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Introduction

An (integer) partition λ is a finite non-increasing sequence of integers

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λ` > 0

(By convention we set λi = 0 for i ≥ `.)

We say that λ and µ are (horizontally) interlaced, and denote λ � µ, iff

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · ·

Plane partitions correspond to sequences of interlaced partitions:

· · ·λ(−2) ≺ λ(−1) ≺ λ(0) � λ(1) � λ(2) � · · ·

with λ(i) = ∅ for |i | large enough.
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Introduction

Define the size of a partition/plane partition as the sum of its entries.

∑

plane partitions

qsize =
∞∏

k=1

1

(1− qk)k
[McMahon]

The sequence of interlaced partitions corresponding to a random plane
partition drawn with probability proportional to qsize (0 ≤ q < 1) forms a
Schur process [Okounkov-Reshetikin 2003].
For instance the “state” λ(0) of the main diagonal is drawn with
probability proportional to

(
sλ(0)(q1/2, q3/2, q5/2, . . .)

)2
.

How about tilings made of dominos instead of rhombi?
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Motivations

In general:

statistical mechanics: rhombus/domino tilings = dimer model on
honeycomb/square lattice

enumerative combinatorics: beautiful enumeration formulas

probability theory: determinantal correlations, limit shape
phenomena, interesting limiting processes related to random matrices

algebraic geometry: Donaldson-Thomas theory

For our specific work: understand precisely the connection between
domino tilings and interlaced partitions, implicitly hinted at in works of
Johansson, Borodin, etc.

Have fun with “vertex operators” (a recreation
after a reading group on the works from the Kyoto school: solitons,
infinite dimensional Lie algebras and all that).
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Outline

1 Steep tilings

2 Bijection with sequences of interlaced partitions

3 Enumeration via the vertex operator formalism
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Steep tilings
y = x

y = x− 2`

A domino tiling of the oblique strip x − 2` ≤ y ≤ x

Steepness condition: we eventually find only north or east dominos in
the NE direction, south or west in the SW direction.
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Steep tilings

w = (+ + + + + − − − + +)

The steepness condition implies that the tiling is eventually periodic in
both directions. The two repeated patterns define the asymptotic data
w ∈ {+,−}2` of the tiling. For fixed w there is a unique (up to
translation) minimal tiling which is periodic from the start.
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Examples

Domino tilings of the Aztec diamond [Elkies et al.]

correspond to steep
tilings with asymptotic data +−+−+−+− . . ..
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Examples

(0, 0)
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Examples

(a) (b)

. . .
. . .

. . .. . .

...
...

... ...

Pyramid partitions [Kenyon, Szendrői, Young]

correspond to steep tilings
with asymptotic data . . .+ + + + +−−−−− . . ..
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Outline

1 Steep tilings

2 Bijection with sequences of interlaced partitions

3 Enumeration via the vertex operator formalism
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Particle configurations
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To each steep tiling we may associate a particle configuration by filling
each square covered by a N or E domino with a white particle, and each
square covered by a S or W domino with a black particle.
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Integer partitions

Particles along a diagonal form a “Maya diagram” which codes an integer
partition (here 421).
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Interlacing of particles

Between two successive even/odd diagonals, the white particles must be
adjacent.

Conversely, between two successive odd/even diagonals, the
black particles must be adjacent.
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Interlacing of partitions

Between two successive even/odd diagonals, a finite number of white
particles can be moved one site to the left (+) or to the right (−) in the
Maya diagram (depending on asymptotic data). This corresponds to
adding/removing a horizontal strip to the associated partition.

Conversely,
between two successive odd/even diagonals, a vertical strip is
added/removed.
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Interlacing of partitions

For λ, µ two integer partitions, the following are equivalent:

λ/µ is a horizontal strip,

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · ,
λ′i − µ′i ∈ {0, 1} for all i .

Notation: λ � µ or µ ≺ λ.

Similarly, the following are equivalent:

λ/µ is a vertical strip,

λ′1 ≥ µ′1 ≥ λ′2 ≥ µ′2 ≥ λ′3 ≥ · · · ,
λi − µi ∈ {0, 1} for all i .

Notation: λ �′ µ or µ ≺′ λ.
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The fundamental bijection

For a fixed word w ∈ {+,−}2`, there is a one-to-one correspondence
between steep tilings of asymptotic data w and sequences of partitions
(λ(0), λ(1), . . . , λ(2`)) satisfying for all k = 1, . . . , `:

λ(2k−2) ≺ λ(2k−1) if w2k−1 = +, and λ(2k−2) � λ(2k−1) if w2k−1 = −,

λ(2k−1) ≺′ λ(2k) if w2k = +, and λ(2k−1) �′ λ(2k) if w2k = −.

Examples:

Aztec diamond:
∅ = λ(0) ≺ λ(1) �′ λ(2) ≺ λ(3) �′ λ(4) ≺ · · · �′ λ(2`) = ∅,
Pyramid partitions:
∅ = λ(0) ≺ λ(1) ≺′ λ(2) ≺ · · · ≺′ λ(`) � · · · �′ λ(2`) = ∅.

The size of λ(m) is equal to the number of flips on diagonal m in any
shortest sequence of flips between the tiling at hand and the minimal tiling.
Under natural statistics we obtain a Schur process [Okounkov-Reshetikhin].
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Outline

1 Steep tilings

2 Bijection with sequences of interlaced partitions

3 Enumeration via the vertex operator formalism
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Transfer matrices

Enumerating sequences of interlaced partitions is done via transfer
matrices, which are here “vertex operators”:

〈λ|Γ+(t)|µ〉 = 〈µ|Γ−(t)|λ〉 =

{
t |µ|−|λ| if λ ≺ µ
0 otherwise

〈λ|Γ′+(t)|µ〉 = 〈µ|Γ′−(t)|λ〉 =

{
t |µ|−|λ| if λ ≺′ µ
0 otherwise

Example: Aztec diamond:

〈∅|Γ+(z1)Γ′−(z2)Γ+(z3)Γ′−(z4) · · · |∅〉
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Bosonic representation

The transfer matrices can be rewritten as

Γ±(t) = exp
∑

k≥1

tk

k
α±k , Γ′±(t) = exp

∑

k≥1

(−1)k−1tk

k
α±k

where [αn, αm] = nδn+m.

This implies that Γ’s with the same sign
commute, and that we have the following nontrivial commutation
relations:

Γ+(t)Γ−(u) =
1

1− tu
Γ−(u)Γ+(t)

Γ+(t)Γ′−(u) = (1 + tu)Γ′−(u)Γ+(t)

σ στ τ

λ λ

µµ

≺
≺

≺
≺

�
�

� ′
� ′

k k

k = 0, 1, 2, . . . k = 0, 1
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Super Schur functions

When w consists only of +’s, the partition function with fixed boundary
conditions is a so-called super Schur function

〈µ|Γ+(x1)Γ′+(y1)Γ+(x2)Γ′+(y2) · · · |λ〉 = Sλ/µ(x1, x2, . . . ; y1, y2, . . .).

Super Schur functions may be combinatorially
defined in terms of super semistandard tableaux or
(reverse) plane overpartitions:

1 1 1̄ 2̄
1̄ 2 2 2̄
1̄ 2̄
2
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Pure steep tilings

For general asymptotic data and “pure” (〈∅| and |∅〉) boundary conditions
the partition function is readily evaluated from the commutation relations.

∅ ∅
≺
′

≺

≺
�

� ′

� ′

k13

〈∅| Γ+(z1) Γ′+(z2) Γ−(z3) Γ′−(z4) |∅〉

〈∅| Γ+(z1) Γ′+(z2)Γ−(z3) Γ′−(z4) |∅〉

≺
′ �

k24

k23

k14

k13, k24 = 0, 1, 2, . . .
k23, k14 = 0, 1

=

×
(1 + z1z4)(1 + z2z3)

(1− z1z3)(1− z2z4)

1

3

4

2

Equivalently we have a RSK-type bijection between pure steep tilings and
suitable fillings of the Young diagram associated with w .
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Pure steep tilings

For a general word w and the “qflip” specialization, the partition function
of pure steep tilings is given by a hook-length type formula:

Tw (q) =
∏

1≤i<j≤2`
wi=+, wj=−

ϕi ,j(q
j−i ), ϕi ,j(x) =

{
1 + x if j − i odd

1/(1− x) if j − i even

1

2

3 4

5 6 7

8 9

10

11 12

1 + q3

1

1− q6

w = + + +−− +−− + + +−
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Aztec diamonds and pyramids

1 + q 1 + q 1 + q

1 + q3 1 + q3

1 + q5

1 + q

1 + q3 1 + q3 1 + q3

1 + q5

1

1− q2
1

1− q2

1

1− q4
1

1− q4

Aztec diamond w = +−+−+−
[Elkies et al., Stanley]

Tw (q) = (1 + q)3(1 + q3)2(1 + q5)

Pyramid partitions w = + + +−−−.
Case `→∞ [Young]:

Tw (q) =
∏

k≥1

(1 + q2k−1)2k−1

(1− q2k)2k
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Free boundaries

We may also obtain a closed-form formula for the partition function in the
case of free boundary conditions

|v〉 =
∑

λ

v |λ||λ〉

thanks to the “reflection relations”

Γ+(t)|v〉 =
1

1− tv
Γ−(tv2)|v〉

Γ′+(t)|v〉 =
1

1− tv
Γ′−(tv2)|v〉

σ

λ

µ

≺
� k

k = 0, 1, 2, . . .
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Free boundaries

Example: w = + + + + . . .

〈u|Γ+(y1)Γ′+(y2)Γ+(y3)Γ′+(y4) · · · |v〉 =

∞∏

k=1

(
1

1− ukvk

2∏̀

i=1

1

1− uk−1vkyi

∏

1≤i<j≤2`

ϕi ,j(u
2k−2v2kyiyj)

)

〈u| |v〉Γ
(i)
+ (yi) Γ

(j)
+ (yj)

Γ
(i)
− (v2yi)

Γ
(i)
+ (u2v2yi) Γ

(j)
+ (u2v2yj)

Γ
(j)
− (v2yj)
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Periodic boundary conditions
When identifying the left and right boundaries we obtain a cylindric steep
tiling. The corresponding sequence of interlaced partitions form a periodic
Schur process [Borodin].

The partition function may still be
written as an infinite product.

Example: w = + +−−

Tr
[

Γ+(z1) Γ′+(z2) Γ−(z3) Γ′−(z4) qH
]

=

(1 + z1z4)(1 + z2z3)

(1− z1z3)(1− z2z4)

Γ+(qz1)Γ
′
+(qz2) Γ−(z3) Γ′−(z4)Tr

[
qH

]
×

Tr
[
Γ+(z1)Γ′+(z2)Γ−(z3)Γ′−(z4)qH

]
=

∞∏

k=1

(1 + qk−1x1x4)(1 + qk−1x2x3)

(1− qk)(1− qk−1x1x3)(1− qk−1x2x4)
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Further work

Correlation functions [joint with C. Boutillier and S. Ramassamy]:
I straightforward to compute for particles in the pure case, thanks to

their free fermionic nature
I less trivially we deduce an explicit expression for the inverse Kasteleyn

matrix, which yields domino correlations
I more involved in the periodic case [Borodin], how about free boundary

case?

Random generation and limit shapes [joint with D. Betea and
M. Vuletić]
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Further work

More general setting
[BBCCR]: Rail Yard Graphs
(interpolate between lozenge
and domino tilings)

connection with
octahedron
recurrence/cluster
algebras?

deformations? (e.g.
Schur → McDonald)

...

y = 0

} all
covered

} none
covered

}
all

covered }
none

covered

y = 0

−2`− 1 2r+1

...

...... R+ L+ R− R+ L− R−
... ... ... ... ...

... ... ... ... ...

......

Thanks for your attention!
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