
Preliminaries
Combinatorial results

Applications
Summary and conclusion

Statistics of geodesics in large quadrangulations

Jérémie Bouttier
joint work with Emmanuel Guitter (arXiv:0712.2160)

Service Institut de Physique Théorique, CEA Saclay
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

Theorem (Cori-Vauquelin 1981, Marcus-Schaeffer 2001)

There is a one-to-one correspondence between rooted planar
quadrangulations with n faces and well-labeled trees with n edges.

Well-labelled trees are rooted plane trees s.t.:

each vertex has a positive integer label

labels on adjacent vertices differ by at
most 1

the root has label 1.
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1 2

In the Marcus-Schaeffer construction, vertex labels correspond to
distances from the origin in the quadrangulation.
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

MS construction : from quadrangulations to trees
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

MS construction : from quadrangulations to trees
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

Local face rules

n+1
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

Introduce Ri (g) the generating function for well-labeled trees with
root label i , and weight g per edge. By recursive decomposition:

∀i ≥ 1, Ri = 1 + g Ri (Ri−1 + Ri + Ri+1) R0 = 0

Without the i > 0 requirement we would have:

Ri ≡ R = 1 + 3gR2 =
1−
√

1− 12g

6g
=
∞∑

n=0

3n

n + 1

(
2n

n

)
gn

[B.-Di Francesco-Guitter 2003] The actual solution is:

Ri = R
(1− x i )(1− x i+3)

(1− x i+1)(1− x i+2)
x +

1

x
+ 1 =

1

gR2

(there is a unique power series x(g))
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Marcus-Schaeffer bijection
Generating functions for well-labeled trees

Interpretation for quadrangulations

The generating function for rooted quadrangulations is:

R1 =
∞∑

n=0

2 · 3n

(n + 2)(n + 1)

(
2n

n

)
gn

Other quantities can be interpreted :

2R : pointed rooted quadrangulations (extra marked vertex
used as the origin for distances)

Ri : pointed rooted quadrangulations, such that the root edge
is of type j − 1→ j with j ≤ i .

log(Ri/Ri−1) : doubly-pointed quadrangulations, where the
marked vertices are at distance i (there are symmetry factors).

Applications later...
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From geodesics to spine trees
Confluent geodesics
Generating functions

A geodesic is a path of minimal length among the paths
joining two given points.

To enumerate quadrangulations with a marked geodesic (or
several), the MS construction must be adapted:

introduce
quadrangulations with a geodesic boundary.

The MS construction can be easily adapted to
quadrangulations with geodesic boundaries.

We obtain a spine tree (well-labeled tree with labels 1, . . . , i
along an extremal branch).

To have a bijection we must actually consider general
geodesic boundaries with “pinch points”. Quadrangulations
with a marked geodesic correspond to an irreducible boundary.

We can easily enumerate quadrangulations with an arbitrary
geodesic boundary, then quadrangulations with an irreducible
boundary.
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From geodesics to spine trees
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As a simple extension we can study quadrangulations with k
confluent and non-crossing geodesics. These correspond to k
quadrangulations with geodesic boundaries placed “side by side”.

Weakly avoiding case: the whole must be irreducible

Strongly avoiding case: each part must be irreducible

Arbitrary (crossing) geodesics seem to be harder to deal with.
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From geodesics to spine trees
Confluent geodesics
Generating functions

Knowing Ri we can easily compute the generating function for
spine trees:

Zi =
i∏

j=1

Rj = R i (1− x)(1− x i+3)

(1− x3)(1− x i+1)

(no weight for spine edges)

Irreducible quadrangulations (corresponding to quadrangulations
with a marked geodesic) are obtained through:

Ui = Zi −
i−1∑
j=1

UjZi−j i.e. Û(t) =
Ẑ (t)

1 + Ẑ (t)
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Ẑ (t)

1 + Ẑ (t)
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Confluent geodesics
Generating functions
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From geodesics to spine trees
Confluent geodesics
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Similarly:

k weakly avoiding geodesics:

U
(k)
i = (Zi )

k −
i−1∑
j=1

U
(k)
j (Zi−j)

k

k strongly avoing geodesics:

Ũ
(k)
i = (Ui )

k

That’s it.

Jérémie Bouttier Statistics of geodesics in large quadrangulations



Preliminaries
Combinatorial results

Applications
Summary and conclusion

Local limit
Continuum limit

Outline

1 Preliminaries
Marcus-Schaeffer bijection
Generating functions for well-labeled trees

2 Combinatorial results
From geodesics to spine trees
Confluent geodesics
Generating functions

3 Applications
Local limit
Continuum limit

4 Summary and conclusion

Jérémie Bouttier Statistics of geodesics in large quadrangulations



Preliminaries
Combinatorial results

Applications
Summary and conclusion

Local limit
Continuum limit

Outline

1 Preliminaries
Marcus-Schaeffer bijection
Generating functions for well-labeled trees

2 Combinatorial results
From geodesics to spine trees
Confluent geodesics
Generating functions

3 Applications
Local limit
Continuum limit

4 Summary and conclusion

Jérémie Bouttier Statistics of geodesics in large quadrangulations



Preliminaries
Combinatorial results

Applications
Summary and conclusion

Local limit
Continuum limit

From the data of generating functions, we can easily extract
asymptotic information on large quadrangulations (n→∞). For
the moment i is kept fixed: local limit.

All our g.f. have radius of convergence 1/12, with expansion:

X (g) = A− Cε+
2

3
Dε3/2 + O

(
ε2
)

g =
1

12
(1− ε)

By standard techniques:

X (g)|gn ∼
12n

2
√
πn5/2

D

q•n = (12n)/(2
√
πn5/2) is the asymptotic number of pointed

quadrangulations with n faces, hence D can be understood as the
expectation value for the quantity enumerated by X , in the
ensemble of large pointed quadrangulations.
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Doubly-pointed quadrangulations with marked vertices at distance
i :

lim
n→∞

log(Ri/Ri−1)|gn

q•n
=

3

35
(5i3 + 15i2 + 12i + 2) ∼ 3

7
i3 (i � 1)

This is the average number of vertices at distance i from the origin
in a large pointed quadrangulation.

Quadrangulations with a geodesic boundary of length i :

Zi = Ai − Ciε+
2

3
Diε

3/2 + O
(
ε2
)

Ai =
2i (i + 3)

3(i + 1)
Di =

2i i(i + 2)(i + 3)(i + 4)(3i2 + 12i + 13)

420(i + 1)
∼ 2i i5

140

(not immediately related to the ensemble of pointed
quadrangulations)
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Local limit
Continuum limit

Quadrangulations with a marked geodesic of length i :

Ui = αi − γiε+
2

3
δiε

3/2 + O
(
ε2
)

Coefficients are determined through Ui = Zi −
∑i−1

j=1 UjZi−j :

αi = Ai −
i−1∑
j=1

αjAi−j δi = Di −
i−1∑
j=1

(αjDi−j + δjAi−j)

α̂(t) =
Â(t)

1 + Â(t)
δ̂(t) =

D̂(t)(
1 + Â(t)

)2
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Local limit
Continuum limit

δi is the average number of geodesics of length i starting from the
origin of a large pointed quadrangulation:

δ̂(t) = 4t +
80

3
t2 + 132t3 + · · ·

For large i (t → 1/2):

δ̂(t) ∼ 54

7
(1− 2t)−4 ⇔ δi ∼

9

7
2i i3

In the ensemble of large doubly-pointed quadrangulations with
marked vertices at distance i � 1, we find that the average
number of geodesics joining the marked vertices is 3× 2i .
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Local limit
Continuum limit

Quadrangulations with k weakly avoiding confluent geodesics:

δ
(k)
i ∼ k ·

(
3 · 2i

)k · 3

7
i3

correlations more than compensate for the constraint of weak
avoidance

k is a symmetry breaking factor: among the k regions
delimited by the k geodesics, one has area of order n and the
k − 1 others are finite.

Other computations (k = 2):

two weakly avoiding geodesics of length i � 1 have in average
i/3 common vertices

they delimit two regions with respective areas n vs O(i3)
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Local limit
Continuum limit

Quadrangulations with k strongly avoiding confluent geodesics:

δ̃
(k)
i = k(αi )

k−1δi ∼ k · (3 · 2i )k · 3 · 4k−1

7
i6−3k

Interpretation:

there are much fewer long strongly avoiding confluent
geodesics

a small number of points are reachable by two distinct
geodesics from the origin, none by three.

Two strongly avoiding geodesics delimit two regions with
respective areas n vs O(i4). These will be of the same order in the
continuum (n ∝ i4) limit.
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Reminder: the continuum limit is obtained for n→∞, i = r · n1/4

with r fixed:

log(Ri )|gn

log(R)|gn

→ 4

π

∫ ∞
0

dξ ξ2e−ξ
2

(
1− 6

1− cosh(r
√

3ξ) cos(r
√

3ξ)

(cosh(r
√

3ξ)− cos(r
√

3ξ))2

)

Φ(r) is the probability that two vertices in a large random
quadrangulation are at rescaled distance < r , ρ(r) = Φ′(r) is the
associated density.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

Φ(  )u ρ(  )u

u u
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Quadrangulations with a geodesic boundary:

Zi

2i

∣∣∣∣
gn

∼ 12n

πn5/4

∫ ∞
0

dξ ξe−ξ
2

(
2rξ

3
− 2

√
ξ

3

sinh(r
√

3ξ)− sin(r
√

3ξ)

cosh(r
√

3ξ)− cos(r
√

3ξ)

)

By a careful analysis we deduce:

Ui |gn ∼
12n

2
√
πn7/4

(
3 · 2r ·n1/4

)
ρ(r)

We find no new scaling function but the average number of
geodesics is 3× 2i in the whole scaling range (not only the
previous case 1� i � n1/4).
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Similarly for weakly avoiding geodesics:

U
(k)
i

∣∣∣
gn
∼ 12n

2
√
πn7/4

k
(

3 · 2r ·n1/4
)k
ρ(r)

Two weakly avoiding geodesics still have i/3 contacts in average,
and delimit two regions, one being of negligible (� n) area.
With strongly avoiding geodesics we find new scaling functions:

U
(k)
i

∣∣∣
gn
∼ 12n

2
√
πn3k/4+1

k
(

3 · 2r ·n1/4
)k
σ(k)(r)

0.5 1 1.5 2 2.5

0.25

0.5

0.75

1

1.25

1.5

1.75

σ(  )r

r

12/7 Another computation shows that two
strongly avoiding geodesics delimit two
regions both of area ∝ n.
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We have extended the Marcus-Schaeffer bijection to the case
of marked geodesics, and derived exact expressions for the
related generating functions.

In large planar quadrangulations, there are in average 3× 2i

geodesics between two points at distance i � 1, and such
geodesics tend to “stick” to each other (extensive number of
contacts, negligible area inbetween).

Only a few exceptional pairs of points can be connected by
k ≥ 2 strongly avoiding geodesics. The number of such pairs
is of order: n(11−3k)/4. This seems in agreement with recent
probabilistic approaches [Miermont, Le Gall].
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