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Maps: graphs embedded in surfaces (sphere in planar case)
considered up to deformation (⇒ finite number of maps with E edges)

a.k.a. planar diagrams, fatgraphs, dynamical random tessellations...

Motivations

combinatorics [Tutte 1963]

large N expansion of matrix
integrals [Brézin-Itzykson-Parisi-Zuber

1979]

2D quantum gravity

critical phenomena on dynamical
(annealed) random surfaces

probability theory: “Brownian
map”, connection with
conformally-invariant processes
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More on motivations

There are strong physical reasons to believe that natural
discretizations of 2D quantum gravity are obtained by considering
simple probability distributions over simple classes of maps,
typically:

uniform distribution over the set of triangulations (or
quadrangulations) with n faces

“Boltzmann” distributions: p(m) = Z−1g#faces(m)

models “with matter”: a discrete statistical physics model
(Ising, Potts...) lives on the map:

p(m) =
g#faces(m)Zmatter(m)

Zmap+matter

Continuous results are obtained by taking suitable limits (n→∞,
g → gc , critical points for matter...).
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General model considered here:

Each face of valency k comes with fugacity gk :

Z :=
∑
maps

∏
k≥1

g
#{k−valent faces}
k

(A priori no matter)

Simple case: triangulations (resp. quadrangulations)

gk =

{
g for k = 3 (resp. k = 4)

0 otherwise
Z =

∑
(tri|quadr)-
angulations

g“area”
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Computing the partition
function Z is an
enumeration problem. It is
simpler to count rooted
maps

with fixed root
degree n i.e compute their
generating function
Fn = Fn({gk}k≥1) = ∂Z

∂gn
(w/o weight gn for the root face).

F (z) := 1 +
∑∞

n=1 Fnz
n is

the disk amplitude.
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Tutte’s equation (1968) a.k.a. loop equation

The Fn are fully determined by the quadratic equation

Fn =
n−2∑
i=0

FiFn−2−i +
∑
k≥1

gkFn+k−2 (n ≥ 1,F0 = 1)
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Tutte’s equation (1968) a.k.a. loop equation

The Fn are fully determined by the quadratic equation

F (z) = 1 + z2F (z)2 +
∑
k≥1

gkz
2−k

F (z)−
k−2∑
j=0

z jFj


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F (z) = 1 + z2F (z)2 +
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gkz
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(
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Review of the solution of Tutte’s equation

By the previous equation

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k ±

√
∆(z)



By Brown’s lemma/one-cut hypothesis

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k − Γ(z−1)

√
1 + κ1z + κ2z2


with Γ(z−1) a polynomial or power series in z−1.

But F (z) contains only nonnegative powers of z! This constraint
allows to deduce explicit expressions for Γ(z−1), κ1, κ2.
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Example: quadrangulations

For gk =

{
g for k = 4

0 otherwise
this method leads to

F2n =
∞∑
a=0

(2n)!

n!(n − 1)!

(2a + n − 1)!

a!(a + n + 1)!
(3g)a F2n+1 = 0

To study large quadrangulations, one must consider the singular
expansion around gc = 1/12.
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General combinatorial structure of the solution

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k − Γ(z−1)

√
1 + κ1z + κ2z2

 (1)

Trick: replace the unknowns κ1, κ2 by R,S with

κ(z) := 1 + κ1z + κ2z
2 = (1− Sz)2 − 4Rz2

then √
κ(z) = 1− Sz − 2Rz2

∞∑
n=0

P+(n;R,S)zn

P+(n;R,S) is the generating function
for Motzkin paths of length n, with
weight R (resp. S) per down-step (resp.
level-step).

R

S

(0,0) n

P
+
n(  ;   ,   )SR

(  ,0)
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General combinatorial structure of the solution

(1) immediately yields

Fn = R
∑
q≥0

γqP
+(n + q;R,S) (2)

The only dependence in n is via the path length!

By now writing that (1) (divided by
√
κ(z)) contains no negative

powers in z and that its constant term is 1, we may obtain:

algebraic equations determining the “master unknowns” R, S

expressions for the γq in terms of R,S .

Remark: these may also be given a
combinatorial interpretation via

1/
√
κ(z) =

∞∑
n=0

P(n;R,S)zn

R

S

n(  ;   ,   )SRP

(0,0) n(  ,0)
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Summary/conclusion on the first problem

Maps with a boundary can be enumerated effectively via
Tutte’s equation.

A remarkable combinatorial/algebraic structure related to the
physical one-cut hypothesis.

F (z) is a master function in terms of which generating
functions for maps with several boundaries and of higher
genus (“global observables”) can be expressed.

Generalizations to models with matter are known.
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2v

v1

Geodesic (or graph) distance:
minimal number of edges
connecting two given vertices
(i.e each edge has length 1)

A map may then be viewed as a
discrete metric space. What are
the metric properties of random
planar maps? What can we
calculate?

Calculations of interest:

finite size, exact results

large size, local limit

large size, scaling limit
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2v

d12

v1

Simple observable: the
distance-dependent two-point
function [Ambjørn-Watabiki 1996] is
the generating function for maps
with two marked points at given
distance. Computing it is again
an enumeration problem!

Probabilistic interpretation: it
encodes the distribution of
distances between two uniformly
chosen random points.
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By a transfer matrix approach, Ambjørn and Watabiki successfully
predicted the universal scaling form of the two-point function for
pure gravity (a.k.a. Brownian map, the generic scaling limit here).

Scaling: distance ∝ (size)1/4

The rescaled distance between two uniform random points admits
a limiting distribution as size tends to infinity, with density

ρ(d) =
2

i
√
π

∫ ∞
−∞

dξ ξ e−ξ
2G(d ;

√
−3iξ

2
) G(d ;α) := 4α3 cosh(αd)

sinh3(αd)

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

ρ(d) ∼ d3 for d → 0

ρ(d) ∼ e−Cd
4/3

for d →∞
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An exact discrete expression whose scaling form agrees with the
Ambjørn-Watabiki prediction was found for quadrangulations and,
more generally, maps with even face valencies. [B., Di Francesco, Guitter

2003]

Ingredients:

coding of maps by trees (Schaeffer’s bijection and generalizations)

identification of the two-point function with tree g.f.

equation following from recursive decomposition of such trees

guess of the solution!
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Example: quadrangulations

The discrete two-point function is the solution of the equation

Rn = 1 + gRn(Rn−1 + Rn + Rn+1) (n ≥ 1,R0 = 0)

Explicit solution

Rn = R
unun+3

un+1un+2
(3)

R = 1 + 3gR2 un = 1− xn x +
1

x
+ 1 =

1

gR2

There are also equations with explicit solutions in more general
cases! The form (3) still holds (but un gets more complicated).
Our explanation for this miracle was discrete integrability of the
equations. But is there a more direct, combinatorial, explanation?
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New approach [B., Guitter 2010]

The two-point function is encoded in the continued fraction
expansion of the disk amplitude F (z)!

Maps with even face valencies: Stieljes fraction

F (z) :=
∞∑
n=0

F2nz
2n =

1

1− R1z
2

1− R2z
2

1− · · ·

Maps with arbitrary face valencies: Jacobi fraction

F (z) :=
∞∑
n=0

Fnz
n =

1

1− S0z −
R1z

2

1− S1z −
R2z

2

1− · · ·

(4)
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Elements of the proof:

the combinatorial theory of continued fractions [Flajolet 1980]

Combinatorial interpretation of the Jacobi fraction expansion (4)

Fn is equal to the generating function for Motzkin paths of length
n, with weight Rm (resp. Sm) per down-step (resp. level-step)
starting at height m.

a suitable decomposition of maps with a boundary (via trees
or “slices”): Motzkin paths code the distances from the origin
to the vertices incident to the root face.

n(  ,0)
external face of degree n

(0,0)

−1

Rm

Sm

m

m

m

Fn

Z 0,0 n(  )
+
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Knowing Fn, how do we obtain Rn and Sn?

Via Hankel determinants:

Rn =
HnHn−2

H2
n−1

Hn := det
0≤i ,j≤n

Fi+j

Sn =
H̃n

Hn
− H̃n−1

Hn−1
H̃n := det

0≤i ,j≤n
Fi+j+δj,n

Even face valencies: because F2n+1 = 0, we have Sn = H̃n = 0 and
Hn has a natural factorization Hn = un+2un+3, which yields with
the form (3) seen before.

These relations hold in the general theory of continued fractions.
In our map model, the specific form of Fn leads to specific Hankel
determinants, which are symplectic Schur functions sp2p(λ, x).

Jérémie Bouttier Planar maps and continued fractions



Knowing Fn, how do we obtain Rn and Sn?

Via Hankel determinants:

Rn =
HnHn−2

H2
n−1

Hn := det
0≤i ,j≤n

Fi+j

Sn =
H̃n

Hn
− H̃n−1

Hn−1
H̃n := det

0≤i ,j≤n
Fi+j+δj,n

Even face valencies: because F2n+1 = 0, we have Sn = H̃n = 0 and
Hn has a natural factorization Hn = un+2un+3, which yields with
the form (3) seen before.

These relations hold in the general theory of continued fractions.
In our map model, the specific form of Fn leads to specific Hankel
determinants, which are symplectic Schur functions sp2p(λ, x).

Jérémie Bouttier Planar maps and continued fractions



Knowing Fn, how do we obtain Rn and Sn?

Via Hankel determinants:

Rn =
HnHn−2

H2
n−1

Hn := det
0≤i ,j≤n

Fi+j

Sn =
H̃n

Hn
− H̃n−1

Hn−1
H̃n := det

0≤i ,j≤n
Fi+j+δj,n

Even face valencies: because F2n+1 = 0, we have Sn = H̃n = 0 and
Hn has a natural factorization Hn = un+2un+3, which yields with
the form (3) seen before.

These relations hold in the general theory of continued fractions.
In our map model, the specific form of Fn leads to specific Hankel
determinants, which are symplectic Schur functions sp2p(λ, x).

Jérémie Bouttier Planar maps and continued fractions



Knowing Fn, how do we obtain Rn and Sn?

Via Hankel determinants:

Rn =
HnHn−2

H2
n−1

Hn := det
0≤i ,j≤n

Fi+j

Sn =
H̃n

Hn
− H̃n−1

Hn−1
H̃n := det

0≤i ,j≤n
Fi+j+δj,n

Even face valencies: because F2n+1 = 0, we have Sn = H̃n = 0 and
Hn has a natural factorization Hn = un+2un+3, which yields with
the form (3) seen before.

These relations hold in the general theory of continued fractions.
In our map model, the specific form of Fn leads to specific Hankel
determinants, which are symplectic Schur functions sp2p(λ, x).

Jérémie Bouttier Planar maps and continued fractions



The general formula for Fn is

Fn =

p∑
q=0

AqP
+(n + q)

Substituting into the Hankel
determinant

Hn = det
0≤i ,j≤n

 p∑
q=0

AqP
+(i + j + q)


∝ det

0≤k,`≤n

 p∑
q=0

Aq(Pk−`(q)− Pk+`+2(q))


∝ sp2p(λp,n+1, x)

∝ det
1≤i ,j≤p

(xn+j
i − x−n−ji )

( )
+

R
1/2

R
1/2

S

) )
k+l+2k−l

( (

(
+

)k )(l
+

1−2 −1 0−i q2 q+j

qi j

i+j+q;R,SP

−Pq;R,S q;R,SP

i;R,SP j;R,SP

k

l

The x ’s are roots of

p∑
r=−p

p∑
q=0

AqPr (q)x r = 0

λp,n+1 is the “rectangular”
partition
(n + 1) + · · ·+ (n + 1)︸ ︷︷ ︸

p
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Remark

We make use of two different formulas for Fn involving Motzkin
paths:

as a sum (2) over Motzkin paths of variable length
n, . . . , n + p and height-independant weights R, S per step

as a sum (4) over Motzkin paths of fixed length n and
height-dependant weights Rm, Sm per step

Caveat

The expression involving Schur functions assumes that face
valencies are bounded: gk = 0 for k > p + 2. Hn may then be
rewritten as a p× p determinant (rather than (n + 1)× (n + 1)), easier to
study in the limit of large distance n.
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Example & combinatorial interpretation: triangulations

Suppose that gk = 0 for k 6= 3 (faces are triangles), i.e p = 1:

Fn = A0 P
+(n;R,S) + A1 P

+(n + 1;R,S)

R
R

S1

R3g R3g− −
3/2 3/2

1/2

1/2

j+11 2 3−i−2 −1 0

i+j
F

Fi+j can be interpreted as paths on a weighted graph. By the
Lindström-Gessel-Viennot lemma, the determinant Hn counts
configurations of non-intersecting lattice paths on this graph.
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Such configurations of non-intersecting lattice paths are highly
constrained and, actually, in bijection with configurations of 1D
dimers.

R3
g−

32

1 2 3−2 −1 0 +1n......

n

−n

n  n(   +1)

2R
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Counting 1D dimer configurations is easy, we obtain

Hn ∝
1

(1 + y)n+1

1− yn+2

1− y

with y related to the dimer weight −g2
3 R3 by

y +
1

y
+ 2 =

1

g2
3 R3

.

It yields the simple formula

Rn = R
(1− yn)(1− yn+2)

(1− yn+1)2

and similarly

Sn = S − g3 R
2yn

(1− y)(1− y2)

(1− yn+1)(1− yn+2)
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Conclusion and outlook

We have shown that the disk amplitude and the two-point
function are encoded in the same function F (z).

Our results are purely discrete. One may now turn to
asymptotic analysis. The generic behaviour is pure gravity
(“Brownian map”).

Possible directions:
Connections with orthogonal polynomials and matrix models
Other distance-related observables (not so many known!
radius, three-point function, length of loops, numbers of
geodesics...)
Generalizations to models with matter
Maps with large faces?
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Summary: the two facets of F (z)

n z
n

Σ
n
FFn z

n
Σ
n
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1

−zS1

−zS1

−zS1 ...

1

1 2

0
−z  R

2

−z  R2

2
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