
Worst-case delay bounds with fixed priorities using
network calculus

Anne Bouillard
ENS / INRIA
45 rue d’Ulm

75005 Paris, France
anne.bouillard@ens.fr

Aurore Junier
INRIA / IRISA

Campus de Beaulieu
35000 Rennes, France

aurore.junier@inria.fr

ABSTRACT
Worst-case delay bounds are an important issue for appli-
cations with hard-time constraints. Network calculus is a
useful theory to study worst-case performance bounds in
networks. In this article, we focus on networks with a fixed
priority service policy and provide methods to analyze sys-
tems where the traffic and the services are constrained by
some minimum and/or maximum functions: arrival/service
curves. Our approach uses linear programming to express
constraints of network calculus.

Our first approach refines an existing method by taking
into account fixed priorities. Then we improve that bound
by mixing this method with other ones and provide a lower
bound of the worst-case delay. Finally, numerical experi-
ments are used to compare those bounds.

1. INTRODUCTION
Network calculus is a theory of deterministic queuing net-

works in communication networks. Based on the (min, plus)
algebra, it aims to compute worst-case performance bounds,
such as backlog or delay, for the analysis of critical systems.
Applications of this theory can be found in the embedded
networks field (the Avionic Full Duplex (AFDX), [3]) and
Ethernet networks [5].

Network calculus uses functions (named curves) to de-
scribed constraints on system. More precisely, arrival curves
shape the incoming traffic by bounding the amount of data
that can arrive during any interval of time and service curves
give some guarantee about the minimal amount of data that
is served. Using the algebraic properties of the (min,plus)
operators ([6]), network calculus is an elegant theory that is
modular and defines constraints on a system that permits
to compute performance bounds.

However, recent studies have shown some limits of this
theory: the direct application of the algebraic operators
may lead to over-pessimistic bounds. In [10], the pay multi-
plexing only once (PMOO) phenomenon has been exhibited.
There, the authors make a first attempt to compute tight

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

delay bounds under arbitrary multiplexing (no assumption
is made about the service policy) and focus on tandem net-
works. This problem has been tackled in [2] for feed-forward
networks using linear programming (LP) techniques. The
general problem (in feed-forward networks) is shown to be
NP-hard, whereas in tandem networks, this problem is poly-
nomial.

Other studies focused on some service policies. One can
cite [7], where the authors investigate the First In Fist Out
(FIFO) policy in tandem and sink-tree networks. The au-
thors also exhibit some PMOO phenomenon. One can also
cite [12], where the authors use RTC (real-time calculus),
a variant of network calculus, to study networks with fixed
priorities amongst other service policies. There, the authors
use the network calculus operators as a basic block, but to
get more precise results, they have upper and lower con-
straints for both the arrival curves and service curves.

was also used in [13] to find an upper bound of the worst
case delay in Controller Area Network (CAN). However CAN
networks have a restricted topology. Priorities have also
been studied with other theories, for example the trajectory
method in [9]. This study uses techniques that is not the
purpose of this article.

In this article, we study networks with a fixed priority
service policy (each flow is assigned a fixed priority) and try
to take into account the PMOO phenomenon. A first result
will show that not surprisingly, the stability issue in this case
boils down to a per-node stability. Our main contribution is
to improve the computation of the existing worst-case delay
bounds. The first approach refines the approach of [2] in
order to take into account fixed priorities. Then we improve
that bound by mixing this method with other ones. Finally
we provide a method that computes a lower bound of the
worst-case delay in order to delimit the worst case-delay.
This gives us an idea of the tightness of our results.

The rest of this paper is organized as follows: Section 2
presents the network calculus framework and describes the
existing methods for worst-case upper bounds of the delay.
Section 3 gives a first bound and the necessary and sufficient
condition for stability, then Section 4 extends the results of
[2] to the case of strict priorities. The (non)-tightness of our
bounds and some improvements are discussed in Section 5
and numerical comparison of our method with the others
existing ones is presented in Section 6 before concluding in
Section 7.

2. THE NETWORK CALCULUS FRAME-
WORK

Network calculus is a theory that studies the relations be-
tween flows of data in a network. The movements of data are
described by cumulative functions in F = {f : R+ → R+ ∪
{+∞} | f(0) = 0, f is non-decreasing and left-continuous}.
A cumulative function f(t) counts the amount of data that
arrives/departs from a network element up to time t.

A second type of functions that is used in network calcu-
lus are the arrival and service curves. These functions give
some constraints to shape cumulative arrival in a server or
to guaranty a minimal service of a server. These functions
are used for computing worst-case delay bound.

Network calculus computes bounds by applying operators
on the arrival and service curves. Those operators are based
on the (min,plus) algebra and the main ones, beyond the
point-wise minimum and addition, are the convolution and
the deconvolution: let f, g ∈ F , ∀t ∈ R+,

• convolution: f ∗ g(t) = inf0≤s≤t f(s) + g(t− s);

• deconvolution: f � g(t) = supu≥0 f(t+ u)− g(u).

2.1 Arrival and service curves
Given a data flow, let F ∈ F be its cumulative function at

some point, such that F (t) is the number of bits that have
reached this point until time t, with F (0) = 0. A function
α ∈ F is an arrival curve for F (or F is α-constrained) if
∀ s, t ∈ R+, s ≤ t, we have F (t)−F (s) ≤ α(t− s). It means
that the number of bits arriving between time s and t is at
most α(t−s). A typical example of arrival curve is the affine
function ασ,ρ(t) = σ + ρt, σ, ρ ∈ R+.

Two types of minimum service curves are commonly con-
sidered: simple service curves and strict service curves. A
trajectory is a family of functions if F and describes the
amount of input or output packets of a system. We de-
note (F in, F out) the trajectories of an input/output system.
Then, we need to define the notion of backlogged period which
is an interval I ⊆ R+ such that ∀u ∈ I, F in(u)−F out(u) > 0.
Given t ∈ R+, the start of the backlogged period of t is
start(t) = sup{u ≤ t | F in(u) = F out(u)}. Since F in

and F out are left-continuous, we also have F in(start(t)) =
F out(start(t)). If F in(t) = F out(t), then start(t) = t. Note
that for any t ∈ R+,]start(t), t[is a backlogged period.

Let β ∈ F , we define:

• Ssimple(β) = {(F in, F out) ∈ F × F | F in ≥ F out
and F out ≥ F in ∗ β};

• Sstrict(β) = {(F in, F out) ∈ F × F | F in ≥ F out, and
for any backlogged period]s, t[, F out(t) − F out(s) ≥
β(t− s)}.

We say that a system S provides a (minimum) simple ser-
vice curve (resp. strict service curve) β if S ⊆ Ssimple(β)
(resp. S ⊆ Sstrict(β)). A typical example of service curve
is the rate-latency function: βR,T (t) = R(t − T)+ where
R, T ∈ R+ and a+ denotes max(a, 0). For all β ∈ F , we
have Sstrict(β) ⊆ Ssimple(β) but the contrary is not true.

In network calculus models with multiplexing, the aggre-
gation of all the flows entering the system is often considered
as a single flow to which the minimum service is applied
(that is, one works with the sum of the cumulative func-
tions). This is the case here.

2.2 Network composition, characteristics and
bounds

Given an input/output system S, bounds for the worst-
case delay can easily be read from the arrival and service
curves. Let (F in, F out) be a trajectory of S. The delay en-
dured by data entering at time t (assuming FIFO discipline
for the flow) is

d(t) = inf{s ≥ 0 | F in(t) ≤ F out(t+ s)}
= sup{s ≥ 0 | F in(t) > F out(t+ s)}.

We denote the maximum horizontal distance between f
and g by hDev(f, g) = inf{t ≥ 0 | f(t) ≤ g(t + d)}. The
worst-case delay of a trajectory is Dmax = supt≥0 d(t) =

hDev(F in, F out).
For the system S, the worst-case delay is the supremum

over all its trajectories.
The next theorem explains how to derive delay bounds

from constraints and how traffic constraints can be propa-
gated.

Theorem 1 ([4, 6]). Let S be an input/output system
providing a simple service curve β and let (F in, F out) be a
trajectory such that α is an arrival curve for F in. Then,

1. Dmax ≤ hDev(α, β).

2. α� β is an arrival curve for F out.

Example 1. Given a flow f with arrival curve α(t) =
σ + ρt crossing a server that offers a minimal service curve
β(t) = R(t− T)+, one can compute this bound. If R ≥ ρ,

Dmax ≤ hDev(α, β) = T +
σ

R
α� β(t) = (σ + ρT) + ρt.

If R < ρ, then Dmax = α� β(t) =∞.

In order to compute bounds for more complex systems
than a single server crossed by a single flow, one may use
the following theorems.

Theorem 2 (Concatenation, [4, 6]). Consider two
servers with respective service curves β1 and β2. The system
composed of the concatenation of the two servers offers a
minimal service curve β1 ∗ β2.

Theorem 3 (Residual service curve, [6]). Let f1
and f2 be two flows crossing a server that offers a strict ser-
vice curve βsuch that f1 is α1-constrained. Then a minimal
simple service curve offered to f2 is (β − α1)+.

Note that the assumption that the server offers a strict ser-
vice curve is mandatory, but the residual service curve is
simple, preventing from formally applying the theorem to
the residual service curve. The following theorem states that
with fixed priorities, the residual service remains strict.

Theorem 4 (Residual curve with priorities, [1]).
Let f1 and f2 be two flows crossing a server that offers a
strict service curve β such that f1 is α1-constrained and has
the priority over f2. Then a minimal simple service curve
offered to f2 is (β − α1)+.

Example 2. Consider two flows f1 and f2 crossing a
server such that α1(t) = σ1 + ρ1t is an arrival curve of f1
and the server offers a strict service curve β(t) = R(t−T)+.
If R ≤ ρ1, a service curve offered to f2 by the server is

β′(t) = (R− ρ1)

(
t− σ1 +RT

R− ρ1

)
+

.

2.3 State of the art: computing worst-case per-
formance bounds using network calculus

Different methods have been derived to compute worst-
case performance bounds. The two first methods do not
make any assumption on the service policy and the third,
Real-Time Calculus (RTC), assumes the existence of prior-
ities. We describe here these methods, using the toy ex-
ample of Figure 1. This network has three flows and two
servers. Flows f1 and f3 cross the two servers but f2 goes
only through the first server. It has a service curve β1, and
the other β2. We are interested in the delay suffered by f3.

f2
f1

f3

Figure 1: Network with three flows and two servers.

Separate Flow Analysis (SFA) [10].
Here, Theorems 1, 2 and 3 are used to compute the global

residual service offered to a flow, and then compute the hor-
izontal maximum distance with the arrival curve to get an
upper delay bound. One needs to compute the arrival and
residual service curves for each flow on each server of Fig-
ure 1. The delay suffered by f3 is at most

dSFA = hDev(α3, ([β1 − α1 − α2]+∗
[β2 − (α1 � [β1 − α2 − α3]+)]+).

Linear Programming (LP) [2].
Here, the network calculus constraints (service, arrival,

causality...) for a network are encoded as linear programs
(only one in the case of tandem networks), under some as-
sumptions: piecewise affine concave arrival curves and piece-
wise affine convex service curves. The solution of the pro-
gram gives the value of all cumulative functions at a finite
number of dates (that are starts of backlogged periods). This
method gives exact bounds under arbitrary multiplexing (no
assumption is made about the service policy) for acyclic
networks, in polynomial time for tandem networks, but is
proved to be NP-hard in the general setting. Due to the
space limit, we do not describe here the linear program for
the network of Figure 1, but a similar method will be studied
in Section 4.

Real Time Calculus - fixed priorities (RTC) [12].
This method is quite similar to the SFA one, but makes

the assumption that flows have fixed priorities, which en-
ables to tighten the bounds. The residual service curve is
computed by progressively subtracting the resources needed
by the flows with higher priorities. Here, in the aim of com-
paring with the other methods, we intentionally forget the
maximum service curves and the minimal arrival curves.

We apply this analysis to the example of Figure 1 as-
suming that flows are ordered by priorities (i.e. f1 has the
highest priority).

f1

f3

f2

β′1

β1 β2

β′2β′′1
α3

α2

α1 α′1

α′3

Figure 2: Application of RTC method to the exam-
ple.

Figure 2 presents the network in the RTC manners. For
example, flow f1 crosses the first server, then we compute the
residual service curve of this server β′1 for f2 and the arrival
curve α′1 of f1 for the second server by direct application of
Theorems 1 and 4. One gets β′1 = (β1 − α1)+ and α′1 =
(α1 � β1)+. Finally,

dRTC = hDev(α3, (β1 − α1 − α2)+ ∗ [β2 − α1 � β1]+).

Note that with the SFA formula, one would get the same
formula if one had assumed fixed priorities.

Example 3. With α1(t) = 1+t, α2(t) = 1+t, α3(t) = 1+
2t, β1(t) = 6(t−1)+ and β2(t) = 4(t−2), the residual curves
for flow 3 are βSFA(t) = 3(t − 6.556)+ (dSFA = 6.889),
βLP (t) = 3(t− 5.133)+ (dLP = 5.467) and βRTC(t) = 3(t−
6)+ (dRTC = 6.333). Then the linear programming method,
although not taking into account the service policy can lead
to a better delay that RTC. Our aim is to find a method that
will do better than all those existing methods.

3. NETWORK MODEL AND FIRST BOUNDS
In this section, we give a first method for computing an up-

per delay bound for a given flow in a network. This method
is inspired by the SFA and RTC methods. We conclude by
a sufficient and necessary condition for the stability.

3.1 Network model
We consider an arbitrary network, where flows are to-

tally ordered by their priorities. More precisely, let n be
the number of servers (1, . . . , n) and m the number of flows
(f1, . . . , fm). Each server j offers a strict service curve βj
and the arrival cumulative process of each flow fi is αi-upper
constrained. Flows satisfy the priority property

(PRIO) i < j ⇔ fi has higher priority than fj .

Each flow fi follows an acyclic path pathi = 〈j1, . . . , j`i〉.
For each server we define Fl(j) = {i | fi crosses server j},
the collection of flows that crossed server j and write down
maxFl(j) = max{i | i ∈ Fl(j)} the flow that belongs to
server j and has the lowest priority. By convention, we set
Fl(0) = [1,m].

In the network, we define a trajectory as a family of func-

tions in F , (F
(j)
i)j∈[1,n],i∈Fl(j). A trajectory is admissible

if it satisfies the network calculus’ constraints of the net-
work: ∀i ∈ [1,m], αi is an arrival curve for F

(0)
i , and

∀j ∈ [1, n], (
∑
i∈Fl(j) F

(previ(j))
i ,

∑
i∈Fl(j) F

(j)
i) ∈ Sstrict(βj),

where previ(j) is the server crossed by flow fi just before
server j (and 0 if j is the first server crossed by flow fi).

Thus F
(0)
i is the arrival cumulative process of fi in the sys-

tem and F
(j)
i is the cumulative departure process of flow fi

after server j.

3.2 Stability condition and bound
In order to compute an upper bound for the delay, one can

compute for each server and each flow α
(j)
i and β

(i)
j using

Algorithm 1.

Algorithm 1: SFA with priorities

Data: Network description : paths of flows, αi, βj .

Result: α
(j)
i arrival curve for F

(j)
i , β

(i)
j strict service

curve for flow fi at server j.
begin

for j = 1 to n do β′j ← βj ;
for i = 1 to m do

Let pathi = 〈j1 . . . j`i〉; j0 = 0;

α
(0)
i ← αi;

for k = 0 to `i − 1 do

α
(jk+1)

i ← α
(jk)
i � β′jk ;

β
(i)
jk
← β′jk ;

β′jk ← (β
(i)
jk
− α(jk)

i)+;

end

In the next theorem, the arrival curve of each flow fi is
affine: αi(t) = σi+ρit and each server j offers a strict service
curve βj(t) = Rj(t − Tj)+. The following theorem shows a
sufficient and necessary condition for stability.

Theorem 5. Consider a network where flows have fixed
priorities. This network is stable if and only if

∀j ∈ [1, n], Rj ≥
∑

i∈Fl(j)

ρi.

Proof. We are going to prove this result by induction on
the number of flows in the network.

(Hk) The delay of f1, . . . , fk is finite and for each server j,
the remaining service curve for flows fk+1, . . . , fm is of

the form β
(k)
j (t) = R

(k)
j (t− T (k)

j)+ with

R
(k)
j ≥

∑
i∈Fl(j)∩[k+1,m]

ρi and T
(k)
j <∞.

(H1) holds: the path of flow f1 is 〈j1 . . . j`i〉. For all j ∈
{j1, . . . , j`i}, Rj ≥ ρ1. From the computations of Exam-
ples 1 and 2, the outgoing flows all have rate ρ1, so f1 ex-
periences a finite delay and the remaining service curve for

the other flows is R
(1)
j = Rj − ρ1 and T

(1)
j < ∞. For the

other servers, the service curve is unchanged, so one can set

R
(1)
j = Rj and T

(1)
j = Tj .

Suppose that (Hk−1) holds. Let us consider flow fk. For

every server j crossed by this flow, R
(k−1)
j ≥ ρk. Then the

delay experienced by flow k in each server is finite (using
Example 1). The remaining service has rate

R
(k)
j = R

(k−1)
j − ρk ≥

∑
i∈Fl(j)∩[k+1,m]

ρi.

The service rate of the other servers does not change: R
(k)
j =

R
(k−1)
j ≥

∑
i∈Fl(j)∩[k+1,m] ρi. Then (Hk) holds and (Hm) is

exactly what we are looking for.

Note that if each server of a network satisfies the con-
straint

∑
fi∈Sj ,i≤` ρi < Rj then the worst-case delay for

flow f` is finite.
The main drawback of this method is that it does not take

into account the “pay multiplexing only once” phenomenon
(PMOO). Indeed, consider two servers in tandem, crossed
by two flows. The previous computation takes into account
a possible burst in both servers, whereas that may not be
possible given the arrival curves. This phenomenon has been
detailed in [11]. The next section is an attempt to take this
phenomenon into account, using linear programming.

4. LINEAR PROGRAMMING APPROACH
In this section, we will develop a method consisting in

modeling the constraints by a linear program. Similar work
has been done in the context of arbitrary multiplexing (noth-
ing is known about the service policy of the servers) in [2].
We first explain how to take into account the priorities in
a backlogged period. Then we present the constraints for
tree-topology network and for general topologies. In this
paragraph, we always assume that the arrival curves are
piecewise affine concave and that the strict service curves
are piecewise affine convex.

We first focus on a single server and a single backlogged
period and explain how to encode the behavior with linear
constraints.

4.1 Encoding the priorities in a single server
Consider a server that offers a strict service curve β and

that is crossed by m flows f1, . . . , fm satisfying (PRIO). For

each flow fi, let F
(0)
i and F

(1)
i be the respective arrival and

departure cumulative functions for the server. In this para-
graph, we are going to detail how to ensure that the priorities
will be respected in this server during a given backlogged pe-
riod. Given the date t, we study the period [start(t), t]. For
this, we need to introduce intermediate dates ci, 0 ≤ i ≤ m
such that c0 = t, the date of interest, cm = start(t) and

ci = sup{u ≤ t | ∀k ∈ [1, i], F
(1)
k (u) = F

(0)
k (u)}.

Note that c0 and cm are compatible with this equation. The
date ci is the last instant at which flow fi+1 can be served.
From this definition and (PRIO), the following properties
hold:

• c0 ≥ c1 ≥ · · · ≥ cm;

• ∀i ∈ [0,m], ∀k ≤ i, F (0)
k (ci) = F

(1)
k (ci);

• ∀i ∈ [0, ,m], ∀k ≥ i+ 2, F
(1)
k (ci) = F

(1)
k (ci+1). Indeed,

since from ci+1, flow fi+1 is always backlogged, so flow
fi+2 cannot be served.

Conversely, the following lemma shows that from an ad-
missible trajectory satisfying those constraints, one can con-
struct a new trajectory satisfying the same constraints and
respects the priorities.

Lemma 1. Let (F
(0)
i , F

(1)
i)1≤i≤m be an admissible trajec-

tory. Suppose that there exist two dates c < c′ in the same
backlogged period and i0 such that

∀i ≤ i0, F
(0)
i (c) = F

(1)
i (c);

∀i < i0, F
(0)
i (c′) = F

(1)
i (c′);

∀i > i0, F
(1)
i (c) = F

(1)
i (c′).

Then, there exists an admissible trajectory (F
(0)
i , F̃

(1)
i)1≤i≤m

such that ∀1 ≤ i ≤ m, F̃
(1)
i (c) = F

(1)
i (c), F̃

(1)
i (c′) = F

(1)
i (c′),

∀t ∈ [c, c′],
∑

1≤i≤m F̃
(1)
i (t) =

∑
1≤i≤m F

(1)
i (t) and that re-

spects the priorities between c and c′.

Proof. In this proof, we will use the equivalence between
strict service curves and variable capacity node for the type
of curves we use (convex piecewise affine functions ultimately
affine) and Lemma 2 of [1].

Let C be the amount of work offered by the server. As
c and c′ are in the same backlogged period, we have ∀c ≤
t ≤ c′, C(t)− C(c) =

∑
i F

(1)
i (t)− F (1)

i (c). In other words,
C(t)−C(c) is the global amount of service that is provided
between c and t.

From that amount of service we are going to define a tra-
jectory F̃ that respects the priorities. As f1, . . . , fi, i ≤ i0
have the priority over flows fi+1, . . . , fm and c is the begin-
ning of a backlogged period for f1, . . . , fi, set∑

1≤k≤i

F̃
(1)
k (t) = inf

c≤s≤t

∑
1≤k≤i

F
(0)
k (s) + C(t)− C(s). (1)

This formula with i = m, ensures that
∑

1≤i≤m F̃
(1)
i =∑

1≤i≤m F
(1)
i . The service offered to flows fi, . . . , fm be-

tween s and t is Ci(t)−Ci(s) = C(t)−
∑i−1
k=1 F̃

(1)
k (t)−(C(s)−∑i−1

k=1 F̃
(1)
k (s)) so that we also have F̃

(1)
i (t) = infc≤s≤t F

(0)
i (s)+

Ci(t)− Ci(s).
Indeed, we then have

F̃
(1)
i (t) +

i−1∑
k=1

F̃
(1)
k (t) = inf

c≤s≤t
F

(0)
i (s) + C(t)− C(s)+

i−1∑
k=1

F̃
(1)
k (s) = inf

c≤s≤t
F

(0)
i (s) + C(t)− C(s)+

inf
c≤u≤s

i−1∑
k=1

F
(0)
k (u) + C(s)− C(u) =

inf
c≤u≤s≤t

F
(0)
i (s) +

i−1∑
k=1

F
(0)
k (u) + C(t)− C(u).

The minimum is reached when s = u, then we find the
original service.

From (1), Ci = C−
∑i−1
k=1 F̃

(1)
k is non-decreasing. Then, it

follows from the properties of variable capacity nodes ([6])

that F̃
(1)
i ≤ Fi(0) and F̃

(1)
i is non-decreasing.

Then, the trajectory (F
(0)
i , F̃

(1)
i) is admissible and satisfies

the priorities in the interval of time [c, c′].

As a consequence, applying Lemma 1 to ci and ci−1, 1 ≤
i ≤ m, one can construct from the constraints a trajectory
for the backlogged period that respects the priorities, from
the values on the trajectories on a finite set of dates.

4.2 Linear program for fixed priorities
We now describe the linear constraints and objective for a

tree topology. The main difference with [2] is the existence
of the priority constraints, which also request to consider
more time variables. We will compute a worst-case delay
upper bound for flow fm when this flow ends at the root of
the tree and the underlying structure of the network is a tree
directed to that root. First let introduce some notations.

• n is the root server of the network;

• for j 6= n, next(j) is the unique successor to server j,
(if j = n, set next(j) = n+ 1);

• for every server j that is not a leaf of the tree, previ(j)
is its predecessor regarding flow fi (if j is the first
server crossed by flow fi then set previ(j) = 0).

Let N be a tree-network, with the notations used in Sec-
tion 3.1.

Variables.
We consider two kinds of variables: the dates, denoted by

c
(j)
i and u; and the values of the trajectories at some dates,

chosen amongst the c
(j)
i and u and denoted by F

(j)
i (t) where

t is a date, and F
(j)
i denotes the cumulative function of flow

fi after crossing server j. More precisely

• date variables: u represents the date at the bit of inter-
est (satisfying the worst-case delay) enters the network

and ∀j, ∀i ∈ {0} ∪ Fl(j), we have c
(j)
i . Thus there are

at most (m+ 1)n date variables.

• functional variables: F
(0)
m (u) and ∀j, ∀i ∈ Fl(j), ∀k ∈

Fl(j)∪{0}, we have variables F
(0)
i (c

(j)
k), F

(j)
i (c

(j)
k) and

F
(j)
i (c

(previ(j))
k). Then there are at most 2m(m + 1)n

functional variables.

The set of date variables is denoted by Vd and the set of
functional variables is denoted by Vf .

Objective.
One wishes to maximize the time between the arrival date

of the bit of data that suffers a maximum delay and its

departure time: max c
(n)
0 − u.

Linear constraints.
To ensure that the computed delay is the delay suffered

by a bit of data, one has F
(0)
m (u) ≥ F (n)

m (c
(n)
0).

Time constraints: ∀j ∈ {1, . . . , n}, i, i′ ∈ Fl(j)∪{0}, i > i′,

• c(j)i ≤ c
(j)

i′ and c
(j)
0 = c

(next(j))

maxFl(next(j)) (at most n(m+ 1)

constraints). There is in fact no need of two variables
in the latter case, but for simplicity, we can choose the
notation. Moreover, this variable will also be denoted
by tnext(j) later.

Causality and non-decreasing constraints: ∀j ≥ j′, ∀t ≤ t′ ∈
Vd and F

(j)
i (t), F

(j′)
i (t), F

(j)
i (t′) ∈ Vf ,

• F (j)
i (t) ≤ F

(j′)
i (t) and F

(j)
i (t) ≤ F

(j)
i (t′) (respectively

at most 2nm(m+ 1) and 2nm2 constraints).

Arrival constraints: ∀c(j)k ≥ c
(j′)
k′ ∈ Vd, i ∈ Fl(j) ∩ Fl(j′),

• F (0)
i (c

(j)
k)− F (0)

i (c
(j′)
k′) ≤ αi(c(j)k − c

(j′)
k′).

Note that as αi is a concave piecewise affine function, it
can be expressed as a finite minimum of affine functions
and thus be expressed with linear constraints. If |αi| is the
number affine functions to describe αi, then there are at
most

∑m
i=1 |αi|(n(m+ 1))2 constraints).

Service constraints: ∀j, ∀k < k′ ∈ Fl(j) ∪ {0},

•
∑
i∈Fl(j) F

(j)
i (c

(j)
k)− F (j)

i (c
(j)

k′) ≥ βj(c(j)k − c
(j)

k′).

Note that as βj is a convex piece-wise affine function, it
can be expressed as a finite maximum of affine functions
and thus be expressed with linear constraints. If |βj | is the
number affine functions to describe βj , then there are at
most

∑n
j=1 |βj |(m)2 constraints).

Backlog constraints: ∀j, ∀i ∈ Fl(j),

• F (previ(j))
i (c

(j)

maxFl(j)) = F
(j)
i (c

(j)

maxFl(j)) (at most mn

constraints).

Priority constraints: ∀k ∈ Fl(j) ∪ {0}, ∀i ∈ Fl(j),.

• ∀i ≤ k, F
(j)
i (c

(j)
k) = F

(previ(j))
i (c

(j)
k) (at most nm(m+

1) constraints;

• ∀i ≥ k+21, F
(j)
i (c

(j)
k) = F

(j)
i (c

(j)
k+1) (at most nm(m+1)

constraints).

We denote by λprio the set of linear constraints and by
dprio the optimal solution of this linear program.

Note that the number of variables and linear constraints
and of is polynomial in the size of the description of the
system.

4.3 Building trajectories
In this paragraph we look at an optimal solution of our lin-

ear program. We will convert this solution (i.e. a trajectory
defined for a finite set of points) into a trajectory of the net-
work that satisfy the constraints (arrival and service curves)
for the backlogged periods that are considered. More pre-

cisely, we show that from the points of the form F
(0)
i (s) one

can extrapolate an αi-upper constrained process and from

the set F
(j)
i (tj), one can build a trajectory between tj and

tnext(j) that guaranties a minimal strict service βj .

Lemma 2. Let α a concave function in F . Given u0 ≤
u1 ≤ · · · ≤ uN and a set {gi}0≤i≤N such that

i < j ⇒ 0 ≤ gj − gi ≤ α(ui − uj).

Then, one can extrapolate from the gi’s a function F that
is non-decreasing and α-constrained such that F (ui) = gi,
0 ≤ i ≤ N .

Proof. Consider the function F such that

F (t) = min(min{gi + α(t− ui) | ui ≤ t},min{gj | ui ≥ t}).

Note that for all j such that uj ≤ t, F (t)−gj ≤ α(t−uj).
One can easily check that F (uj) = gj : F (uj) = minj≥i gi +
α(uj − ui) ≤ gj . The minimum gj is obtained for i = j.

Now consider t1 < t2 two arbitrary dates. If F (t1) 6=
F (t2), two cases can occur. Either there exists i such that

1k+ 2 here stands for the second lower priority flow than fk
crossing j. This is an abuse of notation.

t1 ≤ ui and F (t1) = gi, then F (t2) − F (t1) = F (t2) − gi ≤
α(t2 − ui) ≤ α(t2 − t1).

Or there exists i such that F (t1) = gi + α(t1 − ui) and
F (t2)−F (t1) = F (t2)−gi−α(t1−ui) ≤ α(t2−ui)−α(t1−
ui) ≤ α(t2 − t1).

This lemma can be directly applied to functions F
(0)
i . We

have already checked (Lemma 1) that in a backlogged pe-
riod, one can construct from a set of points satisfying the
linear constraints a trajectory that respects the priorities. It
remains to prove that the total amount of service offered is
a β strict service curve.

Lemma 3. Let β a convex function in F . Given u0 ≤
u1 ≤ · · · ≤ uN and a set {gi}0≤i≤N such that

i < j ⇒ gj − gi ≥ β(uj − ui).

Then, one can extrapolate from the gi’s a function F that is
non-decreasing and β-lower constrained such that F (ui) =
gi, 0 ≤ i ≤ N .

Proof. The proof is similar to the proof of Lemma 2,
taking F (t) = max{gi + β(t− ui) | t ≥ ui}.

Finally we have proved the following theorem.

Theorem 6. Consider a tree-like network crossed by flows
totally ordered by their priority. From the set of constraints
λprio, one can construct a trajectory for the network such
that the priorities and arrivals/services constraints are sat-
isfied on the backlogged period of a bit of data studied (every
other constraints are satisfied). This set of constraints is
polynomial is the description of the network.

Example 4. The smallest network for which one can ob-
serve a difference between the arbitrary multiplexing case and
the fixed priority case is depicted in Figure 1. This network
is composed of two servers in tandem. Two flows, the ones
with highest and lowest priority cross both of them, and the
flow with intermediate priority only crosses the first server.

More precisely, in the case where σ1 = σ2 = σ3 = σ,
ρ1 = ρ2 = ρ3 = ρ, R1 − ρ > R2, and T2 = 0, the formulas
for the delays are:

dblind =
R2

R2 − ρ
σ +R1T1

R1 − ρ
+

2σ

R2 − ρ

dprio =
2σ

R2 − ρ
+
σ +R1T1

R1 − 2ρ
.

Computations show that dblind > dprio and the difference
between the delays can be made arbitrarily large by choosing
adequate parameters.

4.4 From a tree topology to a general topology
Now we have described the constraints that must be added

in a single server, we will show that one can transform a
network with a general topology into a tree by unfolding it.
This unfolded network will have a greater delay bound than
the original one.

Consider a network (we keep the same notations than in
Section 3) satisfying (PRIO). A non-increasing priority path
(nipp) is 〈(j0, fi0), . . . , (jp, fip)〉 a finite sequence of pairs
(server, flow) such that

〈j0, . . . , jp〉 is a path in the network,
∀0 ≤ k ≤ p, fik ∈ Fl(jk),
∀0 ≤ k < p, jk = previk (jk+1)
∀0 ≤ k < p, ik = max{i ≤ kk+1 | i ∈ Fl(jk)}.

Note that the number of nipp is finite. The unfolded net-
work is a network where the servers are the nipp ending at
(last(m), fm).

Let 〈j1, . . . j`i〉 be the path of flow fi inN . In the unfolded
net, we will have an αi-constrained flow following the path
〈Π1, . . .Πq〉 with Πk = 〈(jk, fik), . . . , (jq, fiq),Π〉 and Π is
either the empty path, or q = `i, or Π = 〈(j′, f ′)...〉 with
j′ 6= jq+1 and i0 > i.

For example, the unfolding of the network of Figure 3 is
depicted in Figure 4.

1 2

3

f1

f3

f2

Figure 3: Example of a network with general topol-
ogy.

f1

f1

(1, f1)

f1
(1, f1) (2, f1)

(3, f2)(2, f1) f2

f3f2
(3, f3)

(1, f2)

(1, f1) (2, f1)

(2, f3)

f2 (3, f2)

(1, f3)

f1

f1

Figure 4: Unfolding of the network of Figure 3. For
sake of clarity, only the first pair of each nipp is
written.

The intuition of this unfolding is the following: one per-
forms a backward unfolding from the last server crossed by
flow fm. We separate every provenance of the different flows
by duplicating them. This results in duplication of both
flows and servers. As the flows in the duplicated nodes can-
not be influenced by flows with lower priorities, flows with
lower priorities can be discarded from some point. As a
consequence, this construction will stop.

Doing this, the number of variables and constraints be-
comes huge as the number of dates to consider is linear in
the number of node of the unfolded network.

The constraints to compute the worst-case delay bound
will be exactly the same as for networks with a tree topology,
except for the arrival constraints: every duplicated flows of
the same original flow fi is in fact the same flow, so one
writes the arrival constraints between every date of every
branch where the flow is present (dates generated on the
same branch can be compared but not dates generated for
different branches).

For example of Figure 3, flow f1 is duplicated several times
on the upper branch, and the arrival constraints for flow f1
will be written for every date defined for a server of that
branch.

5. ACCURACY OF THE BOUNDS
In the previous section, we gave means to get more precise

bounds than for the arbitrary multiplexing. Nevertheless,

we did not prove that the bounds are tight. Indeed, we first
show in this section an example where the bound is not tight
and, even worse, the bound we compute is not tighter than
the one obtained using Algorithm 1, that corresponds to the
computations of already existing methods. Then, we show
how to improve our linear program to reduce the bounds
and outperform Algorithm 1 and finally give cases where
our bound is tight.

5.1 Complete study of one simple example
To better understand the advantages and the limits of the

solution we proposed, let us first focus on the simple example
of Figure 5. The network is composed of three servers in
tandem and three flows, f1 and f3 cross the three servers,
whereas f2 only crosses server 2.

f2f1

f3

Figure 5: Network for complete study.

5.1.1 Comparison with SFA
As said in Section 3, the best solution to compute worst-

case delay bounds is the SFA method with priorities (named
SFA in the following), which corresponds to Algorithm 1. In
most of the cases used for our comparison (as it will be shown
in Section 6), the delay we compute using linear program-
ming is smaller than the one computed using that algorithm.
For example, with α1 : t 7→ 2t+2, α2 : t 7→ 3t+3, α3 : t 7→ 2,
β1 : t 7→ 4(t−5)+, β2 : t 7→ 8(t−4)+, β3 : t 7→ 3(t−4)+, the
delays computed with those two methods are: dprio = 52
and dsfa = 60.6.

Unfortunately, this is not always the case. Consider now
the same example with the following arrival and service
curves: α′1 : t 7→ t + 1, α′2 : t 7→ 2, α′3 : t 7→ 1, β′1 : t 7→ 2t,
β′2 : t 7→ 4t, β′3 : t 7→ 2t. Computations give dprio = 2 and
dsfa = 5/6.

The reason why SFA can reach tighter values than LP with
fixed priorities is that we care about the service constraints
for each server only for one backlogged period. For example,
for the first server, we only considered the backlogged period
between t1 and t2. Then, between time t2 and t3, we did
not express the service of server 1 and then authorize some
backlog for f1.

One solution to obtain tighter bounds than for those two
methods is to mix them. Indeed, one can encode the arrival
constraints for each flow, for each server it crosses. This
method will by construction give tighter bounds than both
SFA and blind multiplexing exact method, but there is little
chance to always get tight bounds, as this is the mixing of
two non-tight methods.

The constraints we add are the following: ∀j ∈ [1, n], ∀i ∈
Fl(j), ∀k ≥ k′ ∈ Fl(j) ∪ {0},

F
(j)
i (c

(j)

k′)− F (j)
i (c

(j)
k) ≤ (α

(j)
i (c

(j+1)

k′ − c(j+1)
k),

where α
(j)
i is computed using Algorithm 1. We denote by

λsfa this set of linear constraints.

Theorem 7. Let dprio−sfa be the optimal solution com-

puted using the linear constraints λprio ∪ λsfa. Then

dprio−sfa ≤ dsfa and dprio−sfa ≤ dprio.

Adding λsfa to the network of Figure 5 gives dprio−sfa =
49 with the first set of functions and dprio−sfa = 5/6 with
the second set of functions (which in fact is the exact worst-
case delay).

5.1.2 Adding more linear constraints
Another attempt to get tight bounds would be to add

more linear constraints. Indeed, one could encode the ser-
vice and priority constraints for every backlogged period into
our linear program. Up to now, on server j, the service con-
straints are applied only between tj and tnext(j).

On the example of Figure 5, the key-point would be to
take into account the backlogged periods of server 1 between
time t2 and t3 (indeed, between time t3 and t4, to maximize
the delay, server 1 and 2 must act as infinite servers, which
respects the service constraints). More precisely, one needs
to study then backlogged period of t3 for server 1 and then

introduce new dates t′2 = start1(t3) and c
′(1)
1 (for the priority

constraints).
But then, several cases can occur:

• t1 ≤ c(1)1 ≤ t2 ≤ t′2 ≤ c
′(1)
1 ≤ t3 or

• t1 = t′2 ≤ c
(1)
1 = c

′(1)
1 ≤ t2 ≤ t3 or

• t1 = t′2 ≤ c
(1)
1 ≤ t2 ≤ c

′(1)
1 ≤ t3.

These different orders have to be interwoven with the pos-

sible values of c
(2)
1 and c

(2)
2 , which will finally result in 31

possible orders. One only needs to take into account this
backlogged period, as the other will not modify the delay
(and one can then consider server 1 between t2 and t′2 as an
infinite server if this interval is non-empty). It is not now
possible to compute the delay using a single linear program,
but one for each possible order is necessary.

It is also quite clear that this method cannot be efficiently
extended to more general cases: the number of backlogged
periods to take into account will grow exponentially.

5.2 Some cases of tightness
We show some cases where the bound we compute is ex-

actly the worst-case delay. We only focus here on tree net-
works. We suppose that the servers are numbered such that
j < next(j).

5.2.1 Shortest Destination First
The Shortest Destination First (SDF) [8] policy is the

fixed-priority policy when a flow has higher priority than
every flow whose destination is after its own destination.
We will show that this policy is in fact the worst service
policy regarding our model.

More formally, we set the following priorities:

(SDF) i1 < i2 ⇒ last(fi1) ≤ last(fi2),

where last(fi) is the last server crossed by flow fi. Note that
we still assume that our flow of interest fm ends at server n
and has the lowest priority.

Theorem 8. The worst-case delay for a tandem network
with arbitrary multiplexing can be obtained with an SDF pol-
icy.

Proof. To prove this theorem, let us consider trajectory

(F
(j)
i) that reaches the worst-case delay. We are going to

modify this trajectory into an new one that satisfies the
SDF policy.

Let tn+1 be the date of exit of the bit of data that satisfies
the maximum delay for flow fm and tj = startj(tnext(j)).

We first modify the trajectory (F
(j)
i) into (F̃

(j)
i) such that

1) before time tj , ancestors k of server j act like infinite

servers: ∀t ≤ tj , F̃
(k)
i (t) = F̃

(k−1)
i (t); 2) after time tnext(j),

descendants k of server j act as infinite servers: ∀t ≥ tnext(j),
F̃

(k)
i (t) = F̃

(k−1)
i (t) = F

(0)
i (t); 3) during the backlogged

period]tj , tnext(j)], the global service of server j is the same

service provided for (F
(j)
i), and the service is made according

to the SDF policy.
It is clear, since the dates tj are not modified, that the

delay computed with that trajectory is the same as in the
original one. It is also clear that if the trajectory is modi-
fied according to the two first points, the trajectory remains
admissible (the backlog in the unique backlogged period of
each server only can only increase compared to the origi-
nal trajectory). So, without loss of generality, one can as-

sume that (F
(j)
i) already satisfies the two first points. It re-

mains to prove that the trajectory (F̃
(j)
i) is admissible, that

is]tj , tnext(j)] is actually a backlogged period for server j.
We show by induction on the number of servers that the

backlogged that is transmitted is at least the one transmitted
with the original trajectory. Set Fl(j)≥k = Fl(j) ∩ [k, n].
More precisely, we show that for each server j, ∀k,

∑
i∈Fl(j)≥k

(F̃
(previ(j))
i (tj)− F̃ (j)

i (tj)) ≥

∑
i∈Fl(j)≥k

(F
(previ(j))
i (tj)− F (j)

i (tj)).

If j is a leaf, this is trivial since previ(j) = 0. Now, suppose
that this is true all the ∪i∈Fl(j)previ(j). To prove this for
server j, it suffices to show that for each previ(j), the pre-
vious inequality holds at time tj (and not at time previ(j)).
Let j′ = previ(j). For an arbitrary k, let us respectively

denote H, H̃, L and L̃ the burst transmitted at time tj′
to server j′ for the flows with priority higher (lower than

k) for trajectory (F
(j)
i) ((F̃

(j)
i)). We know that L ≤ L̃

and H + L ≤ H̃ + L̃. Using the variable capacity node
formulation, if H̃ − H ≥ 0, then the service given to the
highest priority flow increases and the service given to the
lower priority flows decreases. Otherwise, the difference of

service provided to the higher priority flows between (F
(j)
i)

and (F̃
(j)
i) is less than H − H̃. Then, the service provided

to the lower priority can only increase by H − H̃ ≤ L̃ − L,
which ends the proof.

5.2.2 Shortest to Destination Last of length 2
Another case of tightness is the case where every cross-

traffic flow is of length at most 2 and the priorities satisfy:
i1 ≤ i2 ⇒ last(i1) ≥ last(i2) (2SDL). Figure 9 is an example
of such a network.

Theorem 9. The optimal solution of Λ is exactly the worst-
case delays when (2SDL) is satisfied.

Proof. Let (F
(j)
i) be the trajectory that is constructed

from an optimal solution of Λ. The delay is not changed if
this trajectory is modified as follow: server j is an infinite
server after time tnext(j). The global service is not changed
during [tj , tnext(j)[. The service of the flow with higher pri-
ority is also unchanged, as it is a new flow for server j.
The only change in the trajectory is that it may have an
additional service at time tj for the flow with intermediate
priority, and that flow leaves the network at that point, so
there is no influence for the next servers.

Then, one can construct an admissible trajectory whose
delay is exactly the optimal solution of Λ.

5.3 Lower bound on the worst-case delay
In order to have an idea of the difference between the

bounds we compute and the actual worst-case delay, one
solution is to exhibit a trajectory that respects the NC con-
straints and compute its worst-case delay. This trajectory
has to be well-chosen (trajectory that has a chance to meet
the worst-case delay). Since the main problem with the
method above is that we cannot efficiently model every back-
logged period, a solution is to consider that every server is
an infinite server except during the backlogged period that
we model so that each server has only one backlogged pe-
riod. This will give us a lower bound (dlowb) of worst-case
delay.

Consider a network with n servers and m flows. To de-
scribe an infinite service for each server after the first back-
logged period we use the following linear constraints:

• ∀j ∈ [1, n], ∀i ∈ [1,m] if i ∈ Fl(j), ∀k ∈ Fl(next(j)) ∪
{0}, F ji (c

(next(j))
k) = F 0

i (c
(next(j))
k).

Note that this set of constraints is polynomial that does
not increase the global complexity of the linear program.

Example 5. This method on the network represented in
Figure 5, with the curves’ set α′1, α′2, α′3, β′1, β′2, β′3, defined
above, gives dlowb = 39.25. With the best previous method
we found dprio−sfa = 49.

In this section, we gave several ways to improve the worst-
case delay bounds. The algorithmic cost of such improve-
ments is very small, using Algorithm 1. One can also use
those bounds to design more efficient algorithms to the price
of loosening the bounds. For example, one can use the linear
program encoding the blind multiplexing and add the SFA
constraints of Algorithm 1. In a general topology, one can
unfold up to a certain level and use the SFA constraints in
order to keep the cost tractable. Another mean of improving
our bounds is to take into account the constraints of RTC,
namely maximal service curves and minimal arrival curves.
These constraints can be used instead of those in λsfa.

6. NUMERICAL RESULTS
In this section, we aim to compare the bounds obtained

with the different methods described in this article. We will
study two topologies, one with nested flows and the other
one with non-nested flows.

6.1 Nested-flow network
The network we study here has n servers in tandem and

n+ 1 flows. Flow fi crosses servers 1 to n− i+ 1, and flow
fn+1 crosses every server.

f5

f4 f3 f2 f1

β4β3β2β1

Figure 6: Nested-flow tandem network.

First, we study the precision of the results when the uti-
lization rate of the servers varies. Server j guaranties a strict
service curve βj : t 7→ 3(n + 1 − j)(t − 0.1)+: the latency
is 0.1 s and the service rate is affine in the number of flows
crossing it. Each flow has the same characteristics: the max-
imum burst is 1 Mbits and we make the long term arrival
rate vary from 0.3 Mbit/s to 2.9 Mbit/s. Only last flow has
a different arrival curve that have just a maximum burst of
1 Mbits. Figure 6 represents such a network for 4 servers.

0

50

100

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

utilisation rate

dsfa

b b b b b b b b b

bb
dblind

r r r r r r r r r
r

r
dprio

c c c c c c c c c
c

c
dprio−sfa

3 3 3 3 3 3 3 3
3

3

3
dlowb

+ + + + + + + + +

+

+

Figure 7: Delay bounds for the nested-flow tandem
network with 8 servers.

Figure 7 gives the upper bounds on the delay found using
different methods: SFA with priorities (dsfa), linear pro-
gramming with blind multiplexing (dblind), linear program-
ming with fixed priorities (dprio), linear programming using
priorities and SFA constraints (dprio−sfa), and linear pro-
gramming that returns a lower bound on the delay (dlowb)
when there are 8 servers in function of the arrival rate of the
flows.

Figure 8 gives the delay bounds found with these differ-
ent methods when network size grows from 2 to 10 servers.
Server j guaranties the same strict service curve βj as pre-
viously and arrival curves of flows is αi : t 7→ 1 + 2.5t, i 6= m
and for the lowest priority flow, αm : t 7→ 1.

We first notice that the SFA method is over-pessimistic
method in both cases. Indeed, dsfa can be five times higher
than dprio. Secondly, one can check that dprio−sfa ≤ dprio ≤
dblind. Moreover, dlowb is close to these values and thus in
this case with those methods the bounds are not that far
from the actual worst-case delay.

6.2 Study of a second topology of network
We now study a network composed of n servers in tandem

and n+ 2 flows. Each flow intersects two servers (except at
the extremities), and the flow of interest (fn+2) crosses every
server. Figure 9 represents such a network with 4 servers.
Servers have the same service curve, β : t 7→ 10(t − 5)+.
Flows also have the same arrival curve, αi : t 7→ 1 + 2t,

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10

number of servers

dsfa

b b b b b b b b
bb

dblind

r r r r r r r r r
r

dprio

c c c c c c c c c
c

dprio−sfa

3 3 3 3 3 3 3 3 3

3
dlowb

+ + + + + + + + +

+

Figure 8: Delay bounds for the nested-flow tandem
network when the number of servers varies.

i 6= 1, except for f1, α1 : t 7→ 1 + 4t.

f6

f5 f3 f1

f4
β2 β3 β4f2

β1

Figure 9: Non-nested-flow tandem network.

Delays computed with the different methods are depicted
on Figure 10.

30

40

50

60

70

80

90

100

3 4 5 6 7 8 9

number of servers

dsfa

b b b b b b bb
dblind

r r r r r r rr
dprio

c c c c c c cc

Figure 10: Delay bounds in the non-nested-flow tan-
dem network.

Note that dprio−sfa and dlowb are not represented since
we are in the case of application of Theorem 9 and they are
equal dprio, which is the actual worst-case delay. We still
observe that SFA method is over-pessimistic. Furthermore
dblind is very closed to worst-case delay.

We can conclude that the linear programming with SFA
constraints is an efficient method to compute worst-case de-
lay in those networks. Furthermore in some cases it reaches
the worst-case delay.

7. CONCLUSION
This article presented several methods to compute worst-

case delay upper bounds in tandem networks, where flows
are ordered according to fixed priorities. Furthermore we
implement a method that computes a lower bound of the

worst case delay. This study leads to tighter bounds than
older methods applied on network with fixed priorities ser-
vice policy.

The algorithms developed here have a polynomial-time
complexity; however they can be intractable for large net-
work. But a trade-off between algorithmic efficiency and
complexity can be made.

Future work will include the extension of these results to
arbitrary topologies and will combine the linear program-
ming methods with network calculus methods to other ser-
vice policies (FIFO, GPS, etc.).

8. REFERENCES
[1] A. Bouillard, L. Jouhet, and É. Thierry. Service curves

in Network Calculus: dos and don’ts. Research Report
RR-7094, INRIA, 2009.

[2] A. Bouillard, L. Jouhet, and É. Thierry. Tight
Performance Bounds in the Worst Case Analysis of
Feed Forward Networks. In Proc. of INFOCOM’10.
IEEE, 2010.

[3] M. Boyer and C. Fraboul. Tightening end to end delay
upper bound for AFDX network calculus with rate
latency FCFS servers using network calculus. In Proc.
of WFCS’2008, 2008.

[4] C. S. Chang. Performance Guarantees in
Communication Networks. TNCS, Springer-Verlag,
2000.

[5] J.-P. Georges, E. Rondeau, and T. Divoux. Evaluation
of switched Ethernet in an industrial context by using
the Network Calculus. In Proc. of 4th IEEE Workshop
on Factory Communication Systems, pages 19–26,
2002.

[6] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet, volume LNCS 2050. Springer-Verlag, 2001.
revised version 4, May 10, 2004.

[7] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea.
Tight end-to-end per-flow delay bounds in FIFO
multiplexing sink-tree networks. Performance
Evaluation, 63(9-10):956–987, 2006.

[8] M. Mavronicolas. Stability in Routing: Networks and
Protocols. Bulletin of the EATCS, 74:119–134, 2001.

[9] L. Säıdane, S. Azzaz, S. Martin, and P. Minet.
FP/FIFO Scheduling: Deterministic Versus
Probabilistic QoS Guarantees and P-Schedulability. In
ICC, pages 518–523, 2007.

[10] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
Bounds under Arbitrary Multiplexing. Technical
report, University of Kaiserslautern, 2007.

[11] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
Bounds under Arbitrary Multiplexing: When Network
Calculus Leaves You in the Lurch ... In Proc. of
INFOCOM’2008, 2008.

[12] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine,
and J. Greutert. Embedded Software in Network
Processors Models and Algorithms. In Proc. of
EMSOFT’2001, 2001.

[13] H. Thomas, H. Kai-Steffen, K. Ulrich, and
G. Reinhard. Stochastic and deterministic
performance evaluation of automotive CAN
communication. Comput. Netw., 53:1171–1185, June
2009.

