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Planar map: definition

A planar map is a connected (multi)graph
embedded in the sphere, considered up to
continuous deformation. It is made of
vertices, edges and faces.

o Z
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Planar map: definition

A planar map is a connected (multi)graph
embedded in the sphere, considered up to
continuous deformation. It is made of
vertices, edges and faces.

A rooted map has a distinguished oriented
edge. A pointed map has a distinguished
vertex.

o Z
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Outline

@ The beginning: Tutte's recursive approach
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Jérémie

Tutte's “Census” papers (1962-63)

A CENSUS OF PLANAR TRIANGULATIONS
W. T. TUTTE

1. Triangulations. Let P be a closed region in the plane bounded by a
simple closed curve, and let S be a simplicial dissection of P. We may say
that S'is a dissection of P into a finite number « of triangles so that no vertex
of any one triangle is an interior point of an edge of another. The triangles
are “topological”’ triangles and their edges are closed arcs which need not be
straight segments. No two distinct edges of the dissection join the same two
vertices, and no two triangles have more than two vertices in common.

There are k > 3 vertices of S in the boundary of P, and they subdivide
this boundary into % edges of S. We call these edges external and the remaining
edges of S, if any, internal. If r is the number of internal edges we have
(L1 Ba = 2r + k,

(1.2) r =k (mod 3).

Let us call S a triangulation of P if it satisfies the following condition: no
internal edge of S has both its ends in the boundary of P. We note that in the
case k = 3 every simplicial di: ion is a tria lati

A CENSUS OF SLICINGS
W. T. TUTTE

1. Introduction. A band is a closed connected set in the 2-sphere,
bounded by one or more disjoint simple closed curves.

Consider a band B with bounding curves Jy, J, . . ., Jz. On each curve J;
let there be chosen 72, > 0 points to be called vertices, with the restriction
that the sum of the & integers m, is to be even. Write

a > mi=2n

Next consider a set of z disjoint open arcs in the interior of B which join the
2n vertices in pairs and partition the remainder of the interior of B into
simply connected domains. We call the resulting dissection of B a slicing with
respect to the given set of vertices. The arcs are the internal edges of the slicing
and the simply connected domains are its internal faces, or slices.

outtier (CE

A CENSUS OF HAMILTONIAN POLYGONS
W. T. TUTTE

Summary. In this paper we deal with trivalent planar maps in which
the boundary of each country (or “face”) is a simple closed curve. One vertex
is distinguished as the root and its three incident edges are distinguished as the
first, second, and third major edges. We determine the average number of
Hamiltonian polygons, passing through the first and second major edges, in
such a “rooted map” of 2n vertices. Next we consider the corresponding
problem for 3-connected rooted maps. In this case we obtain a functional
equation from which the average can be computed for small values of 7.

1. Rooted maps. For the purposes of this paper a planar map M is a
representation of the 2-sphere (or closed plane) as a union of a finite number
of disjoint point-sets called cells. The cells are of three kinds, vertices, edges,
and faces, said to have dimension 0, 1, and 2 respectively. Each vertex consists
of a single point. Each edge is an open arc whose ends are distinct vertices.
Each face is a simply connected domain whose boundary is a simple closed
curve made up of edges and vertices. We denote the numbers of cells, vertices,
edges, and faces of M by C(M), V(M), E(M), and F(M) respectively.

A CENSUS OF PLANAR MAPS
W. T. TUTTE

1. Introduction. In the series of “Census” papers, of which this is the
fourth, we attempt to lay the groundwork of an enumerative theory of planar
maps (12, 13, 14). The maps concerned are rooted in the sense that some edge
is fixed as the root, and a positive sense of description and right and left sides
are specified for it. This device simplifies the theory by ruling out the possi-
bility of a map being symmetrical.

In this paper formulae are obtained for the number of rooted maps (with
n edges), the number of non-separable rooted maps, and the number of 3-
connected rooted maps without multiple joins (called ¢-nets). Some similar
enumerations, supplementing the results of earlier papers, are given for tri-
angulations and bicubic maps.
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Tutte's recursive approach to counting planar maps

Let M, be the number of rooted planar maps with n edges.
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Tutte's recursive approach to counting planar maps

Let M, be the number of rooted planar maps with n edges. It satisfies no
obvious recurrence relation!
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Tutte's recursive approach to counting planar maps

Let M, be the number of rooted planar maps with n edges. It satisfies no
obvious recurrence relation!

Let M, « be the number of rooted planar maps with n edges and outer
degree k. Now we can do something.
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Tutte's recursive approach to counting planar maps

Let M, be the number of rooted planar maps with n edges. It satisfies no

obvious recurrence relation!
Let M, « be the number of rooted planar maps with n edges and outer

degree k. Now we can do something.
We will find and solve an equation satisfied by the generating function

M(x,y) == Y Mnsx"y*
n,k>0

though we are ultimately interested only in M(x,1) (y is a “catalytic”
variable).
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Tutte's recursive approach to counting planar maps

"9
"“
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Tutte's recursive approach to counting planar maps

"9
"“

Mn,k — Z Mnl,kl an,kg + z Mn—l,k’
nm+n=n-1 k'>k'—1
ki+ky=k—2
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Tutte's recursive approach to counting planar maps

"9
"“

Mn,k = Z Mnl,kl an,kQ + z Mn—Lk’
ni+no=n-—1 k'>k—1
ki+ko=k—2

(holds for n > 1, with Moo =1, Mo s = 0 for k > 1)
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Tutte's recursive approach to counting planar maps

"9
"“

yM(x,y) — M(x,1)
y—1

M(x,y) =1+ xy>M(x, y)* + xy
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Tutte's recursive approach to counting planar maps

M(x, y) satisfies
O(M(x,y), M(x,1),x,y) =0 (1)

where

O(M,m,x,y) =xy*(1 — y)M> + (y =1 — xy*)M + 1 — y + xym.
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Tutte's recursive approach to counting planar maps

M(x, y) satisfies
O(M(x,y), M(x,1),x,y) =0 (1)

where
O(M, m,x,y) =xy*(1 —y)M?> 4 (y =1 — xy* )M +1 — y + xym.
By differentiating (1) wrt y, we get
od oM od

8_M(M(X’y)’ M(Xv 1)7X7 ) (X )/) + @(M(va% M(Xv 1)7X7)/) = 0.
2) 3)
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Tutte's recursive approach to counting planar maps
M(x, y) satisfies
®(M(x,y), M(x,1),x,y) =0 (1)
where
(M, m,x,y) = xy*(L = y)M? + (y = 1 = xy*)M + 1 — y + xym.

By differentiating (1) wrt y, we get

(MO 9). MG 1)) 5100 9) + 57 (M) M, 1) . 5) = .
@ 3)

Let Y(x) be a series such that (2) vanishes when we substitute y = Y(x)
(it exists and is unique!).
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Tutte's recursive approach to counting planar maps
M(x, y) satisfies
®(M(x,y), M(x,1),x,y) =0 (1)
where
(M, m,x,y) = xy*(L = y)M? + (y = 1 = xy*)M + 1 — y + xym.

By differentiating (1) wrt y, we get

(MO 9). MG 1)) 5100 9) + 57 (M) M, 1) . 5) = .
@ 3)

Let Y(x) be a series such that (2) vanishes when we substitute y = Y(x)
(it exists and is unique!). Then (3) vanishes too.
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Tutte's recursive approach to counting planar maps

M(x, y) satisfies
O(M(x,y), M(x,1),x,y) = 0 (1)

where
O(M,m,x,y) =xy*(1 — y)M> + (y =1 — xy*)M + 1 — y + xym.

By differentiating (1) wrt y, we get

(MO 9). MG 1)) 5100 9) + 57 (M) M, 1) . 5) = .
@ 3)

Let Y(x) be a series such that (2) vanishes when we substitute y = Y(x)
(it exists and is unique!). Then (3) vanishes too. Combined with (1), we
get 3 equations for 4 parameters, hence by elimination we may deduce an
algebraic equation relating M(x, 1) and x.
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Tutte's recursive approach to counting planar maps

In practice, we even get a rational parametrization

Y(4—3Y)
(3-2Y)2

e Y=nG=2)

Y? ’
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Tutte's recursive approach to counting planar maps
In practice, we even get a rational parametrization

L _(Y=1pE-2y)

Y(4—3Y)
Y2 ’

(3-2Y)2

which allows to apply the Lagrange inversion theorem and get:

M(x,1) =

Theorem (Census of planar maps, 1963)

The number M,, of rooted planar maps with n edges is 2 - 3" - n!gi'jr)é)!. J
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Tutte's recursive approach to counting planar maps

In practice, we even get a rational parametrization

_ (r=1)B-2Y) _
X = V2 , M(x,1) =

Y(4—3Y)
(3—2Y)?

which allows to apply the Lagrange inversion theorem and get:
Theorem (Census of planar maps, 1963)

The number M,, of rooted planar maps with n edges is 2 - 3" - n!Ei’J’r)é)!_

Some remarks:

e for many classes of maps, we get a similar quadratic equation —-
“quadratic method” (Brown, 1965)

@ nowadays there is a general method to solve polynomial equations
with one catalytic variable (Bousquet-Mélou and Jehanne, 2006)

e asymptotically M, ~ C12"n~%/2, the —5/2 exponent is universal.
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Outline

9 A detour in physics: matrix models and 2D quantum gravity
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Matrix models

G. 't Hooft E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber
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Matrix models

In 1972, 't Hooft suggested a new approach to SU(N) gauge theory
(N = 3 corresponds to quantum chromodynamics aka QCD), by
considering the limit where N is large. He showed that the Feynman
diagrams that dominate in this limit are planar.
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Matrix models

In 1972, 't Hooft suggested a new approach to SU(N) gauge theory
(N = 3 corresponds to quantum chromodynamics aka QCD), by
considering the limit where N is large. He showed that the Feynman
diagrams that dominate in this limit are planar.

Planar Diagrams

E. Brézin, C. Itzykson, G. Parisi*, and J. B. Zuber
Service de Physique Théorique, Centre d’Etudes Nucléaires de Saclay, F-91190 Gif-sur-Yvette, France

Abstract. We investigate the planar approximation to field theory through the
limit of a large internal symmetry group. This yields an alternative and
powerful method to count planar diagrams. Results are presented for cubic
and quartic vertices, some of which appear to be new. Quantum mechanics
treated in this approximation is shown to be equivalent to a free Fermi gas
system.

In 1978, BIPZ considered the special case of zero spatial dimensions,
where the gauge field reduces to a simple N x N matrix.
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Matrix models

The problem is to estimate the large N asymptotics of an integral over
N x N hermitian matrices.

3. Combinatorics of Quartic Vertices
1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space-time is reduced to one or
to a finite number of points. It means that

exp— N2E©(g)= lim |d"*Mexp— |4tr M2+ —I%tr M*. ?)
N-o
The integration measure on hermitian matrices is
M= [‘[ M D, d(Re M, )d(Im M) 4)

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 13 / 40



Matrix models

The problem is to estimate the large N asymptotics of an integral over
N x N hermitian matrices.

3. Combinatorics of Quartic Vertices
1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space-time is reduced to one or
to a finite number of points. It means that

exp— N2E©(g)= lim |d"*Mexp— |4tr M2+ —I%tr M. 3)
N-o
The integration measure on hermitian matrices is
M= [‘[ M U, d(Re M, )d(Im M) 4)

Such an integral may be viewed as a perturbation of a Gaussian integral
(GUE partition function).
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Matrix models

The problem is to estimate the large N asymptotics of an integral over
N x N hermitian matrices.

3. Combinatorics of Quartic Vertices
1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space-time is reduced to one or
to a finite number of points. It means that

exp— N2E©(g)= lim |d"*Mexp— %trM2+%trM“ . 3)
N-ow
The integration measure on hermitian matrices is
dV'M=[]dM, [] d(Re M,)d(Im M) @
i i<j
Such an integral may be viewed as a perturbation of a Gaussian integral
(GUE partition function). By a formal expansion of the non Gaussian term,

we get a perturbative series which is standardly represented via Feynman
diagrams.
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Matrix models

In the context of N x N matrices, the Feynman diagrams can be
represented as “fatgraphs” or “ribbon graphs” (because a matrix carries

two indices). For instance, the diagrams contributing to the expansion of
((TrM3)2) are:
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Matrix models

In the context of N x N matrices, the Feynman diagrams can be
represented as “fatgraphs” or “ribbon graphs” (because a matrix carries

two indices). For instance, the diagrams contributing to the expansion of
((TrM3)2) are:

Each diagram has a contribution oc N#{vertices}—#{edges}+#{faces} _ p2-2h
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Matrix models

In the context of N x N matrices, the Feynman diagrams can be
represented as “fatgraphs” or “ribbon graphs” (because a matrix carries

two |nd|ces) For instance, the diagrams contributing to the expansion of
((TrM3)2) are:

Each diagram has a contribution oc N#{vertices}—#{edges}+7#{faces} _ p2—2h
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Matrix models

In the context of N x N matrices, the Feynman diagrams can be
represented as “fatgraphs” or “ribbon graphs” (because a matrix carries

two indices). For instance, the diagrams contributing to the expansion of
((TrM3)2) are:

e =

Each diagram has a contribution oc N#{vertices}—#{edges}+#{faces} _ p2-2h

Table 1. Counting rules for the vacuum amplitude E‘”(g) in
the planar limit, up to order three

. . O < > o0
When N gets large, the dominant diagrams " ~ o §
g g 5o
correspond to planar maps!
é [ecee]
64g° 128¢° %93
- Jérémie Bouttier (CEA/ENS de Lyon) | Enumeration of planar maps  RITai @ e N 10k
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Matrix models

Bottom line: map generating functions can be expressed formally as the
large N limit of matrix integrals. But can we evaluate those 7
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Matrix models

Bottom line: map generating functions can be expressed formally as the
large N limit of matrix integrals. But can we evaluate those 7
Yes we can, by exploiting the U(N) invariance of the integrand:

38

E. Brézin et al.

Since the integrand (3) depends only on the eigenvalues 4, this allows us to
integrate over U and, up of to a g-independent normalizing factor we obtain

exp—NzE‘O)(g)=n}im iT142 11 (Ai—/lj)zexp— {%Zlf+ %Z . (6)
—o "y i<j

In the large N-limit the steepest descent method can be used to compute (6),
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Matrix models

Bottom line: map generating functions can be expressed formally as the
large N limit of matrix integrals. But can we evaluate those 7
Yes we can, by exploiting the U(N) invariance of the integrand:

38 E. Brézin et al.

Since the integrand (3) depends only on the eigenvalues 4, this allows us to
integrate over U and, up of to a g-independent normalizing factor we obtain

exp— N2E(°)(g)=13im §TT1d2 11— /lj)zexp— {%Z 2+ %Z . (6)
o0 i i<j

In the large N-limit the steepest descent method can be used to compute (6),

The steepest descent method consists in understanding the large N-limit
of the empirical distribution of eigenvalues ppy := % Z,N_l dy;, by assuming

(or showing) that it converges to a continuous distribution y solving a
minimization problem.
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Matrix models

Bottom line: map generating functions can be expressed formally as the
large N limit of matrix integrals. But can we evaluate those 7

Yes we can, by exploiting the U(N) invariance of the integrand:

38 E. Brézin et al.

Since the integrand (3) depends only on the eigenvalues 4, this allows us to
integrate over U and, up of to a g-independent normalizing factor we obtain

exp— NZE(O)(g)=13im §TT1d2 11— /lj)zexp— {%Z 2+ %Z . (6)
o0 i i<j

In the large N-limit the steepest descent method can be used to compute (6),

The steepest descent method consists in understanding the large N-limit
of the empirical distribution of eigenvalues ppy := % Z,N:l dy;, by assuming
(or showing) that it converges to a continuous distribution y solving a

minimization problem. Here, 1 will be a perturbation of the well-known
Wigner semicircle distribution.
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Matrix models

The k-th moment of the limiting empirical distribution 1 corresponds to
the generating function of rooted planar maps with outer degree k.
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Matrix models

The k-th moment of the limiting empirical distribution p corresponds to
the generating function of rooted planar maps with outer degree k.
The constant term in this series (g = 0) is the k-th moment of the
semicircle distribution, which vanishes for k odd, while for k = 2m it is:

o the m-th Catalan number ¢, = %

@ i.e. the number of rooted plane trees with m edges,

@ i.e. the number of unicellular planar maps with outer degree 2m.
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Matrix models

The k-th moment of the limiting empirical distribution p corresponds to
the generating function of rooted planar maps with outer degree k.
The constant term in this series (g = 0) is the k-th moment of the

semicircle distribution, which vanishes for k odd, while for k =2m it is:
(2m)!

m!(m+1)!’

@ i.e. the number of rooted plane trees with m edges,

o the m-th Catalan number ¢, =

@ i.e. the number of unicellular planar maps with outer degree 2m.

To count general (non unicellular) maps we need to study the non
Gaussian (g # 0) case.
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Matrix models

The k-th moment of the limiting empirical distribution p corresponds to
the generating function of rooted planar maps with outer degree k.
The constant term in this series (g = 0) is the k-th moment of the

semicircle distribution, which vanishes for k odd, while for k =2m it is:
(2m)!

m!(m+1)!’

@ i.e. the number of rooted plane trees with m edges,

o the m-th Catalan number ¢, =

@ i.e. the number of unicellular planar maps with outer degree 2m.

To count general (non unicellular) maps we need to study the non
Gaussian (g # 0) case. Nowadays, this is routinely done using the
so-called loop or Schwinger-Dyson equations for the resolvent

o du(x) — 1 K dulx
A= [ S -3 [ antx)

which are basically equivalent to Tutte's recursive equations (z is the
catalytic variable).
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Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”

(A. Polyakov, Quantum geometry of bosonic strings, 1981)
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Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”

(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:

2= [ Do@ess(- 5, f 3,00 +12 e“’])( )
25

Here Dp(&) denotes the (ill-defined!) functional integration over a field
¢ X — R, with ¥ a Riemann surface.
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Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”

(A. Polyakov, Quantum geometry of bosonic strings, 1981)

His paper introduces Liouville quantum gravity:

2= [ Do@ess(- 5, f 3,00 +12 e“’])( )
25

Here Dp(&) denotes the (ill-defined!) functional integration over a field
¢ X — R, with ¥ a Riemann surface. For yt = 0 we can make sense of
it as a Gaussian free field.

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 17 / 40



Random surfaces and 2D quantum gravity
“There are methods and formulae in science, which serve as
master-keys to many apparently different problems. The
resources of such things have to be refilled from time to
time. In my opinion at the present time we have to develop
an art of handling sums over random surfaces.”

(A. Polyakov, Quantum geometry of bosonic strings, 1981)

-2

i

His paper introduces Liouville quantum gravity:

2= [ Do@ess(- 5, f 3,00 +12 e“’])( )
25

Here Dp(&) denotes the (ill-defined!) functional integration over a field
¢ X — R, with ¥ a Riemann surface. For yt = 0 we can make sense of
it as a Gaussian free field. For p > 0 we need to make sense of e¥... (at
the mathematical level, see Duplantier-Sheffield 2008, Rhodes-Vargas et
al. using Kahane's Gaussian multiplicative chaos...)
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Random surfaces and 2D quantum gravity

In 1984-1985, several papers suggested another
approach: discretize quantum gravity using random
triangulations.

Liouville quantum gravity should emerge for a very
large number of vertices and a very small mesh size.
The computations require being able to enumerate
maps with various constraints, and matrix models
were used as an efficient tool.

| \)\\\‘

V. Kazakov F. David J. Ambjarn, B. Durhuus, J. Frohlich
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Random surfaces and 2D quantum gravity

A highlight of this approach is the “solution” of the 2D
Ising model on random triangulations by Kazakov in 1986,
using a two-matrix model.

Combinatorially, it corresponds to enumerating planar
triangulations endowed with a (non necessarily proper)
2-coloring, fixing the number of vertices and the number of
monochromatic edges. (For proper colorings, we recover
Tutte's “chromatic sum” at A = 2.)
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Random surfaces and 2D quantum gravity

A highlight of this approach is the “solution” of the 2D
Ising model on random triangulations by Kazakov in 1986,
using a two-matrix model.

Combinatorially, it corresponds to enumerating planar
triangulations endowed with a (non necessarily proper)
2-coloring, fixing the number of vertices and the number of
monochromatic edges. (For proper colorings, we recover
Tutte's “chromatic sum” at A = 2.)

Quite surprisingly, the resulting critical exponents were in complete
agreement with predictions from Liouville quantum gravity.

The Potts model (g-colorings for general g) was similarly “solved” via
matrix models a few years later (Daul, Zinn-Justin, Bonnet, Eynard...),
still consistently with LQG.
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© The bijective approach: labeled trees and the Brownian map
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The bijective approach

Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar
maps with n edges

n 2n)!
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The bijective approach

Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar
maps with n edges

n 2n)!

A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer
gave a simpler construction in 1997.
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The bijective approach

Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar
maps with n edges

B N (2n)!
My =23 nl(n+2)1"
A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer
gave a simpler construction in 1997. Following Tutte, let us first observe
that M, is also the number of rooted planar quadrangulations with n faces
(or, dually, 4-regular maps with n vertices).
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find a bijective proof of Tutte's enumeration formula for rooted planar
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B N (2n)!
My =23 nl(n+2)1"
A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer
gave a simpler construction in 1997. Following Tutte, let us first observe
that M, is also the number of rooted planar quadrangulations with n faces
(or, dually, 4-regular maps with n vertices).
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Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar
maps with n edges

B N (2n)!
My =23 nl(n+2)1"
A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer
gave a simpler construction in 1997. Following Tutte, let us first observe
that M, is also the number of rooted planar quadrangulations with n faces
(or, dually, 4-regular maps with n vertices).
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The bijective approach

Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar

maps with n edges
|
M,=2-3". %
n!(n+2)!
A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer

gave a simpler construction in 1997. Following Tutte, let us first observe
that M, is also the number of rooted planar quadrangulations with n faces

(or, dually, 4-regular maps with n vertices).
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The bijective approach

Let us return to pure enumerative combinatorics and ask whether we can
find a bijective proof of Tutte's enumeration formula for rooted planar
maps with n edges
2n)!
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" nl(n+2)!
A first bijection was given by Cori and Vauquelin in 1981, but Schaeffer

gave a simpler construction in 1997. Following Tutte, let us first observe
that M, is also the number of rooted planar quadrangulations with n faces

(or, dually, 4-regular maps with n vertices).
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Cori-Vauquelin-Schaeffer bijection

Let us also observe that a planar quadrangulation with n edges has n + 2
vertices, therefore
(2n)!

)M, =237
(n+2) 3 1)

enumerates pointed rooted planar quadrangulations with n faces.
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Cori-Vauquelin-Schaeffer bijection

Let us also observe that a planar quadrangulation with n edges has n + 2
vertices, therefore

(2n)!

)M, =237
(n+2) 3 1)

enumerates pointed rooted planar quadrangulations with n faces.
The rightmost factor is the n-th Catalan number, counting the number of
rooted plane trees with n edges.
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Cori-Vauquelin-Schaeffer bijection

Let us also observe that a planar quadrangulation with n edges has n + 2
vertices, therefore

(2n)!

)M, =2.3".
(n+2) 3 1)

enumerates pointed rooted planar quadrangulations with n faces.

The rightmost factor is the n-th Catalan number, counting the number of
rooted plane trees with n edges. The 3" factor should then correspond to
a threefold choice for each edge.
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Cori-Vauquelin-Schaeffer bijection

Let us also observe that a planar quadrangulation with n edges has n + 2
vertices, therefore

(2n)!

)M, =2.3".
(n+2) 3 1)

enumerates pointed rooted planar quadrangulations with n faces.

The rightmost factor is the n-th Catalan number, counting the number of
rooted plane trees with n edges. The 3" factor should then correspond to
a threefold choice for each edge.

Idea: let us consider a labeling ¢ of the vertices of the tree by integers,
such that

e /(root) =0,
o |{(u) —¢(v)| # 1if u,v are neighbours.
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Cori-Vauquelin-Schaeffer bijection
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Cori-Vauquelin-Schaeffer bijection
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Cori-Vauquelin-Schaeffer bijection

The CVS bijection has the following interesting property: let v* be the
added vertex, then for any vertex v of the tree we have

do(v,v*) =4(v) —minl +1

where dq is the graph distance in the quadrangulation.
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Cori-Vauquelin-Schaeffer bijection

The CVS bijection has the following interesting property: let v* be the
added vertex, then for any vertex v of the tree we have

do(v,v*) =4(v) —minl +1

where dg is the graph distance in the quadrangulation.
Therefore, we may obtain information on the metric properties of random

quadrangulations by studying labeled trees, which are much simpler and
studied objects.
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Cori-Vauquelin-Schaeffer bijection

The CVS bijection has the following interesting property: let v* be the
added vertex, then for any vertex v of the tree we have

do(v,v*) =4(v) —minl +1

where dg is the graph distance in the quadrangulation.

Therefore, we may obtain information on the metric properties of random
quadrangulations by studying labeled trees, which are much simpler and
studied objects.

It is not difficult to see that, for a uniform random quadrangulation with n
faces, the distances should be of order n'/* (the branches of the trees have
length o< n*/2, on each branch the labels form a lazy random walk on 7).
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Consequences of the CVS bijection

This was made more precise in several works. Chassaing and Schaeffer
proved in 2002 that

where wigg is a certain random variable (width of the Integrated
SuperBrownian Excursion).
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Consequences of the CVS bijection

This was made more precise in several works. Chassaing and Schaeffer
proved in 2002 that

where wigg is a certain random variable (width of the Integrated
SuperBrownian Excursion). More generally, the empirical distribution of

the rescaled distances %ZveQn On—1/4dg, (v,v+) CONVerges to a random
measure, the shifted ISE.
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Consequences of the CVS bijection

This was made more precise in several works. Chassaing and Schaeffer
proved in 2002 that

where wigg is a certain random variable (width of the Integrated
SuperBrownian Excursion). More generally, the empirical distribution of

the rescaled distances %ZveQn On—1/4dg, (v,v+) CONVerges to a random
measure, the shifted ISE.

Of course, v* plays no special role, it is just a uniformly chosen vertex in
the quadrangulation.
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Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

OV (] 3
R = R (1 —x°)(1—x2)
(1 — xt+1)(1 — xt+2)
where the series R = R(t) and x = x(t) satisfy

1 1
R = 1+ 3tR? Z41= )
+3 , x+X+ iR2
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Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

(1 — x5 (1 — x*+3)
(1 — xtH1)(1 — xt+2)

where the series R = R(t) and x = x(t) satisfy

R, =R

1 1
R =1+ 3tR? 41l=—.
+ , X + . + R?
This encodes the exact law for the distance
between two uniform points in a random

quadrangulation of size n.

—=d,

n =250
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Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

(1 — x5 (1 — x*+3)
(1 — xtH1)(1 — xt+2)

where the series R = R(t) and x = x(t) satisfy

R, =R

R =1+ 3tR?, x+1+1: 1
X

This encodes the exact law for the distance
between two uniform points in a random
quadrangulation of size n.

el

n =100
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Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

(1 — x5 (1 — x*+3)
(1 — xtH1)(1 — xt+2)

where the series R = R(t) and x = x(t) satisfy

R, =R

R =1+ 3tR?, x+1+1: 1
X

This encodes the exact law for the distance
between two uniform points in a random
quadrangulation of size n.

d12

n =150

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017

26 / 40



Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

(1 — x5 (1 — x*+3)
(1 — xtH1)(1 — xt+2)

where the series R = R(t) and x = x(t) satisfy

R, =R

R =1+ 3tR?, x+1+1: 1
X

This encodes the exact law for the distance
between two uniform points in a random
quadrangulation of size n.

n =200
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Consequences of the CVS bijection

With Di Francesco and Guitter, | obtained in 2003 an exact expression for

the generating function Ry(t) of planar quadrangulations with two marked
vertices at distance < /. It reads

(1 —x9(1—x*3)
(1 — xtH1)(1 — xt+2)

where the series R = R(t) and x = x(t) satisfy

R, =R

R =1+ 3tR?, x+1+1:
X

This encodes the exact law for the distance
between two uniform points in a random .
quadrangulation of size n. .
The limit n — oo can be analyzed by

standard analytical methods, and we confirm

3/4

np(dim™)

) . ) . . 202122 d12
a prediction of Ambjgrn and Watabiki
(1996). dip ~ nl/4
~ Jérémie Bouttier (CEA/ENS de Lyon) | Enumeration of planar maps  RTatN@ e s BN 1 0l b AT YAV T))



Beyond the CVS bijection

The CVS bijection encodes the distances from only one specific vertex.
Can we go beyond this limitation?
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Beyond the CVS bijection

The CVS bijection encodes the distances from only one specific vertex.
Can we go beyond this limitation?

Miermont gave in 2007 a generalization of the CVS bijection, and with
Guitter we realized in 2008 that it could be used the characterize the law
of distances between three random points (“three-point function™).
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Beyond the CVS bijection

The CVS bijection encodes the distances from only one specific vertex.
Can we go beyond this limitation?

Miermont gave in 2007 a generalization of the CVS bijection, and with
Guitter we realized in 2008 that it could be used the characterize the law
of distances between three random points (“three-point function™).
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Towards the Brownian map

In parallel, there has been an ongoing effort by probabilists to define a
random continuous object which is to random quadrangulations what
Brownian motion is to random walks, i.e. a scaling limit.
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Towards the Brownian map

In parallel, there has been an ongoing effort by probabilists to define a
random continuous object which is to random quadrangulations what
Brownian motion is to random walks, i.e. a scaling limit.

From the CVS bijection, it is natural to describe first what a “continuum”
labeled tree would be.
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Towards the Brownian map

In parallel, there has been an ongoing effort by probabilists to define a
random continuous object which is to random quadrangulations what
Brownian motion is to random walks, i.e. a scaling limit.

From the CVS bijection, it is natural to describe first what a “continuum”
labeled tree would be.

Recall that a rooted plane tree with n edges can be described by its
contour process, which is a Dyck path of length 2n.
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Towards the Brownian map

The scaling limit of Dyck paths is well-known, it is a Brownian excursion.
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Towards the Brownian map

The scaling limit of Dyck paths is well-known, it is a Brownian excursion

Then, we need to understand the labels. By reading them along the
contour, we obtain an auxiliary label process.

Q
O\J ) O,
(0 (D
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Towards the Brownian map

The scaling limit of Dyck paths is well-known, it is a Brownian excursion.
Then, we need to understand the labels. By reading them along the
contour, we obtain an auxiliary label process.

) NN

Theorem (Chassaing-Schaeffer, 2002)

By appropriate rescalings, the contour and the label processes of a uniform
random labeled tree with n edges converge jointly to a continuous process
(e, Z) called the Brownian snake.

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 29 / 40



The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need
to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)
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The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need

to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)

Marckert and Mokkadem proposed such a construction in 2006, defining

the Brownian map as a certain compact random metric space.
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The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need
to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)

Marckert and Mokkadem proposed such a construction in 2006, defining
the Brownian map as a certain compact random metric space. But then,
it took several years to fully prove the convergence of random
quadrangulations in a desirable sense.
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The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need
to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)

Marckert and Mokkadem proposed such a construction in 2006, defining
the Brownian map as a certain compact random metric space. But then,
it took several years to fully prove the convergence of random
quadrangulations in a desirable sense.

Theorem (Miermont 2013, Le Gall 2013)

Rescaled random quadrangulations converge to the Brownian map with
respect to the Gromov-Hausdorff topology over (equivalence classes of)
compact metric spaces.
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The Brownian map

Now, how do we construct a “map” from the Brownian snake? We need
to find a continuum analogue of the CVS bijection. (The analogue of the
tree/Dyck path correspondance already allows to construct the Brownian
Continuum Random Tree.)

Marckert and Mokkadem proposed such a construction in 2006, defining
the Brownian map as a certain compact random metric space. But then,
it took several years to fully prove the convergence of random
quadrangulations in a desirable sense.

Theorem (Miermont 2013, Le Gall 2013)

Rescaled random quadrangulations converge to the Brownian map with
respect to the Gromov-Hausdorff topology over (equivalence classes of)
compact metric spaces.

(Several properties proved in the meantime: BM is homeomorphic to the
sphere, Hausdorff dimension is 4, geodesics, etc.)
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@ Beyond the Brownian map
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Beyond the Brownian map

The Brownian map is believed to be the “universal” scaling limit for any
“reasonable” family of planar maps, i.e. basically any family whose
enumeration by size goes as

M, ~ Crk"n %2,
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Beyond the Brownian map

The Brownian map is believed to be the “universal” scaling limit for any
“reasonable” family of planar maps, i.e. basically any family whose
enumeration by size goes as

M, ~ Crk"n %2,

This is the case for general maps, triangulations, p-angulations, simple
maps, 2-connected maps, etc.

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 32 /40



Beyond the Brownian map

The Brownian map is believed to be the “universal” scaling limit for any

“reasonable” family of planar maps, i.e. basically any family whose
enumeration by size goes as

M, ~ Crk"n %2,
This is the case for general maps, triangulations, p-angulations, simple

maps, 2-connected maps, etc.
Is there nothing else to see?
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Beyond the Brownian map

The Brownian map is believed to be the “universal” scaling limit for any
“reasonable” family of planar maps, i.e. basically any family whose
enumeration by size goes as

M, ~ Ck"n>/2,

This is the case for general maps, triangulations, p-angulations, simple
maps, 2-connected maps, etc.

Is there nothing else to see? Since Kazakov's solution, we know that for
maps endowed with a critical Ising model,

Zsms(y ) ~ Crn T3,

(For the g-state Potts model, the exponent varies with g.)
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Slicings

We again find inspiration in the work of Tutte:

Theorem (Census of slicings, 1962)

The number of bipartite rooted planar maps with e edges and f faces,
among which f; have degree 2/ for all i, is

2 el 2i -1 fil
(e—v+2| £l
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Slicings

We again find inspiration in the work of Tutte:

Theorem (Census of slicings, 1962)

The number of bipartite rooted planar maps with e edges and f faces,
among which f; have degree 2/ for all i, is

2 el 2i -1 fil
(e—v+2| £l

Schaeffer gave a bijective proof of this formula in 1997, using a different
sort of trees.
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Slicings

We again find inspiration in the work of Tutte:

Theorem (Census of slicings, 1962)

The number of bipartite rooted planar maps with e edges and f faces,
among which f; have degree 2/ for all i, is

(e—2vjl-2 IH<21_1> fil’

Schaeffer gave a bijective proof of this formula in 1997, using a different
sort of trees. In 2004, with Di Francesco and Guitter, we generalized the
CVS bijection to this setting (and more). This is now known as the BDG
bijection.
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Mobiles
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove

that triangulations (or p-angulations for general p) converge to the
Brownian map.
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove
that triangulations (or p-angulations for general p) converge to the
Brownian map.

It also allows to enumerate Ising maps, but with not enough control on
distances.
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove
that triangulations (or p-angulations for general p) converge to the
Brownian map.

It also allows to enumerate Ising maps, but with not enough control on
distances.

To reach new universality classes, we need to consider Boltzmann random
maps: to a bipartite map m we assign a probability

PI“Ob O( H q#faces of degree 2i
i>1

where (gj)i>1 is a given sequence of face weights.
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove
that triangulations (or p-angulations for general p) converge to the
Brownian map.

It also allows to enumerate Ising maps, but with not enough control on
distances.

To reach new universality classes, we need to consider Boltzmann random
maps: to a bipartite map m we assign a probability

PI‘Ob O( H q#faces of degree 2i
i>1

where (gj)i>1 is a given sequence of face weights. By the BDG bijection,
we obtain a certain distribution over mobiles (labeled trees), where g;
controls the proportion of vertices of degree i.
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Beyond the Brownian map

The BDG bijection allows to control distances, thus was used to prove
that triangulations (or p-angulations for general p) converge to the
Brownian map.

It also allows to enumerate Ising maps, but with not enough control on
distances.

To reach new universality classes, we need to consider Boltzmann random
maps: to a bipartite map m we assign a probability

PI‘Ob O( H q#faces of degree 2i
i>1

where (gj)i>1 is a given sequence of face weights. By the BDG bijection,
we obtain a certain distribution over mobiles (labeled trees), where g;
controls the proportion of vertices of degree i. The structure of such a
tree is best described by its Lukasiewicz path (instead of contour), as g;
controls the probability to jump up by /i — 1.
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Beyond the Brownian map

By an appropriate choice of the g;'s, we can ensure that the Lukasiewicz
path makes “large jumps” in such a way that its scaling limit is not a
Brownian excursion, but another Lévy process.
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Beyond the Brownian map

By an appropriate choice of the g;'s, we can ensure that the Lukasiewicz
path makes “large jumps” in such a way that its scaling limit is not a
Brownian excursion, but another Lévy process.

Theorem (Le Gall-Miermont, 2011)

For any d € (2,4), there exists nongeneric sequences of face weights
(gi)i>1 for which the corresponding Boltzmann random maps of size n
have distances of order n'/9.

After rescaling, these maps converge (along subsequences) to a random
compact metric space of Hausdorff dimension d.

By a continuous analogue of the BDG bijection, Le Gall and Miermont
also constructed the conjecturally unique limit, the stable map.
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Beyond the Brownian map
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Beyond the Brownian map

Can we connect this with physics?
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Beyond the Brownian map

Can we connect this with physics?

Yes, Le Gall and Miermont conjectured that stable maps are connected
with the so-called O(n) loop model on random maps (related to FK
percolation, n = 1 corresponds to percolation and the Ising model).

Picture by J. Bettinelli
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Beyond the Brownian map

More precisely, the stable map should describe the scaling limit of the
“gasket” in the O(n) loop model (think of the percolation cluster
containing the root).

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 39 / 40



Beyond the Brownian map

More precisely, the stable map should describe the scaling limit of the
“gasket” in the O(n) loop model (think of the percolation cluster
containing the root).

Theorem (Borot-B-Guitter 2012)

At a critical point of the O(n) loop model, the gasket is a nongeneric
Boltzmann random map with

2
d = 3 &+ — arccos (2) .
T 2
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Beyond the Brownian map

More precisely, the stable map should describe the scaling limit of the
“gasket” in the O(n) loop model (think of the percolation cluster
containing the root).

Theorem (Borot-B-Guitter 2012)

At a critical point of the O(n) loop model, the gasket is a nongeneric
Boltzmann random map with

2
d = 3 &+ — arccos (2) .
T 2

Latest developments: results about the nestings of loops, that connect
with Liouville quantum gravity (Borot-B-Duplantier 2016,
Chen-Curien-Maillard 2017).

Jérémie Bouttier (CEA/ENS de Lyon) Enumeration of planar maps Tutte Centenary, 11 July 2017 39 / 40



Conclusion

We have seen that the enumerative theory of maps, initiated by Tutte, had
fascinating and unexpected developments beyond combinatorics in random
matrix theory, quantum gravity and random geometry.
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Conclusion

We have seen that the enumerative theory of maps, initiated by Tutte, had
fascinating and unexpected developments beyond combinatorics in random
matrix theory, quantum gravity and random geometry.
This is just my own perspective and | certainly forgot many other deep
aspects, e.g.:
@ enumeration of maps of higher genus, that led to the so-called
“topological recursion” in algebraic geometry,

@ much work on the connection between random maps and Liouville

quantum gravity — see the recent preprint of Gwynne-Miller-Sheffield
on Tutte embedding of the mated-CRT map.
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Conclusion

We have seen that the enumerative theory of maps, initiated by Tutte, had
fascinating and unexpected developments beyond combinatorics in random
matrix theory, quantum gravity and random geometry.
This is just my own perspective and | certainly forgot many other deep
aspects, e.g.:
@ enumeration of maps of higher genus, that led to the so-called
“topological recursion” in algebraic geometry,

@ much work on the connection between random maps and Liouville
quantum gravity — see the recent preprint of Gwynne-Miller-Sheffield
on Tutte embedding of the mated-CRT map.

To conclude let me quote a colleague of Tutte: “If | have seen further it is
by standing on the shoulders of giants."
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