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Tutte’s recursive approach to counting planar maps

M(x , y) satisfies
Φ(M(x , y),M(x , 1), x , y) = 0 (1)

where

Φ(M,m, x , y) = xy2(1− y)M2 + (y − 1− xy2)M + 1− y + xym.

By differentiating (1) wrt y , we get

∂Φ

∂M
(M(x , y),M(x , 1), x , y)︸ ︷︷ ︸

(2)

∂M

∂y
(x , y) +

∂Φ

∂y
(M(x , y),M(x , 1), x , y)︸ ︷︷ ︸

(3)

= 0.

Let Y (x) be a series such that (2) vanishes when we substitute y = Y (x)
(it exists and is unique!). Then (3) vanishes too. Combined with (1), we
get 3 equations for 4 parameters, hence by elimination we may deduce an
algebraic equation relating M(x , 1) and x .
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Tutte’s recursive approach to counting planar maps

In practice, we even get a rational parametrization

x =
(Y − 1)(3− 2Y )

Y 2
, M(x , 1) =

Y (4− 3Y )

(3− 2Y )2

which allows to apply the Lagrange inversion theorem and get:

Theorem (Census of planar maps, 1963)

The number Mn of rooted planar maps with n edges is 2 · 3n · (2n)!
n!(n+2)! .

Some remarks:

for many classes of maps, we get a similar quadratic equation =⇒
“quadratic method” (Brown, 1965)

nowadays there is a general method to solve polynomial equations
with one catalytic variable (Bousquet-Mélou and Jehanne, 2006)

asymptotically Mn ∼ C12nn−5/2, the −5/2 exponent is universal.
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Matrix models

G. ’t Hooft É. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber
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Matrix models

In 1972, ’t Hooft suggested a new approach to SU(N) gauge theory
(N = 3 corresponds to quantum chromodynamics aka QCD), by
considering the limit where N is large. He showed that the Feynman
diagrams that dominate in this limit are planar.

Communications in
Commun. math. Phys. 59, 35—51 (1978) Mathematical

Physics
© by Springer�Verlag 1978

Planar Diagrams

E. Brezin, C. Itzykson, G. Parisi*, and J. B. Zuber
Service de Physique Theorique, Centre d'Etudes Nucleaires de Saclay, F�91190 Gif�sur�Yvette, France

Abstract. We investigate the planar approximation to field theory through the
limit of a large internal symmetry group. This yields an alternative and
powerful method to count planar diagrams. Results are presented for cubic
and quartic vertices, some of which appear to be new. Quantum mechanics
treated in this approximation is shown to be equivalent to a free Fermi gas
system.

1. Introduction

We present some investigations of the planar approximation to field theory
calculated through a limit of a large internal symmetry. Part of the motivation for
this work lies in the hope that it might ultimately provide a mean of performing
reliable computations in the large coupling phase of non�abelian gauge fields in
four dimensions. In addition there are some indications that such topological
expansions are related to the dual string models [1]. To support these hopes we
may quote the significant simplifications occuring in the large ΛΓ�limit for the
linear or non�linear σ�models which indeed allow to discriminate the phases of
broken and unbroken symmetry (even in two dimensions where the symmetry is
never broken). On the other hand one has 't Hooft's solution to two�dimensional
QCD in this same limit [2]. These promising features suggest to pursue this line of
reasoning and develop some new techniques.

A first part of this paper is devoted to preliminary combinatorial aspects [3].
Some of these have already been discussed by Koplik, Neveu and Nussinov [4].
The method that we have used for this "zero�dimensional" field theory, in which
every propagator is set equal to unity, is not of combinatorial nature and hopefully
allows for extension to genuine calculations of Green functions in a real field
theory. This enabled us to solve a few counting problems the solution of which
does not seem to be known.

In Section 5, we compute explicitly the contribution of all the planar Feynman
diagrams to the ground state energy of a one dimensional 0x4�anharmonic

* ENS, Paris. On leave of absence from INFN�Frascati

In 1978, BIPZ considered the special case of zero spatial dimensions,
where the gauge field reduces to a simple N × N matrix.
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Matrix models

The problem is to estimate the large N asymptotics of an integral over
N × N hermitian matrices.

Planar Diagrams 37

in which H is the number of holes of the surface on which the polyhedron is drawn
(0 for a plane or a sphere, one for a torus, etc....). The contribution of the diagrams
is proportional to

1 . . . N2~2H.

Thus provided one takes coupling constants gp proportional to Nl~pl2, the
vacuum energy divided by N2 has a finite limit for the diagrams which may
be drawn on a planar (H = 0) surface. Corrections of order i/N2 are given by
diagrams which may be drawn on a torus. If E(^(g) stands for the sum of the
connected vacuum diagrams for any of the three theories (1) in d dimensions and if
E(d\g) is the same sum for the planar φ4�theory then in any dimension

— '�"' * —'�"' " / Λ \

The counting rules for the lowest orders are given in Table 1 and Equation (2) may
be checked from the Lagrangian (1).

Table 1. Counting rules for the vacuum amplitude E(0\g) in
the planar limit, up to order three
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It is thus sufficient to study the simpler hermitian case α = 2, which is analyzed
in the following. Note however that the corrections to the leading behaviour may
be different in the various cases.

3. Combinatorics of Quartic Vertices

1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space�time is reduced to one or
to a finite number of points. It means that

exp � N2E(0\g) = lim j rfN2Mexp � ktr M2 + |� tr M4|. (3)
N�+OO [ N \

The integration measure on hermitian matrices is

dN2M = Π dMti Π d(Re Mf MIm Mt.) (4)

and it is convenient to express it in terms of the eigenvalues λ{ of M and of the
unitary matrix U which diagonalizes the matrix M. This is a well�known problem
[5] and the result is

λ^dV. (5)

Such an integral may be viewed as a perturbation of a Gaussian integral
(GUE partition function). By a formal expansion of the non Gaussian term,
we get a perturbative series which is standardly represented via Feynman
diagrams.
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diagrams which may be drawn on a torus. If E(^(g) stands for the sum of the
connected vacuum diagrams for any of the three theories (1) in d dimensions and if
E(d\g) is the same sum for the planar φ4�theory then in any dimension

— '�"' * —'�"' " / Λ \

The counting rules for the lowest orders are given in Table 1 and Equation (2) may
be checked from the Lagrangian (1).

Table 1. Counting rules for the vacuum amplitude E(0\g) in
the planar limit, up to order three
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It is thus sufficient to study the simpler hermitian case α = 2, which is analyzed
in the following. Note however that the corrections to the leading behaviour may
be different in the various cases.

3. Combinatorics of Quartic Vertices

1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space�time is reduced to one or
to a finite number of points. It means that

exp � N2E(0\g) = lim j rfN2Mexp � ktr M2 + |� tr M4|. (3)
N�+OO [ N \

The integration measure on hermitian matrices is

dN2M = Π dMti Π d(Re Mf MIm Mt.) (4)

and it is convenient to express it in terms of the eigenvalues λ{ of M and of the
unitary matrix U which diagonalizes the matrix M. This is a well�known problem
[5] and the result is

λ^dV. (5)

Such an integral may be viewed as a perturbation of a Gaussian integral
(GUE partition function).

By a formal expansion of the non Gaussian term,
we get a perturbative series which is standardly represented via Feynman
diagrams.
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Matrix models
In the context of N × N matrices, the Feynman diagrams can be
represented as “fatgraphs” or “ribbon graphs” (because a matrix carries
two indices). For instance, the diagrams contributing to the expansion of
〈(TrM3)2〉 are:

Each diagram has a contribution ∝ N#{vertices}−#{edges}+#{faces} = N2−2h.

When N gets large, the dominant diagrams
correspond to planar maps!
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Matrix models

Bottom line: map generating functions can be expressed formally as the
large N limit of matrix integrals. But can we evaluate those ?

Yes we can, by exploiting the U(N) invariance of the integrand:

38 E. Brezin et al.

Since the integrand (3) depends only on the eigenvalues Îi9 this allows us to
integrate over U and, up of to a ^-independent normalizing factor we obtain

exp - N2E(0\g) = lim J f] dÎt – (̂  - Î .)2 exp - £ £ Îf + ̂  £ /If . (6)

In the large ÀMimit the steepest descent method can be used to compute (6),
noting that the factor [~[ (Ît — Îj)2 in the measure requires that the eigenvalues

repel each other and spread evenly around zero. To leading order we have

r 1 fl v / l o 2 , 9 i4\ VM M o il /Ù\= l È m ÙÙ2i” iÀ +^?À -” l n IÀ -^/l^ (7)

(in which the primed sum runs over flˆj), and the Ît are given by the stationary
condition

› ^ ” ' T ^ (8)

The eigenvalue Equation (8) may be solved in the large N limit by going to a
continuous problem. Let us introduce a non decreasing function Î(x) such that

Î{=]/NÎ(i/N). (9)

Then the large IV-limit may be explicitly performed and the Equations (7) and (8)
are replaced by

= } dx [^2(x) + gÎ\x)-\ - } } dxdyln \Î(x) - Î(y)\ (10)
0 0

(up to a constant ^-independent term) and

in which f stands for the principal part of the integral.

The condition (11) on Î(x) suggests to introduce the density of eigenvalues u(Î)
defined as

djj-=u(Î}. (12)

The function u(Î) should be positive, even, and normalized to

+ 2·

J dÎu(Î) = l. (13)
-2·

The condition (11) becomes an equation for u(Î)
+ 2a U(LL)

'= f dµ-r^-9 \Î\^2a (14)
-2a Î — µ

The steepest descent method consists in understanding the large N-limit
of the empirical distribution of eigenvalues µN := 1

N

∑N
i=1 δλi , by assuming

(or showing) that it converges to a continuous distribution µ solving a
minimization problem. Here, µ will be a perturbation of the well-known
Wigner semicircle distribution.
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Matrix models
The k-th moment of the limiting empirical distribution µ corresponds to
the generating function of rooted planar maps with outer degree k .

The constant term in this series (g = 0) is the k-th moment of the
semicircle distribution, which vanishes for k odd, while for k = 2m it is:

the m-th Catalan number cm = (2m)!
m!(m+1)! ,

i.e. the number of rooted plane trees with m edges,

i.e. the number of unicellular planar maps with outer degree 2m.

To count general (non unicellular) maps we need to study the non
Gaussian (g 6= 0) case. Nowadays, this is routinely done using the
so-called loop or Schwinger-Dyson equations for the resolvent

F (z) :=

∫
suppµ

dµ(x)

x − z
=
∞∑
k=0

1

zk+1

∫
xkdµ(x)

which are basically equivalent to Tutte’s recursive equations (z is the
catalytic variable).
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∫
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∞∑
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1

zk+1

∫
xkdµ(x)
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Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”
(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 

Z= f D~o(~)exp( -26-D f [½(ilu~°)2+/-~2e~°])( 
48.  ~ 25) 

This expression shows very dearly the origin of the com- 
monly known critical dimension 26 in the string theory: 
at this value of the dimension one could quantize the 
theory without bothering about the conformal anomaly, 
as has been done in dual models.However, for D < 26 
in order to get proper quantization we must examine 
the quantum Liouville theory described by the lagran- 
gian (25). This theory is two-dimensional, renormaliza- 
ble, and completely integrable. All that means that it is 
exactly solvable, just as sine-Gordon theory, and thus 
it must be possible to evaluate explicitly the partition 
function of closed surfaces. This work is in progress 
now and in the present paper I shall only demonstrate 
how to express different physical quantities, like the 
spectrum, scattering amplitudes etc. through the corre- 
lation functions of quantum Liouville theory. The 
basic idea is to sum over surfaces which contain a given 
set of points {x/}. The Fourier transform of such an 
amplitude has poles in g (p/is the momentum of 
point x/) which define the mass spectrum. The residues 
of these poles can be identified with the scattering am- 
plitude. So, we consider the average 

A (Pl... PN) 
= ( ~  f d2~/[g(~/)]l/2exp[ip/x(~/)]) . (26) 

The average in (26)is understood in the sense of (14). 
All functional integrals being gaussian, they are easily 
evaluated with the result 

A(Pl...pN) = fD~0(~)exp( 2 6 - D f 2 ~  d d2~ 

X [~(3utp)2 +/aZe~]) 

X ; e x p ( / ~ .  ~(~ , ) ) / [ I  d2~/• 

The function K(~, ~', ~o) is a Green's function for the 
laplacian in the metric gab = e~fab" If the points ~ and 
~' do not coincide it is just 

K(~, ~ ' )=  - (4 , ) - l log (~  - ~,)2 . (28) 

However, when ~ is close to ~' extra care is needed. We 

have to recall about the cutoff built in our theory. The 
proper definition of K is given by 

K(~, ~') = ~ [Xn(~)Xn(~')/Xnl exp(-EXn) , (29) 
n 

where X n are eigenvalues, Xn are eigenfunctions of the 
laplacian and E is the proper time cut-off. 

Using (29) one shows that 

K(~, ~P)= - ( 4 . ) -  llog(1/E)I+ (4.),-  1~(~) (30) 

and in this way A functions are determined by the 
Liouville correlators. Note that at D = 26 only we ob- 
tain from (27) the standard dual model in the K o b a -  
Nielsen form (see ref. [6] for a review). For physical 
D one has to solve the Liouville theory in order to find 
the scattering amplitudes. 

A few words now about the quantization of the 
Houville theory. The lagrangian possesses the sym- 
metry 

~p(z,f)-+~p(w(z), ff2(z)) +log [dw/dz 12 , (31) 

which is all that remains from the general covariance 
after the specification of the conformal gauge. The 
theory must be quantized in such a way, that this in- 
variance remains untouched. It is possible to prove 
that this is indeed possible and leads to a unique renor- 
malization procedure. 

So, our main conclusion is that the summation of 
random surfaces is reduced to the two-dimensional, 
exactly solvable theory, and that the old "dual" ap- 
proach to the string is correct only at D = 26. 

Extension of these results to the Fermi case and 
their physical applications are discussed in other papers 
[2,71. 

I am grateful to A.A. Migdal and 
A.B. Zamolodchikov for valuable comments and to 
D.G. Makogonenko for the invaluable encouragement 
at the last and most difficult stage of this work. 

References 
[1] A.M. Polyakov, Phys. Lett. 82B (1979) 247. 
[2] V.G. Dotsenko and A.M. Polyakov, to be published. 
[3] A.A. Migdal, Nucl. Phys., to be published 
[4] L. Brink and J. Schwarz, Nucl. Phys. B121 (1977) 285. 
[5] A.S. Schwartz, Commun. Math. Phys. 64 (1979) 233. 
[6] S. Mandelstam, Phys. Rep. 13C (1974) 261. 
[7] A.M. Polyakov, Phys. Lett. 103B (1981) 211. 

210 

Here Dϕ(ξ) denotes the (ill-defined!) functional integration over a field
ϕ : Σ→ R, with Σ a Riemann surface. For µ = 0 we can make sense of
it as a Gaussian free field. For µ > 0 we need to make sense of eϕ... (at
the mathematical level, see Duplantier-Sheffield 2008, Rhodes-Vargas et
al. using Kahane’s Gaussian multiplicative chaos...)

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 17 / 40



Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”
(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 

Z= f D~o(~)exp( -26-D f [½(ilu~°)2+/-~2e~°])( 
48.  ~ 25) 

This expression shows very dearly the origin of the com- 
monly known critical dimension 26 in the string theory: 
at this value of the dimension one could quantize the 
theory without bothering about the conformal anomaly, 
as has been done in dual models.However, for D < 26 
in order to get proper quantization we must examine 
the quantum Liouville theory described by the lagran- 
gian (25). This theory is two-dimensional, renormaliza- 
ble, and completely integrable. All that means that it is 
exactly solvable, just as sine-Gordon theory, and thus 
it must be possible to evaluate explicitly the partition 
function of closed surfaces. This work is in progress 
now and in the present paper I shall only demonstrate 
how to express different physical quantities, like the 
spectrum, scattering amplitudes etc. through the corre- 
lation functions of quantum Liouville theory. The 
basic idea is to sum over surfaces which contain a given 
set of points {x/}. The Fourier transform of such an 
amplitude has poles in g (p/is the momentum of 
point x/) which define the mass spectrum. The residues 
of these poles can be identified with the scattering am- 
plitude. So, we consider the average 

A (Pl... PN) 
= ( ~  f d2~/[g(~/)]l/2exp[ip/x(~/)]) . (26) 

The average in (26)is understood in the sense of (14). 
All functional integrals being gaussian, they are easily 
evaluated with the result 

A(Pl...pN) = fD~0(~)exp( 2 6 - D f 2 ~  d d2~ 

X [~(3utp)2 +/aZe~]) 

X ; e x p ( / ~ .  ~(~ , ) ) / [ I  d2~/• 

The function K(~, ~', ~o) is a Green's function for the 
laplacian in the metric gab = e~fab" If the points ~ and 
~' do not coincide it is just 

K(~, ~ ' )=  - (4 , ) - l log (~  - ~,)2 . (28) 

However, when ~ is close to ~' extra care is needed. We 

have to recall about the cutoff built in our theory. The 
proper definition of K is given by 

K(~, ~') = ~ [Xn(~)Xn(~')/Xnl exp(-EXn) , (29) 
n 

where X n are eigenvalues, Xn are eigenfunctions of the 
laplacian and E is the proper time cut-off. 

Using (29) one shows that 

K(~, ~P)= - ( 4 . ) -  llog(1/E)I+ (4.),-  1~(~) (30) 

and in this way A functions are determined by the 
Liouville correlators. Note that at D = 26 only we ob- 
tain from (27) the standard dual model in the K o b a -  
Nielsen form (see ref. [6] for a review). For physical 
D one has to solve the Liouville theory in order to find 
the scattering amplitudes. 

A few words now about the quantization of the 
Houville theory. The lagrangian possesses the sym- 
metry 

~p(z,f)-+~p(w(z), ff2(z)) +log [dw/dz 12 , (31) 

which is all that remains from the general covariance 
after the specification of the conformal gauge. The 
theory must be quantized in such a way, that this in- 
variance remains untouched. It is possible to prove 
that this is indeed possible and leads to a unique renor- 
malization procedure. 

So, our main conclusion is that the summation of 
random surfaces is reduced to the two-dimensional, 
exactly solvable theory, and that the old "dual" ap- 
proach to the string is correct only at D = 26. 

Extension of these results to the Fermi case and 
their physical applications are discussed in other papers 
[2,71. 

I am grateful to A.A. Migdal and 
A.B. Zamolodchikov for valuable comments and to 
D.G. Makogonenko for the invaluable encouragement 
at the last and most difficult stage of this work. 

References 
[1] A.M. Polyakov, Phys. Lett. 82B (1979) 247. 
[2] V.G. Dotsenko and A.M. Polyakov, to be published. 
[3] A.A. Migdal, Nucl. Phys., to be published 
[4] L. Brink and J. Schwarz, Nucl. Phys. B121 (1977) 285. 
[5] A.S. Schwartz, Commun. Math. Phys. 64 (1979) 233. 
[6] S. Mandelstam, Phys. Rep. 13C (1974) 261. 
[7] A.M. Polyakov, Phys. Lett. 103B (1981) 211. 

210 

Here Dϕ(ξ) denotes the (ill-defined!) functional integration over a field
ϕ : Σ→ R, with Σ a Riemann surface.

For µ = 0 we can make sense of
it as a Gaussian free field. For µ > 0 we need to make sense of eϕ... (at
the mathematical level, see Duplantier-Sheffield 2008, Rhodes-Vargas et
al. using Kahane’s Gaussian multiplicative chaos...)

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 17 / 40



Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”
(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 

Z= f D~o(~)exp( -26-D f [½(ilu~°)2+/-~2e~°])( 
48.  ~ 25) 

This expression shows very dearly the origin of the com- 
monly known critical dimension 26 in the string theory: 
at this value of the dimension one could quantize the 
theory without bothering about the conformal anomaly, 
as has been done in dual models.However, for D < 26 
in order to get proper quantization we must examine 
the quantum Liouville theory described by the lagran- 
gian (25). This theory is two-dimensional, renormaliza- 
ble, and completely integrable. All that means that it is 
exactly solvable, just as sine-Gordon theory, and thus 
it must be possible to evaluate explicitly the partition 
function of closed surfaces. This work is in progress 
now and in the present paper I shall only demonstrate 
how to express different physical quantities, like the 
spectrum, scattering amplitudes etc. through the corre- 
lation functions of quantum Liouville theory. The 
basic idea is to sum over surfaces which contain a given 
set of points {x/}. The Fourier transform of such an 
amplitude has poles in g (p/is the momentum of 
point x/) which define the mass spectrum. The residues 
of these poles can be identified with the scattering am- 
plitude. So, we consider the average 

A (Pl... PN) 
= ( ~  f d2~/[g(~/)]l/2exp[ip/x(~/)]) . (26) 

The average in (26)is understood in the sense of (14). 
All functional integrals being gaussian, they are easily 
evaluated with the result 

A(Pl...pN) = fD~0(~)exp( 2 6 - D f 2 ~  d d2~ 

X [~(3utp)2 +/aZe~]) 

X ; e x p ( / ~ .  ~(~ , ) ) / [ I  d2~/• 

The function K(~, ~', ~o) is a Green's function for the 
laplacian in the metric gab = e~fab" If the points ~ and 
~' do not coincide it is just 

K(~, ~ ' )=  - (4 , ) - l log (~  - ~,)2 . (28) 

However, when ~ is close to ~' extra care is needed. We 

have to recall about the cutoff built in our theory. The 
proper definition of K is given by 

K(~, ~') = ~ [Xn(~)Xn(~')/Xnl exp(-EXn) , (29) 
n 

where X n are eigenvalues, Xn are eigenfunctions of the 
laplacian and E is the proper time cut-off. 

Using (29) one shows that 

K(~, ~P)= - ( 4 . ) -  llog(1/E)I+ (4.),-  1~(~) (30) 

and in this way A functions are determined by the 
Liouville correlators. Note that at D = 26 only we ob- 
tain from (27) the standard dual model in the K o b a -  
Nielsen form (see ref. [6] for a review). For physical 
D one has to solve the Liouville theory in order to find 
the scattering amplitudes. 

A few words now about the quantization of the 
Houville theory. The lagrangian possesses the sym- 
metry 

~p(z,f)-+~p(w(z), ff2(z)) +log [dw/dz 12 , (31) 

which is all that remains from the general covariance 
after the specification of the conformal gauge. The 
theory must be quantized in such a way, that this in- 
variance remains untouched. It is possible to prove 
that this is indeed possible and leads to a unique renor- 
malization procedure. 

So, our main conclusion is that the summation of 
random surfaces is reduced to the two-dimensional, 
exactly solvable theory, and that the old "dual" ap- 
proach to the string is correct only at D = 26. 

Extension of these results to the Fermi case and 
their physical applications are discussed in other papers 
[2,71. 

I am grateful to A.A. Migdal and 
A.B. Zamolodchikov for valuable comments and to 
D.G. Makogonenko for the invaluable encouragement 
at the last and most difficult stage of this work. 

References 
[1] A.M. Polyakov, Phys. Lett. 82B (1979) 247. 
[2] V.G. Dotsenko and A.M. Polyakov, to be published. 
[3] A.A. Migdal, Nucl. Phys., to be published 
[4] L. Brink and J. Schwarz, Nucl. Phys. B121 (1977) 285. 
[5] A.S. Schwartz, Commun. Math. Phys. 64 (1979) 233. 
[6] S. Mandelstam, Phys. Rep. 13C (1974) 261. 
[7] A.M. Polyakov, Phys. Lett. 103B (1981) 211. 

210 

Here Dϕ(ξ) denotes the (ill-defined!) functional integration over a field
ϕ : Σ→ R, with Σ a Riemann surface. For µ = 0 we can make sense of
it as a Gaussian free field.

For µ > 0 we need to make sense of eϕ... (at
the mathematical level, see Duplantier-Sheffield 2008, Rhodes-Vargas et
al. using Kahane’s Gaussian multiplicative chaos...)

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 17 / 40



Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”
(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 

Z= f D~o(~)exp( -26-D f [½(ilu~°)2+/-~2e~°])( 
48.  ~ 25) 

This expression shows very dearly the origin of the com- 
monly known critical dimension 26 in the string theory: 
at this value of the dimension one could quantize the 
theory without bothering about the conformal anomaly, 
as has been done in dual models.However, for D < 26 
in order to get proper quantization we must examine 
the quantum Liouville theory described by the lagran- 
gian (25). This theory is two-dimensional, renormaliza- 
ble, and completely integrable. All that means that it is 
exactly solvable, just as sine-Gordon theory, and thus 
it must be possible to evaluate explicitly the partition 
function of closed surfaces. This work is in progress 
now and in the present paper I shall only demonstrate 
how to express different physical quantities, like the 
spectrum, scattering amplitudes etc. through the corre- 
lation functions of quantum Liouville theory. The 
basic idea is to sum over surfaces which contain a given 
set of points {x/}. The Fourier transform of such an 
amplitude has poles in g (p/is the momentum of 
point x/) which define the mass spectrum. The residues 
of these poles can be identified with the scattering am- 
plitude. So, we consider the average 

A (Pl... PN) 
= ( ~  f d2~/[g(~/)]l/2exp[ip/x(~/)]) . (26) 

The average in (26)is understood in the sense of (14). 
All functional integrals being gaussian, they are easily 
evaluated with the result 

A(Pl...pN) = fD~0(~)exp( 2 6 - D f 2 ~  d d2~ 

X [~(3utp)2 +/aZe~]) 

X ; e x p ( / ~ .  ~(~ , ) ) / [ I  d2~/• 

The function K(~, ~', ~o) is a Green's function for the 
laplacian in the metric gab = e~fab" If the points ~ and 
~' do not coincide it is just 

K(~, ~ ' )=  - (4 , ) - l log (~  - ~,)2 . (28) 

However, when ~ is close to ~' extra care is needed. We 

have to recall about the cutoff built in our theory. The 
proper definition of K is given by 

K(~, ~') = ~ [Xn(~)Xn(~')/Xnl exp(-EXn) , (29) 
n 

where X n are eigenvalues, Xn are eigenfunctions of the 
laplacian and E is the proper time cut-off. 

Using (29) one shows that 

K(~, ~P)= - ( 4 . ) -  llog(1/E)I+ (4.),-  1~(~) (30) 

and in this way A functions are determined by the 
Liouville correlators. Note that at D = 26 only we ob- 
tain from (27) the standard dual model in the K o b a -  
Nielsen form (see ref. [6] for a review). For physical 
D one has to solve the Liouville theory in order to find 
the scattering amplitudes. 

A few words now about the quantization of the 
Houville theory. The lagrangian possesses the sym- 
metry 

~p(z,f)-+~p(w(z), ff2(z)) +log [dw/dz 12 , (31) 

which is all that remains from the general covariance 
after the specification of the conformal gauge. The 
theory must be quantized in such a way, that this in- 
variance remains untouched. It is possible to prove 
that this is indeed possible and leads to a unique renor- 
malization procedure. 

So, our main conclusion is that the summation of 
random surfaces is reduced to the two-dimensional, 
exactly solvable theory, and that the old "dual" ap- 
proach to the string is correct only at D = 26. 

Extension of these results to the Fermi case and 
their physical applications are discussed in other papers 
[2,71. 

I am grateful to A.A. Migdal and 
A.B. Zamolodchikov for valuable comments and to 
D.G. Makogonenko for the invaluable encouragement 
at the last and most difficult stage of this work. 

References 
[1] A.M. Polyakov, Phys. Lett. 82B (1979) 247. 
[2] V.G. Dotsenko and A.M. Polyakov, to be published. 
[3] A.A. Migdal, Nucl. Phys., to be published 
[4] L. Brink and J. Schwarz, Nucl. Phys. B121 (1977) 285. 
[5] A.S. Schwartz, Commun. Math. Phys. 64 (1979) 233. 
[6] S. Mandelstam, Phys. Rep. 13C (1974) 261. 
[7] A.M. Polyakov, Phys. Lett. 103B (1981) 211. 

210 

Here Dϕ(ξ) denotes the (ill-defined!) functional integration over a field
ϕ : Σ→ R, with Σ a Riemann surface. For µ = 0 we can make sense of
it as a Gaussian free field. For µ > 0 we need to make sense of eϕ... (at
the mathematical level, see Duplantier-Sheffield 2008, Rhodes-Vargas et
al. using Kahane’s Gaussian multiplicative chaos...)

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 17 / 40



Random surfaces and 2D quantum gravity

In 1984-1985, several papers suggested another
approach: discretize quantum gravity using random
triangulations.
Liouville quantum gravity should emerge for a very
large number of vertices and a very small mesh size.
The computations require being able to enumerate
maps with various constraints, and matrix models
were used as an efficient tool.

Picture by N. Curien

V. Kazakov F. David J. Ambjørn, B. Durhuus, J. Fröhlich
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Random surfaces and 2D quantum gravity

A highlight of this approach is the “solution” of the 2D
Ising model on random triangulations by Kazakov in 1986,
using a two-matrix model.
Combinatorially, it corresponds to enumerating planar
triangulations endowed with a (non necessarily proper)
2-coloring, fixing the number of vertices and the number of
monochromatic edges. (For proper colorings, we recover
Tutte’s “chromatic sum” at λ = 2.)

Quite surprisingly, the resulting critical exponents were in complete
agreement with predictions from Liouville quantum gravity.
The Potts model (q-colorings for general q) was similarly “solved” via
matrix models a few years later (Daul, Zinn-Justin, Bonnet, Eynard...),
still consistently with LQG.
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Outline

1 The beginning: Tutte’s recursive approach

2 A detour in physics: matrix models and 2D quantum gravity

3 The bijective approach: labeled trees and the Brownian map

4 Beyond the Brownian map
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The bijective approach
Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte’s enumeration formula for rooted planar
maps with n edges

Mn = 2 · 3n · (2n)!

n!(n + 2)!
.

A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer
gave a simpler construction in 1997. Following Tutte, let us first observe
that Mn is also the number of rooted planar quadrangulations with n faces
(or, dually, 4-regular maps with n vertices).
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Cori-Vauquelin-Schaeffer bijection

Let us also observe that a planar quadrangulation with n edges has n + 2
vertices, therefore

(n + 2)Mn = 2 · 3n · (2n)!

n!(n + 1)!

enumerates pointed rooted planar quadrangulations with n faces.

The rightmost factor is the n-th Catalan number, counting the number of
rooted plane trees with n edges. The 3n factor should then correspond to
a threefold choice for each edge.
Idea: let us consider a labeling ` of the vertices of the tree by integers,
such that

`(root) = 0,

|`(u)− `(v)| 6= 1 if u, v are neighbours.
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Cori-Vauquelin-Schaeffer bijection

The CVS bijection has the following interesting property: let v∗ be the
added vertex, then for any vertex v of the tree we have

dQ(v , v∗) = `(v)−min `+ 1

where dQ is the graph distance in the quadrangulation.

Therefore, we may obtain information on the metric properties of random
quadrangulations by studying labeled trees, which are much simpler and
studied objects.
It is not difficult to see that, for a uniform random quadrangulation with n
faces, the distances should be of order n1/4 (the branches of the trees have
length ∝ n1/2, on each branch the labels form a lazy random walk on Z).
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Consequences of the CVS bijection

This was made more precise in several works. Chassaing and Schaeffer
proved in 2002 that

1

n1/4
max dQn(·, v∗) (d)−−−→

n→∞
wISE

where wISE is a certain random variable (width of the Integrated
SuperBrownian Excursion).

More generally, the empirical distribution of
the rescaled distances 1

n

∑
v∈Qn

δn−1/4dQn (v ,v∗) converges to a random
measure, the shifted ISE.
Of course, v∗ plays no special role, it is just a uniformly chosen vertex in
the quadrangulation.
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Consequences of the CVS bijection
With Di Francesco and Guitter, I obtained in 2003 an exact expression for
the generating function R`(t) of planar quadrangulations with two marked
vertices at distance ≤ `. It reads

R` = R
(1− x`)(1− x`+3)

(1− x`+1)(1− x`+2)

where the series R = R(t) and x = x(t) satisfy

R = 1 + 3tR2, x +
1

x
+ 1 =

1

tR2
.

This encodes the exact law for the distance
between two uniform points in a random
quadrangulation of size n.

The limit n→∞ can be analyzed by
standard analytical methods, and we confirm
a prediction of Ambjørn and Watabiki
(1996).
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Beyond the CVS bijection

The CVS bijection encodes the distances from only one specific vertex.
Can we go beyond this limitation?

Miermont gave in 2007 a generalization of the CVS bijection, and with
Guitter we realized in 2008 that it could be used the characterize the law
of distances between three random points (“three-point function”).
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Towards the Brownian map

In parallel, there has been an ongoing effort by probabilists to define a
random continuous object which is to random quadrangulations what
Brownian motion is to random walks, i.e. a scaling limit.

From the CVS bijection, it is natural to describe first what a “continuum”
labeled tree would be.
Recall that a rooted plane tree with n edges can be described by its
contour process, which is a Dyck path of length 2n.
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Towards the Brownian map

The scaling limit of Dyck paths is well-known, it is a Brownian excursion.

Then, we need to understand the labels. By reading them along the
contour, we obtain an auxiliary label process.

0

0

0

1

1

−1 −1

−1

Theorem (Chassaing-Schaeffer, 2002)

By appropriate rescalings, the contour and the label processes of a uniform
random labeled tree with n edges converge jointly to a continuous process
(e,Z ) called the Brownian snake.
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The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need
to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)

Marckert and Mokkadem proposed such a construction in 2006, defining
the Brownian map as a certain compact random metric space. But then,
it took several years to fully prove the convergence of random
quadrangulations in a desirable sense.

Theorem (Miermont 2013, Le Gall 2013)

Rescaled random quadrangulations converge to the Brownian map with
respect to the Gromov-Hausdorff topology over (equivalence classes of)
compact metric spaces.

(Several properties proved in the meantime: BM is homeomorphic to the
sphere, Hausdorff dimension is 4, geodesics, etc.)
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Outline

1 The beginning: Tutte’s recursive approach

2 A detour in physics: matrix models and 2D quantum gravity

3 The bijective approach: labeled trees and the Brownian map

4 Beyond the Brownian map
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Beyond the Brownian map

The Brownian map is believed to be the “universal” scaling limit for any
“reasonable” family of planar maps, i.e. basically any family whose
enumeration by size goes as

M̃n ∼ Cκnn−5/2.

This is the case for general maps, triangulations, p-angulations, simple
maps, 2-connected maps, etc.
Is there nothing else to see? Since Kazakov’s solution, we know that for
maps endowed with a critical Ising model,

Z Ising
n (νc) ∼ Cκnn−7/3.

(For the q-state Potts model, the exponent varies with q.)
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Slicings

We again find inspiration in the work of Tutte:

Theorem (Census of slicings, 1962)

The number of bipartite rooted planar maps with e edges and f faces,
among which fi have degree 2i for all i , is

2 · e!

(e − v + 2)!

∏
i≥1

(
2i − 1

i

)fi 1

fi !
.

Schaeffer gave a bijective proof of this formula in 1997, using a different
sort of trees. In 2004, with Di Francesco and Guitter, we generalized the
CVS bijection to this setting (and more). This is now known as the BDG
bijection.
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove
that triangulations (or p-angulations for general p) converge to the
Brownian map.

It also allows to enumerate Ising maps, but with not enough control on
distances.
To reach new universality classes, we need to consider Boltzmann random
maps: to a bipartite map m we assign a probability

Prob(m) ∝
∏
i≥1

q#faces of degree 2i
i

where (qi )i≥1 is a given sequence of face weights. By the BDG bijection,
we obtain a certain distribution over mobiles (labeled trees), where qi
controls the proportion of vertices of degree i . The structure of such a
tree is best described by its Lukasiewicz path (instead of contour), as qi
controls the probability to jump up by i − 1.
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Beyond the Brownian map

By an appropriate choice of the qi ’s, we can ensure that the Lukasiewicz
path makes “large jumps” in such a way that its scaling limit is not a
Brownian excursion, but another Lévy process.

Theorem (Le Gall-Miermont, 2011)

For any d ∈ (2, 4), there exists nongeneric sequences of face weights
(qi )i≥1 for which the corresponding Boltzmann random maps of size n
have distances of order n1/d .
After rescaling, these maps converge (along subsequences) to a random
compact metric space of Hausdorff dimension d .

By a continuous analogue of the BDG bijection, Le Gall and Miermont
also constructed the conjecturally unique limit, the stable map.
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Beyond the Brownian mapSimulations: dense case

a = 1.8

Picture by T. Budd of the dual of a stable map
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Beyond the Brownian map

Can we connect this with physics?

Yes, Le Gall and Miermont conjectured that stable maps are connected
with the so-called O(n) loop model on random maps (related to FK
percolation, n = 1 corresponds to percolation and the Ising model).

Picture by J. Bettinelli
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Beyond the Brownian map

More precisely, the stable map should describe the scaling limit of the
“gasket” in the O(n) loop model (think of the percolation cluster
containing the root).

Theorem (Borot-B-Guitter 2012)

At a critical point of the O(n) loop model, the gasket is a nongeneric
Boltzmann random map with

d = 3± 2

π
arccos

(n
2

)
.

Latest developments: results about the nestings of loops, that connect
with Liouville quantum gravity (Borot-B-Duplantier 2016,
Chen-Curien-Maillard 2017).
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Conclusion

We have seen that the enumerative theory of maps, initiated by Tutte, had
fascinating and unexpected developments beyond combinatorics in random
matrix theory, quantum gravity and random geometry.

This is just my own perspective and I certainly forgot many other deep
aspects, e.g.:

enumeration of maps of higher genus, that led to the so-called
“topological recursion” in algebraic geometry,

much work on the connection between random maps and Liouville
quantum gravity – see the recent preprint of Gwynne-Miller-Sheffield
on Tutte embedding of the mated-CRT map.

To conclude let me quote a colleague of Tutte: “If I have seen further it is
by standing on the shoulders of giants.”
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