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Abstract. — We consider a numerical scheme for Hamilton-Jacobi equations
based on a direct discretization of the Lax-Oleinik semi-group. We prove
that this method is convergent with respect to the time and space stepsizes
provided the solution is Lipschitz, and give an error estimate. Moreover, we
prove that the numerical scheme is a geometric integrator satisfying a discrete
weak-KAM theorem which allows to control its long time behavior. Taking
advantage of a fast algorithm for computing min-plus convolutions based on
the decomposition of the function into concave and convex parts, we show that
the numerical scheme can be implemented in a very efficient way.

1. Introduction

We consider Hamilton-Jacobi equations of the form

(1) ∂tu+H(t, x,∇u) = 0, u(0, x) = u0(x),

where H(t, x, v) is a Hamiltonian function

(2) H : R× Rn × Rn → R,

and where u0 is a given global Lipschitz function.
We will mainly consider the case where H is separable, in the sense that we

can write H(t, x, p) = K(p) + V (t, x), for some convex function K and some
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smooth and bounded function V . The typical cases of study we have in mind
are the so called mechanical Hamiltonians, of the form

(3) H(t, x, p) =
1
2
|p+ P |2 + V (t, x)

where P ∈ Rn is a given vector, |v|2 = v2
1 + · · ·+ v2

n for v = (v1, · · · , vn) ∈ Rn,
and where V (t, x) is a suitably smooth and bounded function.

Since the pioneering works of Crandall and Lions [CL84] and Souganidis
[Sou85], the study of numerical schemes for the Hamilton-Jacobi equation (1)
has known many recent progresses, see for instance [LS95, LT01, Abg96,
JX98, BJ05] and the references therein, and more specifically [OS88, OS91,
JP00] for the popular (weighted) essentially nonoscillatory (ENO and WENO)
methods which are now widely commonly used in many application fields.

Following a different approach, more in the spirit of [FF02, Ror06] (or
[AGL08] in an optimal control setting), the main aim of this paper is to show
how a direct discretization of the Lax-Oleinik representation of the viscosity
solution of (1) allows to define a new fast algorithm for computing u(t, x) pos-
sessing strong geometrical properties allowing to control its long time behavior
and obtain error estimates when the solution is Lipschitz.

Let us recall, see [Lio82, Fat05], that under some assumptions on H
(smoothness, uniform superlinearity and strict convexity over the fibers, see
Section 2 below), we can write

(4) u(t, x) = inf
γ(t)=x

u0(γ(0)) +
∫ t

0
L(s, γ(s), γ̇(s))ds,

where the infimum is taken over over all absolutely continuous curves γ :
[0, t] → Rn such that γ(t) = x, and where L(t, x, v) is the Lagrangian asso-
ciated with H. The idea of this paper is to discretize directly (4) on a space
time grid, by replacing the set of curves γ by the set of piecewise linear curves
across the space grid points.

We first prove that such an approximation is convergent with respect to the
size of the space and time stepsizes, and under an anti-CFL condition (namely
that the ratio between the space and time stepsize should be small). We give
an error estimate under the assumption that u0 is Lipschitz.

Moreover, this numerical integrator turns out to be a geometric integrator
(see for instance [HLW06, LR04]) in the sense that is respects the long time
behavior of the exact solution u(t, x). Let us recall that in the case of periodic
Hamiltonians (both in time and space variables), the weak-KAM theorem (see
[Fat05, CISM00]) shows the existence of a constant H such that

1
t
u(t, x)→ H when t→ +∞.
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Here, using a discrete weak-KAM theorem, see [BB07, Zav12], we prove that
the numerical scheme possesses the same long time property, with a constant
that is close to the exact constant H.

Finally, we show that in the separable case mainly considered in this pa-
per (see (5) below), the discrete version of (4) is a min-plus convolution that
can be approximated using a fast algorithm with O(N) operations in many
situations if N is the number of grid points. This algorithm uses the decom-
position of u into concave and convex parts. Moreover, it easily extends to
any space dimension n using a splitting strategy, when the kinetic part of the
Hamiltonian is separable - see Remark 2.8 - which includes the case (3).

We then conclude by numerical simulations in dimension 1 to illustrate
the good behavior of our algorithm, as well as its very low cost in general
situations.

The paper is divided into three parts: in a first part (Section 2) we give a
convergence result over a finite time interval of the form [0, T ] where T is fixed.
In a second part (Section 3), we consider the case where the Hamiltonian is
periodic in time t and x. In this case, we can derive explicitly the dependence
in T in the error estimates, and prove a weak-KAM theorem for the numerical
scheme which gives informations concerning the long time behavior of the
scheme. In the third part (Section 4), we describe the implementation of the
method based on a fast algorithm to compute min-plus convolutions. We
conclude this part by showing numerical simulations.

Acknowledgement. — This work owes a lot to Vincent Calvez, who put
the authors in touch and took part to preliminary discussions. It is a great
pleasure to thank him a lot. We also would like to thank Vinh Nguyen for
careful reading through previous versions of the paper. Finally, the last author
would like to thank Antonio Siconolfi for bringing him to this subject.

2. Description of the scheme and convergence results

2.1. Hypotheses. — We consider a Hamiltonian H(t, x, p) of the form

(5) H(t, x, p) = K(p) + V (t, x)

defined on R×Rn×Rn. With this Hamiltonian we can associate by Legendre
transform the Lagrangian

L(t, x, v) = sup
p∈Rn

(
p · v −H(t, x, p)

)
,

and we calculate that in our case,

L(t, x, v) = K∗(v)− V (t, x),
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where K∗(v) is the Legendre transform of K. For instance in the special case
(3) we have

L(t, x, v) =
1
2
|v|2 − P · v − V (t, x).

We make the following assumptions on K and V :
(i) The function K∗ ∈ C2(Rn) is uniformly strictly convex in the sense that

there exists a constant c > 0 such that for all Y ∈ Rn, and for all v ∈ Rn,

(6)
∂2K∗

∂v2
(v)(Y, Y ) > c|Y |2 .

(ii) The function V (t, x) ∈ C2(R×Rn) is such that there exists a constant B
such that for j + q 6 2, and all (t, x) ∈ R× Rn,

(7) |∂jt ∂qxV (t, x)| 6 B,

where | · | denote the norm of differential operators acting on R× Rn.
Note that the bound (7) is straightforward under the supplementary as-

sumption that V (t, x, v) is periodic in (t, x), the case studied in the next sec-
tion.

Remark 2.1. — The previous hypotheses imply that the Hamiltonian H and
the Lagrangian L are C2, convex and superlinear in respectively p and v:

(8) ∀ k > 0, ∀ t > 0, ∃A(k) <∞, L(t, x, v) > k|v| −A(k).

Under these assumptions, the viscosity solution of (1) can be represented
by the formula: for all t, δ > 0,
(9)

∀x ∈ Rn, u(t+δ, x) := T δt u(x) = inf
γ(t+δ)=x

u(t, γ(t))+
∫ t+δ

t
L(s, γ(s), γ̇(s))ds,

where the infimum is taken on all absolutely continuous curves γ : (t, t+ δ)→
Rn verifying γ(t + δ) = x, see [Lio82, Fat05]. Moreover, the infimum is
achieved on a curve γδt,x(s) that is C2 and satisfies the Euler-Lagrange equation

(10)
d
ds
∂L

∂v
(s, γ(s), γ̇(s)) =

∂L

∂x
(s, γ(s), γ̇(s)).

The notation T δt defines the Lax-Oleinik semi-group. In particular, we have
T σt+δ ◦ T δt = T δ+σt for non negative δ and σ. With these assumptions, we have
the following Proposition.

Proposition 2.2. — For all T > 0, and for all R > 0, there exists M(R, T )
such that for all x, y ∈ Rn satisfying |x− y| 6 R and for all t ∈ R, then every
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solution of the Euler-Lagrange equation (10) minimizing the action

(11)
∫ t+T

t
L
(
s, γ(s), γ̇(s)

)
ds,

with fixed endpoints γ(t) = x and γ(t+ T ) = y, satisfies |γ̇(s)| 6 M(R, T ) for
all s ∈ [t, t+ T ].

Proof. — The Euler-Lagrange equation is written

∂2K∗

∂v2

(
γ̇(s)

)(
γ̈(s)

)
= −∂V

∂x

(
s, γ(s)

)
.

Using the uniform strict convexity of K∗ and the fact that ∂xV is uniformly
bounded, there exists a constant C depending only on T and K, such that

(12) ∀ s ∈ [t, t+ T ] |γ̈(s)|2 6 C.

This implies that for all s ∈ [t, t+ T ],

(13) |γ̇(s)− γ̇(t)| 6
∫ t+T

t
|γ̈(s)| ds 6 T

√
C.

Now as γ minimizes the action between t and t+T , comparing with the trivial
curve t 7→ x+ t(y − x)/T from x to y, we get∫ t+T

t
L
(
s, γ(s), γ̇(s)

)
ds 6

∫ t+T

t
K∗
(y − x

T

)
− V

(
s, x+

t

T
(y − x)

)
ds

6 TD(R/T ) + TB,

where D(M) = sup|v|6M |K∗(v)|, and B is given by (7). By superlinearity, we
deduce that ∫ t+T

t
|γ̇(s)| ds 6 TD(R/T ) + TA(1) + TB,

where A(1) is given by (8). Using (13), we thus obtain

T |γ̇(t)| 6
∫ t+T

t
|γ̇(s)|ds+ T 2

√
C 6 TD(R/T ) + TA(1) + TB + T 2

√
C.

This shows that |γ̇(t)| is bounded, and hence using again (13) that |γ̇(s)| is
bounded for all s, with a constant depending only on T , R and the constants
appearing in (6) and (7).

Remark 2.3. — The previous lemma is one of the main keys in the proof of
the convergence of our schemes. Here, it is established thanks to the particular
form of H, but it can be noted that it remains valid under other technical
assumptions (for example if H is autonomous and Tonelli as established in
[Fat05, FM07], or if it is Tonelli and periodic both in the space and in the
time variable as proven in [Mat91, CISM00, Itu96]). Actually, in these
cases, it can be established that M(R, T ) only depends on the ratio R/T .



6 ANNE BOUILLARD, ERWAN FAOU & MAXIME ZAVIDOVIQUE

We will come back on these matters in Section 3 and give a proof of this
result in the Appendix. Therefore, this section and the next would still be
valid for general Hamiltonians chosen in these classes, however the convolution
techniques of section 4 would fail.

Finally, a clear consequence of Equation (12) is that the Euler-Lagrange
flow of L is complete.

2.2. An approximate semi-group. — For a given ε > 0 we define the
ε-grid Gε = εZn endowed with the metric induced by the euclidian metric on
Rn. For a given continuous function u, we define u|Gε : Gε → R its restriction
to the grid Gε. Given t, τ > 0, let us define cτt,ε : G2

ε 7→ R as follows :

(14) ∀(x, y) ∈ G2
ε, cτt,ε(x, y) =

∫ t+τ

t
L

(
s, x+ (s− t)y − x

τ
,
y − x
τ

)
ds.

Let us introduce the following discrete Lax-Oleinik semi-group: if u : Gε →
R is any function, we set

∀x ∈ Gε, T τt,εu(x) = inf
y∈Gε

u(y) + cτt,ε(y, x).

A good setting to apply this semi-group is the one of functions u with
linear growth, which means that the quantity

(
u(y) − u(x)

)
/
(
1 + ‖y − x‖

)
is uniformly bounded. Note that for such a function u, for a given x, the
hypotheses made on L ensure the existence of a minimizing y ∈ Gε attaining
the previous infimum. Indeed, the cost cτt,ε inherits from L a superlinearity
property which implies that the function y 7→ u(y)+cτt,ε(y, x) goes to∞ at∞.
Moreover, the set of functions with at most linear growth is invariant by our
semi-group. For more details, we refer the reader to the appendix of [Zav12].
Note that Lipschitz functions, which we will only consider in the following,
have linear growth.

For a given integer N , we define

(15) TNτt,ε u = T τtN−1,ε
◦ · · · ◦ T τt1,ε ◦ T

τ
t0,εu

the composition of N times the discrete semi-group T τt,ε, where for all i =
1, . . . , N − 1, ti = t+ iτ .

Remark 2.4. — The following monotonicity property holds true: if u(x) 6
v(x) for all x ∈ Rn, we easily observe that TNτt,ε u 6 TNτt,ε v.

Proposition 2.5. — Let u : Rn 7→ R and N > 1 an integer, t ∈ R and τ > 0.
Then

(16) (TNτt u)|Gε 6 TNτt,ε (u|Gε).
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Proof. — Let x ∈ Gε. With this point, we can associate N + 1 points xi,
i = 0, . . . , N such that xN = x, and such that for all i = 0, . . . , N − 1,

T τti,ε ◦ T
iτ
t,εu(xi+1) = T iτt,εu(xi) + cτti,ε(xi, xi+1).

With this notation, we can verify that

TNτt,ε (u|Gε)(x) = u(x0) +
N−1∑
i=0

cτti,ε(xi, xi+1)

= u(x0) +
N−1∑
i=0

∫ ti+1

ti

L

(
s, xi + (s− ti)

xi+1 − xi
τ

,
xi+1 − xi

τ

)
ds

= u(x0) +
∫ Nτ

0
L
(
s, γt,ε,τ (s), γ̇t,ε,τ (s)

)
ds,

where γt,ε,τ (s) is the continuous piecewise linear curve defined by

(17) γt,ε,τ (s) = xi + (s− ti)
xi+1 − xi

τ
, for s ∈ [ti, ti+1].

The result then easily follows by definition of TNτt u.

As we will see now, the reverse inequality (16) is true up to a small error
term coming from the time and space discretization. This is stated in the
following convergence result:

Theorem 2.6. — Let T > 0, ε0, τ0 and h0 > 0 and u : Rn → R a bounded
Lipschitz function. There exists a constant M such that for all ε > 0 and
τ > 0 such that ε < ε0, τ < τ0 and

(18)
ε

τ
< h0,

for all N satisfying Nτ 6 T ,

(19)
∣∣∣(TNτt u)|Gε − TNτt,ε (u|Gε)

∣∣∣
∞

6 M
( ε
τ

+ τ
)
.

Proof. — Let us denote by γt : [t, t+T ]→ Rn a minimizer of (9). Recall that
the curve γt(s) is C2. Let us set y := γt(t) and x := γt(t+ T ). We have

T Tt u(x) = u(y) +
∫ t+T

t
L
(
s, γt(s), γ̇t(s)

)
ds.

By superlinearity (8), this implies that∫ t+T

t
|γ̇t(s)|ds 6 TA(1) + |T Tt u(x)− u(y)|.



8 ANNE BOUILLARD, ERWAN FAOU & MAXIME ZAVIDOVIQUE

Comparing with the trivial curve γ ≡ x in the definition of the Lax-Oleinik
semi-group, we have that

(20) T Tt u(x) 6 |u|∞ + T
(
B +K∗(0)

)
where B is the constant in (7). Moreover, since L is bounded below
(L(t, x, v) > b for some constant b, for all (t, x, v)), clearly, the action of any
curve defined for a time T is greater than Tb which implies immediately that

(21) T Tt u(x) > −|u|∞ + Tb.

Hence, there exists a constant B1 depending only on L and |u|∞ such that

(22) |x− y| = |γt(t+ T )− γt(t)| 6
∫ t+T

t
|γ̇t(s)|ds 6 B1(1 + T ).

Remarking that γt is also a minimizer of the action (11) under the constraint
γ(t) = y and γ(t + T ) = x, we can apply Proposition 2.2 which shows that
there exists a constant M1 = M

(
B1(1 + T ), T

)
depending only on T , L and

|u|∞ such that

(23) ∀ s ∈ [t, t+ T ], |γ̇t(s)| 6 M1.

Assume now that N is an integer such that Nτ 6 T . For all i = 0, . . . , N
we define

xi = ε

⌊
1
ε
γt(ti)

⌋
where for i = 0, . . . , N , ti = t + iτ and where the function b·c is the floor
function, coordinate by coordinate. With these points, we associate the con-
tinuous piecewise linear path γt,ε,τ defined as in formula (17). Notice however
that the points xi are no longer the same. By definition of the points xi, we
have

(24) ∀ i ∈ [0, N ], |xi − γt(ti)| = |γt,ε,τ (ti)− γt(ti)| 6 ε
√
n.

Now, using the bound (23), we have for all i = 0, . . . , N − 1,

|xi+1 − xi| 6 2ε
√
n+

∫ ti+1

ti

|γ̇t(s)|ds 6 2ε
√
n+ τM1.

But this inequality implies that for all i = 0, . . . , N − 1,

∀ s ∈ [ti, ti+1], |γt,ε,τ (s)− xi| 6 2ε
√
n+ τM1,

while |γt(s)− γt(ti)| 6 τM1 upon using (23). Hence we get

(25) ∀ s ∈ [ti, ti+1], |γt,ε,τ (s)− γt(s)| 6 3ε
√
n+ 2τM1.

Moreover, we have for s, σ ∈ [ti, ti+1],

|γ̇t(σ)− γ̇t(s)| 6 τC
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upon using (12). Hence for s ∈ [ti, ti+1], we have

|γt(ti+1)− γt(ti)− τ γ̇t(s)| 6
∫ ti+1

ti

|γ̇t(σ)− γ̇t(s)|dσ 6 τ2C

and hence for all s ∈ [ti, ti+1]∣∣∣∣γt(ti+1)− γt(ti)
τ

− γ̇t(s)
∣∣∣∣ 6 τC.

Using (24), we obtain easily that for all i = 0, . . . , N − 1,

(26) ∀ s ∈ [ti, ti+1], |γ̇t,ε,τ (s)− γ̇t(s)| 6 τC +
2ε
τ

√
n.

Note that using (18) and (23), the previous equation implies that for all i =
0, . . . , N − 1,

(27) ∀ s ∈ [ti, ti+1], |γ̇t,ε,τ (s)| 6 M2

for some constant M2 = τ0C + h0
√
n+M1 independent of ε and τ .

Now by definition of γt,ε,τ , we have

(28)
∣∣∣ ∫ t+Nτ

t
L(s, γt(s), γ̇t(s))ds−

N−1∑
i=0

cτti,ε(xi, xi+1)
∣∣∣

=
∣∣∣ ∫ Nτ

0
L(s, γt(s), γ̇t(s))ds−

∫ Nτ

0
L(s, γt,ε,τ (s), γ̇t,ε,τ (s))ds

∣∣∣
6

N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, γt(s), γ̇t(s))− L(s, γt,ε,τ (s), γ̇t,ε,τ (s))
∣∣∣ds.

Using (7), the fact that K∗ is C2 and the bounds (23) and (27), there exists a
constant M3, depending on L, M1 and M2, such that the previous error term
is bounded by

M3

N−1∑
i=0

∫ ti+1

ti

(
|γt(s)− γt,ε,τ (s)|+ |γ̇t(s)− γ̇t,ε,τ (s)|

)
ds.

Using (25) and (26), this shows that there exists a constant M4 independent
on ε and τ , such that

(29)

∣∣∣∣∣
∫ t+Nτ

t
L(s, γt(s), γ̇t(s))ds−

N−1∑
i=0

cτti,ε(xi, xi+1)

∣∣∣∣∣ 6 M4

( ε
τ

+ τ
)
,

where we used the fact that ε 6 τ0ε/τ .
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Now by definition of TNτt,ε , we have using (24) and the Lipschitz nature of
u,

TNτt,ε (u|Gε)(x) 6 u(x0) +
N−1∑
i=0

cτti,ε(xi, xi+1)

6 (TNτt u)|Gε(x) +
∣∣u(x0)− u

(
γt(0)

)∣∣+M4

( ε
τ

+ τ
)

6 (TNτt u)|Gε(x) +M
( ε
τ

+ τ
)

(30)

for some constant M independent on ε and τ . This inequality and (16) show
the final estimate (19).

2.3. Fully discrete semi-group. — In the previous Section, we have seen
that the Lax-Oleinik semi-group can be approximated using the cost (14)
defined on the grid. To compute this cost, a quadrature rule in time has to
be used. In this subsection, we prove how the Euler approximation of this
integral yields a convergent scheme which still satisfies a weak-KAM theorem
similar to Proposition 3.1 under suitable periodicity assumptions.

For a given ε > 0 and τ > 0, we define the following cost function:

(31) ∀(x, y) ∈ G2
ε, κτt,ε(y, x) = τL

(
t, x,

x− y
τ

)
.

and the associated fully discrete Lax-Oleinik semi-group

∀x ∈ Gε, T τt,εu(x) = inf
y∈Gε

u(y) + κτt,ε(y, x),

if u : Gε → R is a function. Using the explicit expression of L, we can rewrite
this fully-discrete semi-group as

(32) ∀x ∈ Gε, T τt,εu(x) = inf
y∈Gε

(
u(y) + τK∗

(
x− y
τ

))
− τV (t, x).

involving the (min,plus)-convolution of u and K∗.

Remark 2.7. — We can interpret this scheme as a discretization of the split-
ting scheme (see for instance [JKR01]) with time step τ based on the decom-
position

∂tu(t, x) +K(∇u(t, x)) = 0, and ∂tu(t, x) + V (t, x) = 0,

where the first part is integrated using the method described in the previous
section.

Remark 2.8. — In dimension n > 1, if we assume that for p = (p1, . . . , pn) ∈
Rn, K(p) = K1(p1) + · · · + Kn(pn) with convex Hamiltonian functions K∗i ,
i = 1, . . . , n, satisfying all the hypotheses (i), (ii) on R, then we immediately
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see that for a given function u(x) = u(x1, . . . , xn), with x = (x1, . . . , xn) ∈ Rn,
we have

inf
y∈Gε

u(y) + τK∗(
x− y
τ

) =

inf
yn∈Gn

ε

[
τK∗n(

xn − yn
τ

) +

[
inf

yn−1∈Gn−1
ε

τK∗n−1(
xn−1 − yn−1

τ
) + · · ·

+
[

inf
y1∈G1

ε

τK∗n(
x1 − y1

τ
) + u(y1, . . . , yn)

]
· · ·
]]

=

T τ,1t,ε ◦ · · · ◦ T
τ,n
t,ε u(x),

where we have decomposed Gε = G1
ε × · · · ×Gnε and where

∀i ∈ [1, n], T τ,it,ε u(x) = inf
yi∈Gi

ε

τK∗i (
xi − yi
τ

) + u(x1, . . . , xi−1, yi, xi+1, . . . xn).

This formula is essentially due to the fact that the Hamiltonians Ki commute,
i.e. satisfy {Ki,Kj} = 0 for (i, j) ∈ {1, . . . , n}2 which ensures that the flows
of ∂tu = Ki(∇u), i = 1, . . . , n commute. In this case, this allows to reduce the
computation of the minimum over the n dimensional grid Gε to n minimization
problems over the 1 dimensional grids Giε.

For a given integer N , we define - compare (15)

T Nτt,ε u = T τtN−1,ε
◦ · · · ◦ T τt1,ε ◦ T

τ
t0,εu

where ti = t + iτ . Note that with these notations, an estimate of the form
(16) is no longer valid. However, we have the following convergence result:

Theorem 2.9. — Let T > 0, ε0, τ0 and h0 > 0 and u : Rn → R a bounded
Lipschitz function. There exists a constant M such that for all t > 0, and all
ε > 0 and τ > 0 such that ε < ε0, τ < τ0 and the bound ε/τ < h0 are satisfied,
then for all N verifying Nτ 6 T ,

∣∣∣(TNτt u)|Gε − T Nτt,ε (u|Gε)
∣∣∣
∞

6 M
( ε
τ

+ τ
)
.
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Proof. — The proof is exactly the same as the proof of Theorem 2.6 until
Equation (28) that has to be replaced by the following estimate:∣∣∣ ∫ t+Nτ

t
L
(
s, γt(s), γ̇t(s)

)
ds−

N−1∑
i=0

κτt,ε(xi, xi+1)
∣∣∣

6
N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, γt(s), γ̇t(s))− L(s, γt,ε,τ (s), γ̇t,ε,τ (s)
)∣∣∣ds

+
N−1∑
i=0

∫ ti+1

ti

∣∣∣L(s, γt,ε,τ (s), γ̇t,ε,τ (s)
)
− L

(
ti, γt,ε,τ (ti), γ̇t,ε,τ (ti)

)∣∣∣ds.
In the right-hand side of this inequality, the first term is bounded by M4

(
ε
τ +τ

)
see (29). To bound the second term, we observe first that for s ∈ [ti, ti+1], the
derivative γ̇t,ε,τ (s) = (xi+1−xi)/τ does not depend on s. Hence using (7) and
(27) the function

[ti, ti+1] 3 s 7→ L
(
s, γt,ε,τ (s), γ̇t,ε,τ (s)

)
is C1 with uniformly bounded derivative. Thus we obtain that there exists a
constant M5 such that∣∣∣L(s, γt,ε,τ (s), γ̇t,ε,τ (s)

)
− L

(
ti, γt,ε,τ (ti), γ̇t,ε,τ (ti)

)∣∣∣ 6 M5(s− ti).

This proves that
(
compare (29)

)
(33)

∣∣∣∣∣
∫ t+Nτ

t
L
(
s, γt(s), γ̇t(s)

)
ds−

N−1∑
i=0

κτti,ε(xi, xi+1)

∣∣∣∣∣ 6 M6(
ε

τ
+ τ),

for some constant M6 independent of ε and τ . As in (30), we obtain that

T Nτt,ε (u|Gε)(x) 6 (TNτt u)|Gε(x) +M
( ε
τ

+ τ
)
,

for some constant M independent on ε and τ .
To prove the reverse inequality, let us fix x ∈ Gε. We consider a sequence

yi, i = 0, . . . , N with yN = x and

(34) T Nτt,ε (u|Gε)(x) = u(y0) +
N−1∑
i=0

κτti,ε(yi, yi+1),

and we define the curve

ηt,ε,τ (s) = yi + (s− ti)
yi+1 − yi

τ
, for s ∈ [ti, ti+1].

Note that in a similar manner to what we did to prove the inequalities 20 and
21, using the fact that u is bounded, and comparing with the trivial sequence
made of a constant point (with (7)) on the one hand, and the fact that L,
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hence the κτti,ε are bounded below on the second hand show that there exists
a constant D1 such that

|T Nτt,ε (u|Gε)|∞ 6 D1.

By superlinearity of L (and of the κτti,ε) and using again the fact that u is
bounded, we thus see, as in 22 that there exists a constant D2 such that for
all i = 0, . . . , N − 1, ∣∣∣∣yi+1 − yi

τ

∣∣∣∣ 6 D2,

which in turn implies that

∀ s ∈ [ti, ti+1], |ηt,ε,τ (s)− ηt,ε,τ (ti)| 6 τD2.

As the derivative of ηt,ε,τ (s) with respect to s is uniformly bounded by D2 and
constant on the time intervals [ti, ti+1], and as L is C1 with uniformly bounded
derivative on R× Rn ×B(0, D2), we obtain

(35)

∣∣∣∣∣
N−1∑
i=0

κτti,ε(yi+1, yi)−
∫ Nτ

0
L
(
s, ηt,ε,τ (s), η̇t,ε,τ (s)

)
ds

∣∣∣∣∣ 6 τD3

for some constant D3. Using the definition of the exact semi-group, we thus
have

(TNτt u)|Gε(x) 6 u
(
ηt,ε,τ (tN )

)
+
∫ Nτ

0
L
(
s, ηt,ε,τ (s), η̇t,ε,τ (s)

)
ds

6 T Nτt,ε (u|Gε)(x) + τD3

upon using (34) and (35). This proves the result.

3. Long time behavior in the periodic case

We will now make the supplementary assumption that the potential function
V (t, x) is periodic, namely

(iii) The function V is Z× Zn-periodic, in the sense that

∀(t, x) ∈ R× Rn, ∀(m,M) ∈ Z× Zn, V (t, x) = V (t+m,x+M).

Moreover, V ∈ C2(R× Rn).

Note that under this assumption, the estimate (7) is automatically satisfied.
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3.1. Weak-KAM theorem and a priori compactness. — In this peri-
odic case, the weak-KAM theorem allows to study the long time behavior of
the solution of (1) defined by the Lax-Oleinik semi-group:

Proposition 3.1. — Assume that the hypothesis (i) and (iii) are satisfied.
Then there exists a unique constant H such that there exists a Z×Zn-periodic
continuous function u∗ : R× Rn → R verifying for all t > 0,

T 1
t u
∗(t, ·) = H + u∗(t, ·).

Moreover, for any uniformly bounded u : Rn → R, there exists a constant Cu
such that we have

∀ t > 0, |T t0u− tH|∞ 6 Cu.

Proof. — The existence of H and of u∗ is exactly the content of the weak-
KAM theorem (see [Fat97, Fat05] for the autonomous case, and [CISM00]
for the time periodic case). The second assertion is a consequence of the fact
that

|T t0u− T t0v|∞ 6 |u− v|∞
for all continuous bounded functions u and v on Rn, where | · |∞ denotes the
L∞ norm on Rn.

The goal of this section is to prove that a similar result holds for the nu-
merical scheme described in the previous section, under the assumptions (i)
and (iii).

In order to study the long time behavior of the method in this case, we
first give an a priori compactness result which refines the estimates given
in Proposition 2.2. The following proposition is mainly due to Mather (see
[Mat91] for the case of time periodic Lagrangians, or [Itu96, Lemma 7 and
Corollary 8] for space periodic Lagrangians).

Proposition 3.2. — Assume that H satisfies the hypotheses (i) and (iii).
For all Γ > 0, there exists a constant Γ′ such that for any minimizer of the
Lagrangian action γ : [a, b]→ Rn with b− a > 1 and |γ(b)− γ(a)|/(b− a) 6 Γ
then we have

∀t ∈ [a, b], |γ̇(t)| 6 Γ′.

In other words, the constant M(R, T ) of Proposition 2.2 can be chosen to
be an increasing function of R/T .

For the sake of completeness, we will give in appendix a proof of this propo-
sition. Note that most of the proof - essentially taken from [Mat91] - does not
require the Hamiltonian to be periodic in space. In [Itu96] a similar result
is proven which requires the Lagrangian to be periodic in space, but not any
more in time.
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3.2. Convergence estimates in the periodic case. — Using the previ-
ous proposition, we can compute explicitly the time dependence in the error
estimates of Theorems 2.6 and 2.9 in the periodic case.

Theorem 3.3. — Let T0 > 1, ε0, τ0 and h0 > 0 and u : Rn → R a bounded
Lipschitz function. There exists a constant M such that for all ε > 0 and
τ > 0 such that ε < ε0, τ < τ0 and

(36)
ε

τ
< h0,

for all N satisfying Nτ > T0,∣∣∣(TNτt u)|Gε − TNτt,ε (u|Gε)
∣∣∣
∞

6 MNτ
( ε
τ

+ τ
)
,

and in similar way,

(37)
∣∣∣(TNτt u)|Gε − T Nτt,ε (u|Gε)

∣∣∣
∞

6 MNτ
( ε
τ

+ τ
)
.

Proof. — In the proof of Theorem 2.6, equation (22) then gives using Propo-
sition 3.2 (with T > T0 > 1) that the constant M1 defined in (23) does not
depend on T = Nτ and depend in fact only on T0. It then follows that M2

and M3 also are independent of T = Nτ , while M4 is proportional to the time
of integration, that is Nτ . In a similar way, in Theorem 2.9, the additional
error made is proportional to the time of integration, hence giving the second
part of Theorem 3.3.

3.3. Discrete weak-KAM theorem and effective Hamiltonian. —
Recall that the function u(t, x) is defined on T1×Tn =

(
R/Z

)
×
(
Rn/Zn

)
. For

convenience, we will only treat the cases of rational time and space discretiza-
tions: We set

Λ =
{(1

k
,
1
`

)
| (k, `) ∈ N∗ × N∗

}
,

and in the sequel, we will only consider stepsizes (ε, τ) ∈ Λ. We then will
denote by p the canonical projection from Rn to Tn, and by G̃ε = Gε/Zn the
quotiented grid, where Gε is the grid above, defined on Rn.

Finally, we define two new cost functions: For (ε, τ) ∈ Λ and t > 0,

∀ (x̃, ỹ) ∈ (G̃ε)2, c̃τt,ε(x̃, ỹ) = inf
p(x)=x̃
p(y)=ỹ

cτt,ε(x, y),

where cτt,ε(x, y) is defined in (14), and similarly

∀ (x̃, ỹ) ∈ (G̃ε)2, κ̃τt,ε(x̃, ỹ) = inf
p(x)=x̃
p(y)=ỹ

κτt,ε(x, y),

where κτt,ε(x, y) is the fully discrete cost function defined in (31).
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We then define the following semi-groups: Let ũ : Tn → R and (ε, τ) ∈ Λ,
then

(38) ∀ x̃ ∈ G̃ε, T̃ τt,εũ(x̃) = inf
ỹ∈ eGε

ũ(ỹ) + c̃τt,ε(ỹ, x̃),

and the fully discrete semi-group

∀ x̃ ∈ G̃ε, T̃ τt,εũ(x̃) = inf
ỹ∈ eGε

ũ(ỹ) + κ̃τt,ε(ỹ, x̃).

As in the previous section, we define

T̃Nτt,ε = T̃ τtN−1,ε
◦ · · · ◦ T̃ τt1,ε ◦ T̃

τ
t0,ε

and
T̃ Nτt,ε = T̃ τtN−1,ε

◦ · · · ◦ T̃ τt1,ε ◦ T̃
τ
t0,ε,

where ti = t+ iτ .
We leave to the reader the verification that if ũ : Tn → R is a function

and if u : Rn → R is its lift (which is then Zn periodic), both functions TNτt,ε u

and T Nτt,ε u are Zn periodic and that the functions they respectively canonically
induce on Tn are T̃Nτt,ε ũ and T̃ Nτt,ε ũ. It comes from the fact that two infimums
commute. Hence the previous convergence result Theorem 3.3 can be read
equivalently on Tn or on the space of Zn periodic functions on Rn.

We can use the discrete weak KAM theorem to better understand the ap-
proximate semi-groups applied for a period 1 of time and obtain the following
proposition.

Proposition 3.4. — For any (ε, τ) ∈ Λ, there exist unique constants Hε,τ

and Hε,τ such that there exist functions u∗ε,τ , v
∗
ε,τ : G̃ε → R verifying:

T̃ 1
0,εu

∗
ε,τ = u∗ε,τ +Hε,τ ,

and
T̃ 1

0,εv
∗
ε,τ = v∗ε,τ +Hε,τ .

Moreover, in u is any bounded initial datum on Gε at t = 0, then we have in
L∞

1
Nτ

TNτ0,ε u −→ Hε,τ ,

and
1
Nτ
T Nτ0,ε u −→ Hε,τ ,

as N → +∞.

Proof. — The first part is just a reformulation of the discrete weak KAM
theorem (see for example the appendix of [Zav12] or [BB07]) while the second
part is - as in the proof of Proposition 3.1 - a direct consequence of the fact
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that our approximation operators are weakly contracting for the infinity norm
on bounded functions.

Remark 3.5. — Note that the previous proposition can be interpreted in the
(min,plus) framework: Equation (38) is the (min,plus) product of a vector ũ
by the matrix c̃τt e. Then, for τ = 1/`, ` ∈ N∗, T̃ 1

0,εũ = T̃ `τ0,εũ is obtained by
successive matrix multiplications with ũ. Hence there exists a matrix Cε,τ
such that T̃ 1

0,εũ(x̃) = inf ỹ∈G̃ε
ũ(ỹ) + Cε,τ (ỹ, x̃), with Cε,τ (ỹ, x̃) < +∞ for all

ỹ, x̃. The matrix Cε,τ has a unique eigenvalue Hε,τ , and ũε,τ it an eigenvector
(see [BCOQ92] for details).

Let us recall that H is the effective Hamiltonian of H. It is obtained in
homogenization theory by solving the cell problem ([LPV87]) and is also the
constant found in the weak KAM theorem (3.1). Using the refined convergence
result obtained in Theorem 3.3, we can estimate the error between the effective
Hamiltonian and the discrete effective Hamiltonians defined in Proposition 3.4.

Theorem 3.6. — With the notations of Theorem 3.3, let (ε, τ) ∈ Λ be such
that ε 6 ε0, τ 6 τ0 and ε/τ 6 h0, then following inequalities hold:∣∣Hε,τ −H

∣∣ 6 M
( ε
τ

+ τ
)
,

and ∣∣Hε,τ −H∣∣ 6 M
( ε
τ

+ τ
)
,

where M is any constant coming from 3.3, and where Hε,τ and Hε,τ are defined
in Proposition 3.4.

Proof. — We will only prove the first inequality, the second being obtained
in the same way. Start with a bounded and uniformly Lipschitz continuous
function u : Rn → R. By 3.3, the following inequality holds if Nτ > T0 for
some chosen T0 > 1 :

(39)
∣∣∣(TNτ0 u)|Gε − TNτ0,ε (u|Gε)

∣∣∣
∞

6 MNτ
( ε
τ

+ τ
)
.

Dividing by Nτ and letting N go to ∞ yields that∣∣Hε,τ −H
∣∣ 6 M

( ε
τ

+ τ
)
.

Remark 3.7. — By Proposition 2.5, we always have the following additional
information: Hε,τ 6 H.
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Remark 3.8. — One may wonder what is the behavior of the quantity
(TNτ0 u)|Gε − TNτ0,ε (u|Gε) as T = Nτ → ∞. The previous results show that it
has a linear growth, of rate H −Hε,τ . Comparing with weak KAM solutions
yields that the second error term is always bounded. However, in some cases
more can be said. Indeed, in the autonomous case (L independant of t)
Fathi proved the convergence of the Lax–Oleinik semigroup ([Fat98]), that
is, for any initial condition u there exists a weak KAM solution u∗ such that
(TNτ0 u)−NτH → u∗ uniformly. Moreover, it can be proved that the iterated
powers of a (min,+) matrix are periodic after a finite time. Therefore, for
N big enough, the sequence TNτ0,ε (u|Gε), is periodic after a certain time. In
conclusion, in the autonomous case, one can write

(TNτ0 u)|Gε − TNτ0,ε (u|Gε) = Nτ(H −Hε,τ ) + wN ,

where wN is asymptotic to a periodic sequence.

4. Fast (min,plus)-convolution

As we have seen in (32), the numerical scheme considered in this paper
involves the computation of the (min,plus) convolution

inf
y∈Gε

(
u(y) + τK∗

(x− y
τ

))
, x ∈ Gε.

In dimension 1, if the grid Gε is discretized by retaining N points only, the
numerical cost is a priori of order N2. As we will see now, we can use a
fast (min,plus)-convolution algorithm that turns out to have a linear cost (i.e.
proportional to N) in many situations.

In order to ease the presentation, we will not deal with functions defined on
a grid, but on functions defined on finite and closed intervals.

Let a, b ∈ R with a < b. We write f : [a, b]→ R if f is such that{
f(x) <∞ if x ∈ [a, b]
f(x) =∞ otherwise.

For f : [a, b] → R, we say that f is respectively convex, concave, affine if
f|[a,b] is respectively convex, concave, affine. Let f : [a, b]→ R and g : [c, d]→
R. The (min,plus)-convolution (or convolution in the remaining of the paper)
of f and g is defined by: ∀x ∈ R,

(40) f ∗ g(x) = inf
y∈R

f(y) + g(x− y).

Recall that f ∗ g = g ∗ f . As f and g are finite only on an interval, it is easy
to see that ∀x ∈ [a+ c, b+ d],

f ∗ g(x) = inf
y∈[a,b]

f(y) + g(x− y),
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and ∀x /∈ [a+ c, b+ d], f ∗ g(x) =∞.
We will only consider piecewise affine functions and decompose them ac-

cording to their affine components: there exists a0 = a < ai < · · · < an = b
such that

f = min
i∈{0,...,n−1}

fi,

where fi : [ai, ai+1]→ R is an affine function. For i = 0, . . . , n− 1, we denote
by f ′i = (f(ai+1) − f(ai))/(ai+1 − ai) the slope of fi or the slope of f on
[ai, ai+1].

4.1. Convolution. — The fast algorithm to compute the convolution (40)
is based on a decomposition of g (= u) in piecewise convex and concave func-
tions. As the function f (= K∗(·/τ)) considered will always be convex (see
(6)), we thus see that we are led to compute separately the convolution of
convex by convex functions, and concave by convex functions defined on finite
intervals. As we will see, each block can be computed at a linear cost. In the
end, the global cost of the algorithm thus depends on the number of convex
and concave components on f , a number which might increase in the time
evolution of the numerical solution of the Hamilton-Jacobi equation. We will
come back later to this matter, but we emphasize that this procedure can be
very easily implemented in parallel, each convolution block being calculated
independently.

We start with the following result, the proof of which can be found for
example [BT08].

Lemma 4.1 (convolution of a convex function by an affine function)
Let f : [a, b] → R be a convex piecewise affine function and g : [c, d] → R

be an affine function of slope g′. Then f ∗ g : [a + c, b + d] → R is a convex
piecewise affine function defined by

f ∗ g(x) =

 f(x− c) + g(c) if a+ c 6 x 6 α+ c,
f(α) + g(x− α) if α+ c < x 6 α+ d,
f(x− d) + g(d) if α+ d < x 6 b+ d,

where α = min{ai in the decomposition of f | f ′i > g′}.

Figure 1 illustrates this lemma. In the rest of the section, we will use a
decomposition of such a convolution into three parts : f ∗ g = min(g1, gc, g2),
where

(i) g1 = f ∗ g|[c+a,c+α];
(ii) gc = f ∗ g|[c+α,d+α];
(iii) g2 = f ∗ g|[d+α,d+b].
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∗ =

a α b c d a+ c b+ dα+ dα+ c

f g f ∗ g

g1

gc

g2

Figure 1. Convolution of a convex function by an affine function
and decomposition into three functions.

In other words, g1 is composed of the segments of f whose slope are strictly
less than that of g, gc corresponds to the segment g and g2 is composed of the
segments of f whose slope are greater than or equal to that of g. Note that
gc is also concave.

A direct consequence of this lemma is the following theorem, stated
in [LBT01]. A complete proof is presented in [BJT08].

Theorem 4.2 (convolution of a convex function by a convex function)
If f and g are convex and piecewise affine, then f ∗ g is obtained by putting

end-to-end the different linear pieces of f and g sorted by increasing slopes.

For sake of completeness, we give below Algorithm 1 for computing the
(min,plus)-convolution of two convex piecewise affine functions.

We now turn to the case where f is convex and g is concave. We begin with
the following lemma:

Lemma 4.3. — Let f : [a, b] → R be a convex piecewise affine function and
g : [c, d] → R be a concave piecewise affine function which decomposition is
g = minmj=1 gj. Then

f ∗ g =
m

min
j=1

f ∗ gj .

Proof. — This is a direct consequence of the distributivity of ∗ over the min-
imum.

Now, consider two functions f : [a, b] → R, convex, and g : [c, d] → R,
concave, with respective decompositions in fi : [ai, ai+1] → R, i ∈ {0, n − 1}
and gj : [cj , cj+1] → R, j ∈ {0,m − 1}. The following lemma, that considers
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Algorithm 1: Convolution of two convex functions
Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a

convex function with slopes (ρi).
Result: h = f ∗ g
begin

i← 0; j ← 0; h(0)← f(0) + g(0);
while i+ j < n+m do

if i 6= n and (ri < ρj or j = m) then
h(i+ j + 1)← h(i+ j) + ri; i← i+ 1;

else
h(i+ j + 1)← h(i+ j) + ρj ; j ← j + 1;

end

two consecutive affine functions of g, leads to an efficient algorithm to compute
the convolution of a convex function by a concave function.

Lemma 4.4. — Consider the convolutions f ∗ gj−1 and f ∗ gj. Let

αj = min{ai in the decomposition of f | f ′i ≥ g′j}
and

αj−1 = min{ai in the decomposition of f | f ′i ≥ g′j−1}.
Then

– ∀x 6 cj + αj, f ∗ gj(x) > f ∗ gj−1(x);
– ∀x > cj + αj−1, f ∗ gj−1(x) > f ∗ gj(x).

Proof. — First, as f is convex and g′j−1 > g′j , we have that αj−1 ≥ αj . From
Lemma 4.1, for all x 6 cj + αj ,

f ∗ gj(x) = f(x− cj) + g(cj).

Either x 6 cj−1 + αj−1, then f ∗ gj−1(x) = f(x− cj−1) + g(cj−1) and

f ∗ gj(x)− f ∗ gj−1(x) = f(x− cj)− f(x− cj−1) + g(cj)− g(cj−1);

as x − cj−1 6 αj−1, then f(x − cj−1) − f(x − cj) 6 g′j−1 · (cj − cj−1) and
f ∗ gj(x)− f ∗ gj−1(x) > 0;

or x > cj−1 + αj−1, then f ∗ gj−1(x) = f(αj−1) + g(x − αj−1); as cj−1 <
x − αj−1 6 x − αj 6 cj , g(cj) − g(x − αj−1) = g′j−1 · (cj + αj−1 − x) and
f(αj−1)− f(x− cj) ≤ g′j−1 ·(cj + αj−1 − x); then f ∗ gj(x)− f ∗ gj−1(x) ≥ 0.

The second statement can be proved similarly.

Another formulation of Lemma 4.4 is that g1
j ≥ f∗gj−1 and that g2

j−1 ≥ f∗gj
and that the two fonctions intersect at least once. Hence g1

j and g2
j−1 cannot

appear in the minimum of f ∗ gj and f ∗ gj−1. By transitivity, there is no need
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∗ =

α1 c0 c2c1

g0

g1f f ∗ g1

f ∗ g0

c1 + α1α0 c1 + α0

Figure 2. Convolution of a convex function by a concave function.

to compute entirely the convolution of the convex function by every affine
component of the decomposition of the concave function. If there are more
than two segments, successive applications of this lemma show that only the
position of the segments of the concave function must be computed, except
for the extremal segments.

The following lemma shows that f ∗ gj and f ∗ gj−1 intersect in one and
only one connected component, as for a given abscissa, the slope of f ∗ gj is
less than the one of f ∗ gj−1.

Lemma 4.5. — Let x ∈ R where f ∗ gj and f ∗ gj−1 are defined and differ-
entiable. Then

(41)
d

dx
f ∗ gj(x) ≤ d

dx
f ∗ gj−1(x).

Proof. — For x ∈ [a0, αj ], f ∗ gj(x+ cj) = f(x− cj) + g(cj) and f ∗ gj−1(x+
cj−1) = f(x) + g(cj−1). As f is convex and cj ≥ cj−1, the result holds on
[a0 + cj , αj + cj ]. Similarily, the result holds for x ∈ [αj−1 + cj , an + cj ].

On [cj +αj , cj +αj−1], f ∗ gj is composed of segment gj concatenated with
the segments fi, i ∈ [αj−1, αj ], possibly troncated on the right and f ∗ gj−1

is composed of segments fi, i ∈ [αj−1, αj ] concatenated with gj−1, possibly
troncated on the left. As ∀i ∈ [αj−1, αj ], g′j−1 ≤ f ′i ≤ g′j , the result holds.

If one sets by convention d
dxf ∗ gj(x) = −∞ for x < cj−1 + a0 and d

dxf ∗
gj(x) = +∞ for x > cj + an, then the inequality always holds.

The intersection of f ∗ gj−1 and f ∗ gj can then happen in one and only one
of the four cases:

1. g1
j−1 and gcj intersect;

2. g1
j−1 and g2

j intersect;
3. gcj−1 and gcj intersect;
4. gcj−1 and g2

j intersect.
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The following theorem is another consequence of these lemmas and is more
precise about the shape on the convolution of a convex function by a concave
function.

Theorem 4.6 (convolution of a convex function by a concave func-
tion)

The (min,plus)-convolution of a convex function by a concave function can
be decomposed in three (possibly trivial) parts: a convex function, a concave
function and a convex function.

Proof. — We use the notations defined in the former lemmas.
We now show by induction that the convolution of f by mink≤j gj , denoted

hj , is composed of

(i) a convex part h1
j , which is the a restriction of g0(x) = f(x− c0) + g(c0)

to [c0 + a0, βj ], with βj ≤ c0 + an;
(ii) a concave part hcj , which is a minimum of some segments gk, k ≤ j (up

to some translation) defined on [βj , γj ];
(iii) a convex part h2

j , gj(x) = f(x − cj+1) + g(cj+1) for x ∈ [γj , an + cj+1],
γj ≥ a0 + cj+1.

Note that with these conventions, the reals βj and γj are uniquely deter-
mined at each step of the induction.

The case with j = 0 is a direct consequence of Lemma 4.1. The case with
j = 1 is a consequence of Lemmas 4.4 and 4.1. The graphs of f ∗ g1 and f ∗ g0
intersect once and only once (where they are defined), and in [c1 +α1, c1 +α0].
Depending on when this intersection occurs, the concave part will be trivial, be
made of only one (part of a) segment of g, or a minimum of the two segments
g0 and g1.

Suppose now that the result holds for hj and consider hj+1 = min(hj , f ∗
gj+1). The argument is exactly the same as for j = 1: hj and f ∗gj+1 can only
intersect once and only once. Indeed, hj is the minimum of functions such
that d

dxf ∗ gk(x) ≥ d
dxf ∗ gj+1(x), and then d

dxhj(x) ≥ d
dxf ∗ gj+1(x). Note

that this intersection has to occur after the point cj+1 + αj+1.
Moreover, as g2

j does not intersect g2
j+1 and that h2

j is a part of g2
j (by the

induction hypothesis), h2
j does not intersect g2

j+1.
Therefore, only one of the four following cases may occur.
1. hcj intersects gcj+1 and h1

j+1 = h1
j , h

c
j+1 = min(hcj , g

c
j+1), h2

j+1 = g2
j+1,

βj+1 = βj and γj+1 = αj+1 + cj+2.
2. hcj intersects g2

j+1 at y and h1
j+1 = h1

j , h
c
j+1 = hcj , h

2
j+1 = g2

j+1, βj+1 = βj
and γj+1 = y.

3. h1
j intersects gcj+1 at y and h1

j+1 = h1
j , h

c
j+1 = hcj , h

2
j+1 = g2

j+1, βj+1 = y
and γj+1 = αj+1 + cj+2.
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4. h1
j intersects g2

j+1 at y and h1
j+1 = h1

j , h
c
j+1 is trivial and h2

j+1 = g2
j+1,

βj+1 = γj+1 = y.

If the concave function is composed of m segments and the convex function
of n segments, then the convolution of those two functions can be computed
in time O(n + m logm). The logm term comes from the fact that one has
to compute the minimum of m segments (see [BT08] for more details). If
the functions are now defined on N, then, as no intersection point has to be
computed for the minimum, the time complexity is O(n+m). The correspond-
ing algorithm is given in Algorithm 2, where without loss of generality (the
(min,plus)-convolution is shift-invariant), the functions f and g are defined on
N and finite between respectively 0 and n, and 0 and m. The slopes of the
functions are thus f ′i = f(i)− f(i− 1) and g′i = g(i)− g(i− 1).

Algorithm 2: Convolution of a convex function by a concave function
Data: f : [0, n]→ R a convex function with slopes (ri), g : [0,m]→ R a

concave function with slopes (ρi).
Result: h = f ∗ g
begin

/* Initialization */
k ← 0;
while k 6 m+ n do h(k)← +∞; k ← k + 1;
i← 0; j ← 0; h(0)← f(0) + g(0);
/* First convex part of the convolution */
while f ′i 6 g′0 do

i← i+ 1; h(i)← f(i) + g(0);
/* Concave part of the convolution */
j ← j + 1; h(i+ j)← f(i) + g(j);
while j < m do

while g′j < f ′i−1 do i← i− 1;
h(i+ j)← min(h(i+ j), f(i) + g(j));
h(i+ j + 1)← min(h(i+ j + 1), f(i) + g(j + 1));
j ← j + 1;

/* Second convex part of the convolution */
while i < n do

i← i+ 1; h(i+m)← min(h(i+m), f(i) + g(m));

end
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4.2. Application. — We now go back to our initial problem. As already
explained above, the computation of T τt,εu(t, x) given in (32) is made of two
steps:

– (min,plus)-convolution of u and h : x 7→ τK∗(xτ );
– subtract τV (t, x).

Note that the (min,plus)-convolution described above is here defined on
functions that have a non-bounded support. But in the periodic case, u is
1-periodic and h is convex with a global minimum. Then, to compute the
convolution, it is enough to compute it on a single period (the (min,plus)
convolution preserves the periodicity), and replace h by its restriction on a
support of size 2 centered on its minimum. If ε = 1/N with the notation of
the previous section, then both functions u and h are defined on grids of size
N and 2N respectively.

The convolution of u and h can be efficiently computed following these steps:

1. Decompose u into convex and concave parts. This can be done in linear
time: the three first points determine if a part is concave or convex.
Then, this part is extended as much as possible while preserving the
concavity or convexity and so on.

2. For each convex or concave part, perform the convolution with h using
Algorithms 1 or 2.

3. Take the minimum of all these convolutions.

The complexity of this Algorithm is then O(cN), where c is the number of
components in the decomposition of u into concave/convex parts.

4.3. Implementation issues. — The main issue with this algorithm is that
c - the number of components in the decomposition of u - can become very
large, and then lead to a quadratic time complexity, which is the complexity
of a naive algorithm for computing the convolution. Experimentally, the rea-
son for this is that, due to the discretization of u, nearly affine parts, after
performing the convolution several times, are computed as fast alternations of
convex and concave parts. As shown in Figure 3, one solution to make the
computations more efficient would be to consider those parts are convex and
use Algorithm 1.

To do this, we decompose u into convex and concave parts with a tolerance
(we do not request for convex parts to have increasing increments, but the
increments to have an increase more than −η). We will discuss this in the
next section. The choice of an optimal tolerance η, as well as the comparison
with parallel implementations, will be the subject of further studies.
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convexe(u, h)

h

u ∗ h

u

Figure 3. Approximation of the convolution: plain line shows the
convolution of u and h, and the dashed line shows the function com-
puted using Algorithm 1 when u is not convex, but has very small
variations.

5. Numerical simulations

We take the Hamiltonian (3) with P = 1 and V (t, x) = 1−cos(x) on [−π, π].
We take N = 600 grid points, that is ε = 1.7e − 3, and τ =

√
ε = 0.04.

The comparisons are made with the fifth-order WENO algorithm (WENO5
see [JS96]) with 100 grid points, which will be considered here as the exact
solution.

In a first simulation, we calculate the solution at times t = 1, 2, 5 and 15
with initial value u(0, x) = cos(2x). We see the very good agreement between
the solution given by the WENO5 algorithm. However, the CPU time required
by our algorithm is about 3 times the CPU time of the WENO5 algorithm
(of order 2s to reach t = 15). In this case, for 600 grid points in [−π, π],
the number of convex/concave components c in the decomposition of u is of
order 100 at each time step. The plot, rescaled such that u(t,−π) = 0, is
shown in Figure 4. Note that after the time t = 20, the solution has converged
and remains constant for larger times. According to Remark 3.8, the solution
observed is thus very close to the weak-KAM solution u∗(x).

In a second simulation, we use the approximated convolution with a tol-
erance η = 10 × ε2 = 2.7e − 5. In this case, the number of convex/concave
components c is always of order 10 (and equal to 3 - as expected from the
shape of the solution - when the stationary state is attained), and the CPU
time is reduced by a factor 20 when compared with η = 0 (and about 4 times
quicker than the WENO5 algorithm), without any significant deterioration of
the accuracy. We show the result in Figure 5.

Finally, we take P = 2 and the potential function V (t, x) = sin(t) cos(2x),
ε = 0.01 and τ = 0.1. We take η = 0, and consider the initial data u0(x) =
− cos(3x). In Figure 6 we plot the evolution of u(t,−π) with respect to the
time. We observe the linear growth predicted by the result of the previous
section, for a time interval [0, 10000]. Note that there are oscillations in the
evolution of u(t,−π), but at a scale too small to be visible on the plot.
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Figure 4. Solutions with η = 0. CPU = 6s at t = 15

Appendix: Proof of the a priori compactness Proposition 3.2

We start with a lemma.

Lemma 5.1. — Assume that the hypothesis (i) and (iii) are satisfied. Recall
that L(t, x, v) = K∗(v) − V (t, x). For any Γ > 1, there exists a constant Γ′

such that for any x, y ∈ Rn and T > 0 and t > 1, if |x− y|/t < Γ and γ that
minimizes the quantity

inf
γ(0)=x
γ(t)=y

∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds,

then

∀ 0 6 a 6 a+ 1 6 t, |γ(a)− γ(a+ 1)| < Γ′.

Proof. — Without loss of generality, we will assume that L is positive. Indeed,
the potential V is bounded, and adding a constant doesn’t change the mini-
mizers. In this case, and under the hypothesis (i), there exists a nonnegative,
increasing function α which tends to ∞ at ∞, such that

∀t, x, v, L(t, x, v) > α(|v|)|v|.



28 ANNE BOUILLARD, ERWAN FAOU & MAXIME ZAVIDOVIQUE

4 2 0 2 41.5

1

0.5

0

0.5

1

x

u(
t,x

)

t = 1

 

 

weno5
convol

4 2 0 2 43

2.5

2

1.5

1

0.5

0

0.5

1

x

u(
t,x

)

t = 2

 

 

weno5
convol

4 2 0 2 41.5

1

0.5

0

0.5

1

1.5

x

u(
t,x

)

t = 5

 

 

weno5
convol

4 2 0 2 41.5

1

0.5

0

0.5

1

1.5

x

u(
t,x

)

t = 15

 

 

weno5
convol

Figure 5. Solutions with η = 1.7e− 2. CPU = 0.3s at t = 15
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Figure 6. Evolution of u(t,−π) over long times

The idea of the proof is that if γ at some point has a great velocity, then it
must be slow later. It is then better to“slow down”the fast part and accelerate
the “slow” one.

First, we set some notations. For all (x, y, t, T ) ∈ Rn × Rn × R+ × R, let

AtT (x, y) = inf
γ(0)=x
γ(t)=y

∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds,

be the Lagrangian action.
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We start by showing, that the superlinearity of L implies a superlinearity
of AtT . As already done a few times, we may bound the action by comparing
with a straight line, using that L is uniformly bounded on sets of the form
R× Rn ×B(0, R), where B(0, R) is the ball of radius R > 0 in Rn:

AtT (x, y) 6
∫ t

0
L
(
T + s,

(t− s)x+ sy

t
,
y − x
t

)
ds

6 tC+
( |x− y|

t

)
max

( |x− y|
t

, 1
)
,(42)

for some increasing function z 7→ C+
(
z
)

defined on R+. Let γ realizing the
infimum, and set

E =
{
s ∈ [0, t] such that |γ̇(s)| > |x− y|

2t

}
.

Then we get, using that L > 0:

(43) AtT (x, y) =
∫ t

0
L
(
T + s, γ(s), γ̇(s)

)
ds

>
∫
E
L
(
T + s, γ(s), γ̇(s)

)
ds

> α
( |x− y|

2t
) ∫
E
|γ̇(s)|ds > α

( |x− y|
2t

) |x− y|
2

.

The last inequality comes from the fact that when γ is going at speed less
than |x− y|/2t for time t, it cannot travel more than |x− y|/2, therefore the
integral is greater than |x− y|/2 by the triangular inequality. In other terms,
equations (42) and (43) state that there are two positive functions C+ and C−

which can be easily made increasing, such that

(44) C−
( |x− y|

t

) |x− y|
t

6
AtT (x, y)

t
6 C+

( |x− y|
t

)
max

( |x− y|
t

, 1
)
.

Moreover, thanks to the superlinearity of L those functions go to ∞ at ∞.
Now consider

– Γ′′ > Γ such that 20C+(Γ) < C−(Γ′′),
– Γ′′′ > Γ′′ such that Γ′′′/Γ′′ ∈ N∗ and 30C+(20Γ′′) < C−(Γ′′′),
– and finally Γ′ > Γ′′′ such that 40Γ′′′/Γ′′ < C−(Γ′)/C+(Γ).

Let us verify that Γ′ satisfies the requirements of our lemma.
Assume by contradiction that for some x, y ∈ Rn, t, T ∈ R+ such that

|x− y| < tΓ and γ realizing the action AtT (x, y), there is an a ∈ [0, t− 1] such
that |γ(a) − γ(a + 1)| > Γ′. As γ is a minimizer, we have (using that L > 0
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and Γ > 1)

(45) tΓC+(Γ) > AtT (x, y) >
∫ a+1

a
L
(
T + s, γ(s), γ̇(s)

)
ds

> A1
T+a

(
γ(a), γ(a+ 1)

)
> Γ′C−(Γ′).

Hence we obtain

(46) t >
Γ′C−(Γ′)
ΓC+(Γ)

>
40Γ′′′

Γ′′
,

using the fact that Γ′ > Γ and the definition of Γ′.
We now assume that a < t/2, the other case may be treated similarly. Let

b ∈ [a, a + 1] be the smallest such that |γ(a) − γ(b)| = Γ′′′, and consider the
sequence

ci = b+ 2i
Γ′′′

Γ′′
, i ∈ {0, · · · , k},

where k is greatest possible integer such that ck 6 t. Note that using (46)
and a 6 t/2, we have k > 9, and that for i ∈ {0, · · · , k}, we have ci+1 − ci =
2Γ′′′/Γ′′.

We claim that there exists an i0 ∈ {0, · · · , k} such that

|γ(ci0)− γ(ci0+1)|
ci0+1 − ci0

6 Γ′′.

Indeed, otherwise we would have, using (44)

AtT (x, y) >
k−1∑
i=0

∫ ci+1

ci

L
(
T + s, γ(s), γ̇(s)

)
ds

>
k−1∑
i=0

|γ(ci0)− γ(ci0+1)|
ci0+1 − ci0

C−(Γ′′)

>
k−1∑
i=0

2Γ′′′

Γ′′
Γ′′C−(Γ′′).

By definition of k, we have that (k + 1) × 2Γ′′′/Γ′′ > t/2 − 1 while using
(46), we have t > 40Γ′′′/Γ′′ > 40 and 2Γ′′′/Γ′′ 6 t/18. Hence we deduce that
k × 2Γ′′′/Γ′′ > t/3. As Γ′′ > Γ, the previous equation yields

AtT (x, y) >
t

3
ΓC−(Γ′′) > tΓC+(Γ),

which is absurd in view of (45).
Now we find a contradiction by constructing a curve δ which has an action

less than γ. Let [c, d] = [ci0 , ci0+1]. Recall that N := Γ′′′/Γ′′ is an integer. We
define the curve δ as follows:
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– δ(s) = γ(s) if s ∈ [0, a] ∪ [d, t];
– on [a, b+N ], δ coincides with the curve minimizing Ab+N−aT+a

(
γ(a), γ(b)

)
;

– on [b+N, c+N ], δ is the translate of γ : δ(s) = γ(s−N);
– on [c+N, d] (recall that d = c+2N) δ coincides with the curve minimizing
ANT+c+N

(
γ(c), γ(d)

)
.

We now compute the difference of action between γ and δ, recalling that L is
1-periodic in time:∫ t

0
L
(
T + s,γ(s), γ̇(s)

)
ds−

∫ t

0
L
(
T + s, δ(s), δ̇(s)

)
ds

=
∫ b

a
L
(
T + s, γ(s), γ̇(s)

)
ds+

∫ d

c
L
(
T + s, γ(s), γ̇(s)

)
ds

−
∫ b+N

a
L
(
T + s, δ(s), δ̇(s)

)
ds−

∫ d

c+N
L
(
T + s, δ(s), δ̇(s)

)
ds

> Γ′′′C−(Γ′′′) +
2Γ′′′

Γ′′
Γ′′C−(Γ′′)

− Γ′′′

Γ′′
Γ′′C+(Γ′′)− Γ′′′

Γ′′
(2Γ′′)C+(2Γ′′) > 0.

This contradicts the minimality of γ.

Remark 5.2. — In the previous proof, we only used the fact that L is peri-
odic in time. In [Itu96], a similar result is proved when L is periodic in space
(instead of in time). The idea of the proof is the same except that, when
constructing the curve δ, instead of translating it in time (in third part of the
construction), it is translated in space, while the “fast” part of γ between a
and b is replaced by a geodesic (straight line) between γ(a) and the closest
point from γ(a) in the grid γ(b) + Zn.

We now prove the lemma 3.2:

proof of lemma 3.2. — Recall now that L is periodic both in time and in space
and that its Euler-Lagrange flow is complete. As in the previous lemma,
assume L > 0. Let Γ and Γ′ be as in the previous lemma, and γ be a minimizer
such that |γ(0) − γ(t)|/t 6 Γ. The curve γ is then a trajectory of the Euler-
Lagrange flow. Let moreover 0 6 a 6 a + 1 6 t. Finally, by superlinearity of
L, let A(1) be given by Equation (8), such that L(t, x, v) > |v| − A(1). We
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therefore obtain that, with the notations used in the previous proof,∫ 1

0
|γ̇(a+ s)|ds−A(1)

6
∫ 1

0
L
(
T + a+ s, γ(a+ s), γ̇(a+ s)

)
ds 6 C+(Γ′)Γ′.

Therefore, there is at least one point s0 ∈ [0, 1] such that

|γ̇(a+ s0)| 6 A(1) + C+(Γ′)Γ′ := D.

By periodicity of the Lagrangian, and completeness of the Euler-Lagrange
flow, there exists a constant D′ depending only on D, such that |γ̇| 6 D′ on
[a+ s0− 1, a+ s0 + 1]∩ [0, t] ⊃ [a, a+ 1]. Since a is arbitrary, this finishes the
proof.
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