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Abstract—In this paper, we show how to design a we show how to improve drastically simulation
perfect sampling algorithm for stochastic Free-Choice time by reducing the number of initial states to
Petri nets by backward coupling. For Markovian = pe gimylated. Event graphs do not have classical

event graphs, the simulation time can be greatly re- tonicit ties: the stat d t
duced by using extremal initial states, namely block- monotonicity properties. the state space does no

ing marking, although such nets do not exhibit any Ccontain any natural minimal state.g. all buffers
natural monotonicity property. Another approach for ~ are empty) nor a maximal state.§.all buffers are
perfect simulation of non-Markovian event graphs is full), unlike open networks with blocking and re-

based on a (max,plus) representation of the system ;qction (see [14]). However, it is possible to exhibit
and the theory of (max,plus) stochastic systems. Next, L . .

we show how to extend this approach to one-bounded extremal initial states (Calledblogklng markings
free choice nets to the expense of keeping all states.|ater) such that whenever coupling from the past

Finally, experimental runs show that the (max,plus) occurs starting from those states, the coupling state
approach needs a larger simulation time than the s distributed according to the stationary distribu-
Markovian approach. tion of the net. When the network héxstransitions,
these extremal states are obtained by blocking one
transition (no firing is allowed) and let the system
Petri nets can be used as alternatives to queueiegplve until a deadlock is reached. Doing this, one
systems with fork and join nodes to model commugets the@ blocking states of the network.
nication networks involving some synchronization A second method for perfect sampling, based
schemes such as networks with window controbn a (max,plus) representation of the dynamics of
Kanban systems or finite queues with generaletwork, is also given. This method works under
blocking [2]. Under Markovian assumptions, it carmore general stochastic assumptions (basically un-
be shown that such networks are multidimensionaler i.i.d. assumptions with general distributions)
Continuous Time Markov Chains. In the presencand does not need the network to be Markovian. In
of fork and join nodes the steady state distributiothis case, numerical computation of the stationary
is not a product form in general and the onlyistribution is in general impossible even when
general technique to compute the stationary dighe net has a small number of nodes, and getting
tribution is to solve the Kolmogorov equationsstationary samples is even more critical.
When the number of nodes on the net grows, The perfect sampling algorithm presented here
the state space explodes exponentially and tlees the theory of (max,plus) stochastic systems
computation of the stationary distribution cannotleveloped in [7], [12], [3]. This theory has been
be done numerically. used mainly to proveexistence theorems in full
Simulation approaches are alternative methodgenerality [3]. To the best of our knowledge, this
to estimate the stationary behavior of such systeriss the first time it is applied to design perfect
by providing samples distributed according to theimulation algorithms.
stationary distribution, even when it is impossible We compare the two methods for perfect simula-
to compute this distribution numerically. Propp andion of event graphs. It is interesting to notice that
Wilson used backward coupling ([13]) to derivewhile the (max,plus) algorithm couples faster than
an algorithm to get perfect samplingel which the Markov chain algorithm, the simulation lasts
distribution is exactly stationary) of the state ofonger with the (max,plus) method because each
discrete time finite Markov chains. In this paperstep involves large matrix products.
we adapt their algorithm favlarkovian free choice  The (max,plus) method is also generalized to the
Petri nets When the network is aevent graph simulation of stochastibeaps of piecewith gen-

I. INTRODUCTION



eral distributions (keeping the same low complexity ~ Input A recurrent representation of an
as for event graphs) and finally safe free choice ergodic finite Markov chain: X, ; =
nets However, for safe free choice nets, we losg ~ ¢(Xn,Un+1), @ sequence of increas
the feature that only a small number of trajectories  ing integers N1, N»... and a sequence
have to be simulated. It is interesting to notice that ~ Uo, U-1,U—2, .. .of i.i.d. r.v. uniformly dis-
this is the same gap as between Markovian event tributed over[0, 1].

graphs and Markovian free choice nets, studied in  m:=1

the first part of the paper. repeat
for all states € S do
II. PERFECT SAMPLING OFFINITE MARKOV Compute X,y1 = ¢(Xn,Upi1),
CHAINS starting at time—N,,, with initial state

In this section, we recall the main ingredients for s, up to time 0 using the random
perfect sampling of finite Markov chains useful for variablesU_x, 41, -+, Up.
the following. end for

Let {X,}, oy be an irreducible and aperiodic m:=m+1
discrete time Markov chain with a finite state space until all simulations end up in the same
S and a transition matri® = (p; ;). The evolution state ()

of the Markov chain can always be described by @ Output X
stochastic recurrence sequence

Xn+1 = ¢ (Xna un-‘rl) ’ (1)

with X,, the state of the chain at time and = o )
{un},,c @n independent and identically distributedS 9!Vén In Figure 1. Note that the same variables
sequence of real random variables, uniformly didZ0; U-1,U—s,--- are used for all the simulations.

Fig. 1. Perfect Simulation Algorithm (PSA) of Markov chains

tributed over[0, 1]. The transition functior : S x Note that a given Markov chain has many con-
£ — S verifies the property thak (¢(i,u) = j) = Structions under the form of a recurrence equation
p;.; for every pair of statei, j) € S and for any Zn+1 = ¢(Zn,unt1). Using Borel-Cantelli argu-

u, a real random variable. ments, it is possible to show [11] that for each

Let ¢ : S x E" — S denote the function whose construction, the perfect simulation algorithm will
output is the state of the chain afteriterations terminate with a fixed probability’, whereT" is

and starting in state € S. That is, 1 (or 0). Therefore, for a given representatiaf,
it is usually possible to show that the algorithm
¢" (s,u1—n) =@ (... ¢ (¢ (s,u1),u2),...,un).  terminates for each run (or never stops) so that it

This notation can be extended to set of states. é%well suited (or not) for PSA.

for a set of statest C S we note Ill. SAMPLING OF MARKOVIAN FREE-CHOICE

" (A urp) = {0" (5,u10) ,5 € A}. PETRINETS
In the following, | X | denotes the size of séf. A Stochastic Free-Choic®etri netis a tuple

Theorem 1 ([13]): Let ¢ be a transition function N = (P, Q,F, Mo, 7) where (P, Q, F) is a di-
on S x &. There exists an integét such that rected bipartite graph with nod@sJQ, PNQ = 0,
and arcsF C (P x Q) U (Q x P) and where
Jim |¢" (S, u—nt1-0)| = £ @lmost surely. M, € N”. The elements of? are calledplaces
The systemcouplesif ¢* = 1. The coupling and those ofQ, transitions and M, is called the
property is closely related to renovation propertiemitial marking of A/. The set of all reachable states
of Markov chains [8] In particular, the main resultfrom M, is R(Mj). For a nodex € P U Q, we
of the backward scheme is the following theorengenote by®xz the set of its predecessors and by
justifying the name “Perfect Sampling”. z* the set of its successors. The net is free-choice
Theorem 2 ([13]): Provided that the systemwhen for all ¢1,9: € Q, *q1 N *q2 € {0,°q1}.
couples, the state when coupling occurs for th€he firing times in the transitions = (7;)4c0
backward scheme, is steady state distributed. are random sequences = (7,(n))nen- Of i.i.d.
From this fact, a general Perfect Sampling Alvariables with finite expectation&/(r,(1)) < o).
gorithm (PSA) (1) sampling the steady state can We consider a Free-Choice Petri net with
be constructed. The perfect simulation algorithmlaces,@ transitions and” clusters (.e. minimal
that we will be using in Sections I, lll and IV sets of place€r and transitionsd such thatd =




G* ) which isboundedthe total number of tokens At stepk, a firing of ¢; occurs ifu, € I, and if ¢;
present in the system cannot exceed some bouisdenabled under statkf;, .

B) and live (no deadlock or starvation can ever Theorem 1:The Perfect Simulation Algorithm
occur). In particular, the boundedness assumptiém Figure 1 based on recurrence equation (2) ter-
implies that the net is closed. To model the monaminates in finite time, with probability one.

server case, we assume that all transitions have self Proof: First, it should be clear that the
loops and firings occur using thrace policy (i.e  Markov chainZ, has a finite state space by bound-
if two transitions are in the same cluster, the ongdness. This chain is aperiodic becau$/, u) =
with the smallest firing time fires the tokens in theins with positive probability and is irreducible
common input places). For more details and precigcause the network does not contain any deadlock.
definitions on Petri nets, we refer to [6]. HenceZ, is ergodic.

In the following, we consider exponentially dis- The rest of the proof is based on the following
tributed firing times for transitions with parametergroperty of the chair,,. For any couple of states
Ag; ¢ € Q. In this case, the evolution of the mark-p7, | Az, in R(M,), there exists a finite variable
ing M of the system can be written under the fornguch that the chain starting if/; and the chain
of a finite continuous time Markov chain which in'starting in M2 reach the same state af'[krsteps
finitesimal generator i$¥ = (W, ,a,) ., m.er — with positive probability. Since the state space is
with Wy, ar, = finite, this means that starting with all possible
states, the simulation reaches a unique state after a
. finite number of steps with positive probability (by

0 pthervwse coupling the states one by one). The result then
~ Lnran, Wonr i My = M. follows using Borel-Cantelli arguments (see [14]
To construct a perfect simulation, thisfor more on this).
continuous time Markov chain can be To prove convergence aftérsteps of two chains,
uniformized. The usual uniformization coefficientstarting withA; andM,, one can use the notion of
suppr{d_npzns Wanr ) does not provide a blocking statesThe blocking stateB,, for transi-
discrete time Markov chain easily amenabl&on (server)a is the state reached eventually, after
to perfect simulation. The trick here is toblocking transitiona.
choose A = Zq Aq (the total event rate) It has been proved in [10] that for the class of
instead. Although this may result into a losdounded Petri nets used here with no deadlocks,
of efficiency for the uniformization (in generalsuch states are unique, no firing is possible under
A > suppy >y Warmr ), this choice B, except at transition, and thatB, is reachable
makes it possible to find a recurrence equatidinom any state irfR without ever using transitioa.
that defines a discrete time Markov chain withror more on blocking states (in particular on their
the same stationary distribution as the initiafegeneration properties, see [10]).
continuous time chain and for which PSA Here is the end of the proof. Pick arbi-

)\q if M, 4, M>

terminates in finite time with probability one. trarily, and consider the associated blocking state
Let us consider a Markov chaif, defined over B,. There exists a sequence of firing events that
R(My) such that leads fromM; to B,. Let us consider the corre-
sponding sequence of intervals, ... I,. If u; €
Znt1 = ¢(Zn, unt), @ ... u e I then ¢'(My,ur,...,u) = Ba.

With (uy)nex i.i.d. uniformly distributed over Under the same exéogenous sequence, but starting
[0,1] and¢ is defined as follows. After numberingTom Mo, we geto’(Mz,, uy...ug) = M; for

all transitions, some M3. Novv_, _starting ermMg_, there exists a
- _ sequence of firings (not including) that leads
i u e PP YD DPY the to B,. The corresponding sequence of intervals
u A A ’ Ipsy ... I, are such that ifiupy € Ipyq,...,up €
I,

M ME M , ,
M) = { M if ¢; is not enabled in\M. ¢ (Ma,uy...ur) = ¢~ (Ms, uers ... ) = By

Using this definition ofp, each transition; is asso- and
SIS A TN

ciated with an intervall; = A 0 A : qﬁ’“(Ml,ul Soug) = qﬁk*[(Ba,ueH ...ug) = B,



since under the sequeneg.q,...,u, transition happens and the next firing is tried). This is also

a never serves so that no state change happeaaledfiring o from M.

starting in stateB,. Let M be a state under which only two transi-
Such a sequenosel, ..., u occurs with positive tions are enabled, say and b. Let us denote by

probability (HZ 1126 Th|s finishes the proof. o, the shortest sequence of firings that leads from

m M to B,, not includinga and byo, the shortest

The problem with this perfect simulation schemsequence of firings that leads froi to B, not

is that one needs to start with all statesRnand including . One knows that two such sequences

look for coupling at timed. The size ofR can be exist according to [10].

exponential in the size of the net so that only small Lemma 3: Under the foregoing notations, df is

nets can be sampled using this approach. In tla arbitrary sequence of firings amdan arbitrary

following, we will show how to reduce the numbenransition,

of starting states. This only works for event graphs.
Ny(o,M) = Ns(o4, M)+ Ns(o,B,)
IV. SAMPLING OF EVENT GRAPHS A Ny(op, M) + Ny(o, By).

Here, we consider a Markovian event graph  Proof: The proof goes by induction on the
which is bounded and has no deadlock. Since evelgngth of o. If |o| = 0, then it is enough to show
place has a single input transitioq) @nd a single that the supports of, and ofo; are disjoint. First,
output transition §), we denote byM (q,s) the since onlya andb are allowed undep/, the first
number of tokens in that place under state firing in o, must beb becauser, does not contain

We will show in the following that starting a and and the first firing i, must bea for similar
the simulation with the blocking states onlyreason. Lets be the first firing ino, common
{Ba., a transitior}, will provide a perfect sampling with o,. Sinces was not allowed undef/, then
when coupling occurs. some other firings must have brought packets in
the incoming buffers of. But these firings must
have occurred in bothk, andoy, contradicting the

Theorem 2:Consider a bounded event graphact thats was the first common firing. This ends
with no deadlock, with exponential firing times.the casdo| = 0.

The perfect simulation algorithm given in 1 using Now, we assume that the lemma holds for all
only blocking markings as starting points termisequences of length, and we consider a sequence
nates in finite time with probability one and out such thatjo| = n + 1. Let o = o's.

puts a state distributed according to the stationary |f

distribution of Z,,.

Before we prove this theorem, which is the main min(N;(o”, M) + M(t, s)) > Ny(o', M), (3)
result of this section, let us first make several
comments. thenNs(U, M) = NS(O'/, M) +1 eIseNS(o, ]V[) =

First, this result means that one can run the peNs(0'7 M).
fect simulation algorithm starting with the blocking BY induction,
states only. This decreases the number of sample
paths from an exponential number to a linear (Nt(g M)+ M(t 5))
number (there is one blocking state per transition). = (Nt( By) + Ny(oa, M) + M(t

Another remark is that, although event graphs do
not exhibit usual monotonicity properties (such as (UI’BZ’) + Ne(ow, M) + M(t, 5))
open networks with finite queues, see [14]), they do = min(Ni(0", Ba) + Ni(0a, M) + Ba(t, s)
possess extremal states in some sense: the blocking /\Nt(a ,Bb) + N,y(op, M) + Byt ’S))

B, (t
(

A. Blocking states

75)

markings.
The proof of the theorem comes in several steps. ~ Ni(0a, M) + min(Ny(o", Ba) + Ba(t, 5))

Let us first state a structural lemma. df is a ANg(op, M) + min(Ny (o', By) + By(t, s)).
sequence of firings a transition and\/ a state of K

the net, we denote by,(c, M) is the number of  Using this equation, it should be clear that
times firing actually occurs at when starting from N;(o, M) increases by one if and only if the
M and trying to proceed through the sequence ofinimum of N(o, B,) and N(o, Bp) increases
firing o in that order (afterk steps, if firingo, by one.

is allowed, then it is performed, otherwise nothing ]



Now, we generalize to the general case: underhich is not distributed according to the stationary
state M an arbitrary number of transitions aredistribution.
allowed. We partition the set of all allowed transi- 1) Event graphs without self-loopsivhile the
tions into two disjoint set$; andS,. Starting from general simulation scheme can be readily adapted
M, let oy (resp.oq) the shortest firing sequencefor transitions with no self-loops (taking into ac-
(containing no transition i%; (resp.S2) that leads count the enabling degree of a transition) the block-
to a blocking state3, (resp.Bs ) for Sy (resp.S:2), ing markings are not extremal anymore. Consider
where only firings inS; (resp.S2) are allowed.  the example displayed in Figure 2.

The same method used in the proof of Lemma
3 can be used to show the following result. a

b 2
Lemma 4:If o is an arbitrary sequence of firings @ /.\
and s an arbitrary transition, =/
NS(UaM) = NS(017M)+NS(U731) (4) C
AN, (02, M) + Ny(o, B2) (5) <_©

We are now ready for the proof of the theorem.
Proof: (of Theorem 2) First, it should befig. 2. An event graph without self-loops for which PSA

obvious that the simulation starting with blockingstarting in blocking markings may not yield a stationary output
states terminates with probability one, since they
form a subset of all states, and then by using The blocking markings are
Theorem 1. Let us assume that coupling from the, 0,0), (0,2, 0), (0,0, 2). Now, consider
past occurs for all blocking states affesteps. The the following sequence of firings (the
corresponding sequence of firings is denateahd corresponding rates are given in parenthesis)
the coupling state is denoted Igy. 3(A3),3(N3),2(A2),1(2X1),3(A3), where a firing

Let denote byM any initial state. The proof that with rate2)\; means that transition 1 has enabling
the simulation starting fromd/ also couples ik degree 2 because there are two tokens in place
steps holds by induction on the numberof firings  a. Firing this sequence starting from all blocking

w =

allowed underh. states ends up in staté, 1,0) while starting from
If m = 1 then M is a blocking state and thethe initial state given in the figure, the net reaches
result holds by definition of:. (2,0,0). This happens with a positive probability

If m > 1 we split the sef5 of transitions allowed for firing times exponentially distributed.
underM into S; = {a} and S, = S\ {a}. As in 2) Free choice nets with self-loopdf the net-
lemma 4, we consider the statBs and B,. Using work is not an event graph, blocking states (associ-
the induction assumption, the simulation starting iated with clusters this time) are not extremal either
B, ends up inC after running the sequeneefrom as shown by the example displayed in Figure 3.
B,. Using the fact thaf3; is the blocking state of

transitiona, the simulation starting iB; has also 2
reachedC' after running the sequenee /@E
Lemma 4, says that after runnirgfrom M or 5 4
from B; (andB3), a new firing occurs in both cases /l 5
together or for none of them. This is true for any e

new sequence of firings. This means that all three

states are equal after runniag This common state Q/l) b 3
must beC. n \[I<_©<_|:|

One interesting corollary of this result is the
fact that one can get all stationary functionals of 7 c 6
interest with a good confidence interval using the /:
central limit theorem by merely running several
independent simulations. Fig. 3. A free choice net for which PSA starting in blocking
markings may not yield a stationary output
B. Counter examples for more general cases
In this section, we show that blocking states The network in Figure 3 is a free choice net
are no longer extremal states for the simulation ibut not an event graph. We will now show that
more general cases. They may couple into a statenning a given firing sequence starting from the



blocking states of all clusters may lead to a staBy definition, A;;j(n) = V. .cci ) 2gee Ta(n),

which is not reached from some other states usivghereC(i, j), the set of all paths from to j with

the same firing sequence. Here, the blocking statal places empty except the last one, containing one

are all of the form(0,...,0,2,0,...,0). Letus fire token. For more on this, see [7], for example.

the sequencd, 1,2,2,7,5,2,4,4,2,3,7,2,4. All Under assumptiongd;, (A(n))neny IS @ se-

blocking states end in the state with two packetguence of i.i.d. matrices with a fixed support

in placea, while starting with the initial state given (P(A(1);; = —o0) € {0,1}).

in Figure 3, the net reaches the state with one tokenThe profile of a vectorv € R is the vector

in placea and one token in plack This happens ~(v) defined byy(v); = v; — min; v,.

with a positive probability under exponential firing Definition 5: A deterministic (max,plus) matrix

times assumptions. D € REXF is of rank 1 if all lines are equal up to
Actually, a counter example can also be foundn additive constant:

for a one-bounded free choice net (the previous

example is bounded by two) In [4], a one-boundegItern

free choice net is given where all blocking states

couple with positive probability in a marking whichVi, j, v(D;) = v(D ;) < Vi, j, v(D;.) = v(D;.).

may be steady state.(.jistributed. This example is Lemma 6:1f D is of rank one, theivu, v € R¥,

rather large (20 transitions and 20 places) and theE -

g . . u® D) =~(v® D).

firing sequences involved in the counter examplg

are also long) and is not reported here due to ﬂ?ﬁatr

lack of space.

Vi,j 3 Cij 8.t ¢ + D')i = D,,j.
atively, D is of rank 1 iff

Proof: For all andj, using the definition of
ices of rank ondu® D); = ¢;; + (u®D);. If
ip = argmincy;, then the profiley(u® D); = ¢;;
for all 4. This does not depend an ]
Let us now consider the sequencé(n)),cn Of
i , stochastic matrices corresponding to an event graph
A second method for perfect simulation of even i () transitions which is live and bounded. The
graphs will be presented in the following. It ISy 40rithm for perfect simulation of the correspond-

also based on backwarql coupli_ng. However, unlikﬁlg (max,plus) linear system is given in Figure 4.
Propp and Wilson Algorithm, this method does not

need .Markovian assumptions. This technique wag Input A (max,plus) representatiali (1) —
used in the past (sge for exarr_lple [12], [7]) to prove X(n—1)®A(n) and a sequence of increas-
the existenceof stationary regimes for (max,plus) ing i
i i . g integersiNy, Na,
systems in a non constructive way. We will show| "~ 4
here how they can also be used to get perfec repeat
samplingsof th|§ stationary regime. ComputeB,, := A(—N,,) @ -~ A(0)
In the following we consider a bounded and m=m+1
live ever_1t graph unc_igr th_e following stochastic| | niil B,, is of rank one
assumptions on the firing times: X(0) := X(~Ny,) ® B
(H.): 7y(n) are i.i.d. and at least one is unbounded]  5nut 7(X(O))m "
dg € 9 s.t. Ve € Ry, P(r, > z) > 0 (for example
71 is unbounded). o ) Fig. 4. Perfect Simulation Algorithm of (max,plus) linear
Actually, even more general conditions (in parsystems
ticular without the unbounded support assumption)
are given in [12]. Everything done in the following Under the foregoing assumptiongiy), it is
is also true under these more general technicafoved in [12] that the systet¥ (n) = X(n—1)®
conditions. A(n) admits a stationary regimég. that v(X,,)
The time evolution of an event graphs can beonverges E_;\Imost surely to a _uh@que sta_ti_onary
written under the form of a (max,plus) linear equaprofile 7., (independent of the initial conditions
tion of sizeQ™. If X;(n) is the instant of the end of X(0)). The next theorem shows that the PSA
the nth firing at transitions;, then there exists a ain Figure 4 provides samples with this stationary

sequence of (max,plus) matricéd (n)),cn such distribution.
that Theorem 7:If the (max,plus) perfect simulation

X(n)=X(mn—-1)® A(n). algorithm terminates, then its output has the dis-
tribution of the stationary profile of the (max,plus)
by definition, (A ® B);; = /(A + Bi;) system.

V. PERFECTSIMULATION USING THE
(MAX,PLUS) ALGEBRA

—




Proof: Using Lemma 6, if the matrixB,,, has simulation algorithm. The output is a state dis-
rank one, and ifX ., is a state with a stationary tributed according to the stationary distribution.
profile (y(Xo) = 7 in distribution), thenX &
By, = X ® By, for all X. Sincey(X) is
stationary, so i8y(X. ® B,,) =7(X ® B,,). 1

The rest of this section is devoted to the proof
that under conditionsH;), the (max,plus) perfect

Sample of a real non-negative r.d.inde-
pendent of everything

k:=0,M := My (initial marking)

X (0) :=v(Xo) (stationary profile)

simulation algorithm terminates with probability rep;??kt) — X(k—1)® A(k)
one. ko— k41

Lemma 8:Under the foregoing assumptions, the
product A(1) ® --- @ A(k) is of rank one with
positive probability, as soon ds> Q.

until X, (k) > max; X;(0) +d, Vi
for all transitions; do
n; = max{n | X;(n) < max; X;(0) +

Proof: For all k&, eventEy, . is defined by d)
Bre = {w | Aij(n) € [hi; — &, hi; + €] ¥n < k}, Update M firing n; times transitions;.
end for
where h;; is in the support of4; ;(n) for all Output M

n € N and the set{h;; | i < Q,j < Q} does VI
not satisfy any linear equation with coefficients
in {1,—1} involving h;; whenever the support of
A; j(n) is continuous at;;. Finally, k11 is such
thathy, > Q(maX(iJ—#(Ll) hij + £).

By construction of the deterministic matrix

. COMPARISON OF THE TWO METHODS

We have implemented the two methods pre-
sented above to simulate a simple event graph.
Although the (max,plus) algorithm is more gen-

eral (does not need exponential firing times), we
have used exponential firing times to be able to

H = (h;;), and using the theory of deterministic
(max,plus) matrices (see [7], [5]), for all there compare both methods over the same example.
' y ' The programs are both written in Caml, using

exists a squena@_...ze and for allj there exists in both cases the most efficient methods known
a sequencej; ...j,. such that for allk > Q,

to us. In particular, in the Markovian case, the
Hij = hiny+ - +hig+ (k=—r 2)h1.1+,}:13.1.+ sequence of integer®V,, used at each step is
-+ + h;, ;. Using this form of the matrix{”, it is O . .
I e N,, = 2™ which was proved optimal in average for
straightforward to show that{” is of rank one, : . .
. . & % the Markov chain algorithm in [13]. The Markov
indeed the differencéi;, — H . does not depend . . o )
on j i V' chain algorithm also uses an aliasing technique
o . that enables one to compuig X,U) in almost
Now, if k£ > @ and e is small enough, the puteLX, U)

. constant time for anyy € [0, 1]. This technique
product A(1) ® --- ® A(k) will also be of rank replaces the real-valued random variableby a
one, for the same reason:

couple (U, V) whereU is real-valued, uniformly

(A1) ® A(K))i distributed over|[0,1/Q] and V' is integer valued,
B A(l) 4. A(€+ 1) uniformly distributed overd1,...,Q}. It was first
o i tel developed in [15] and has been used in [14], for
+ Al +2)11+ -+ Ak —r—1)n perfect simulation.
+ Ak — 7)1, + -+ Ak);, 4, In the experiments given below, the (max,plus)

algorithm computes a stationary profile. The addi-

so that(A(1)®---®A(k))i;—(A(1)®@- --®A(k))i;  tional matrix products needed to get a stationary

does not depend ofn state are not included. They should increase the
To finish the proof, it is enough to notice thalsimulation time by a rather small quantity.

under Conditions &), P(Ey.) > 0 forall k € N The event graph used in the simulations is a sim-

and alle > 0. B ple circuit made ofK transitions (andK places)
Using Lemma 8 and Borel-Cantelli theorem, itand W tokens in total. The (max,plus) represen-
is now direct to show the following result. tation of such a network uses a mateiXn) with

Theorem 9:Under assumptions (SC), thesize ) = max(K,W). The total number of states
(max,plus) perfect simulation algorithm terminates (£1V=1). In the experimentsk = 40 and W
with probability one. ranges from 1 to 80, so that the number of states

From a stationary profiley., it is possible to goes up t03.819 103!.
get a stationary state of the fork-join network by Figure 5 displays the number of iterations for
appending the following steps in the (max,plushpoth algorithms, while Figure 6 displays the total
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matrices is not fixed as shown below.
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I | VII. SEVERAL EXTENSIONS HEAPS OF PIECES
AND SAFE FREECHOICE NETS

A. Heaps of pieces

1000 ¢

Number of iterations

Consider a finite se€ of computing resources
(or columns) and a finite sed of tasks(or pieces)
0 1 Fora € A, C(a) is the set of resources used
to execute task. The lower contoui(a) of a is a
‘ ‘ ‘ ‘ ‘ ‘ ‘ vector defined o€ giving the relative starting time
oot e T "™ of the execution ofz on C (min,ec(q) I(a), = 0)
with the convention thak(a), = —co if © & C(a).
The upper contour of taskis a vector defined of
giving the relative completion time of the execution
‘ ‘ ‘ ‘ ‘ ‘ ‘ of a on C. with the convention that.(a), = —co
S S if r¢ Cla).
< It is shown in [9], that the total execution time of
1or < the sequence of tasks ...a, over the resources
000 | - 1 is given by the vector

Fig. 5. Average number of iterations for a circuit wikh = 40
transitions when the number of tokens varies

1600

1400 |

Time (in seconds)
x

1 X(n) = X(0)@T(a1) @ T(an),
2 | where X(0) = (0,...,0) and for all € A, the matrix
et 0 if s=r,réC(a)

]
200 |- X o 300 JUNNTSEL
x 2Ox000¢ PR X
XX 300NN AR —
NI T(a)sr=¢ u(a).—l(a)s if se€C(a),r € C(a)
‘

P e

0 10 20 % 0 % % 70 80 —00 otherwise

Packets

Fi . - R For stochastic heaps, there are two types of
g. 6. Average simulation time for a circuit witkk = 40 . .
transitions when the number of tokens varies randomness. First, for a givem, [(a) and u(a)
are sequences of iid random vectors with a given
support C'(a) is fixed). Second, at each step, one

simulation time. Each point is the average of manghooses which task to execute next. by picking
simulations (enough to guarantee confidence inte#t according to an iid Bernoulli distribution (with
vals smaller than 1 % of the empirical value).  probability p, > 0).

While the number of iterations before coupling Here are some technical assumptions on the set
is much smaller for the (max,plus) case, the actuaf task matrices/'(a),a € A.
simulation time hoyvever is much larger. .ThIS.IS Va € A, {T(a)(n)}nen is iid
because one step in the (max,plus) algorithm is a
product of a large matrix (of sizé{). One can (H>): ¥reC, dacA|reCl)

) . . Vr,s€C,3ar...ax € A,
notice that the time complexity of the (max,plus) Sroer) ... ral=s) | ro1,m1 € Clas)
algorithm starts to increase rapidly when the num- O e Tk =T i
ber of packetdV becomes larger than the number In words, this assumptions correspond to the fact
of transitions K. One explanation is that from that all r.v. are iid, all resources are used and that
that point on, the size of the matrices starts tthe heap cannot be split into two independent sub-
increase fromK to W. The same kind of behavior heaps.
(fewer iteration but larger simulation time) has Theorem 10 ([9]): Under assumptions(Hz),
been observed when the number of transitidghs the sequence(X,,) converges in law to a unique
changes. The corresponding curves are similar sationary profile.
those in Figures 5 and 6 and are not reported here.The goal of the rest of this section is to provide

While the Markov chain method is faster, thean algorithm to sample this stationary profile with
(max,plus) one is more general in terms of firingio bias.
distributions. The (max,plus) method can also be Theorem 11:Algorithm 7 terminates in finite
used to simulate perfectly the stationary distribuime w.p. 1 and its output/(X(0)) has the sta-
tion of (max,plus) systems where the support of thigonary distribution of the heap of pieces.



Input An infinite Bernoulli sequence are verified for the corresponding heap of pieces.
in A, A1y s Oy matrices|  However, one main difference with free heaps is
T(a1),...T(an),... and a sequenceé that only sequences of pieces corresponding to
of increasing integersVy, No, ... enabled transitions can possibly be stacked. One
m:=1 way to deal with this restriction is to construct
repeat a new heap of pieces by considering the tensor
ComputeB,, :=T(a-n,,)®---@T(ao) products of the (max,plus) matrices corresponding
m:=m+1 to the pieces with a matrix modelling the reacha-
until By, is of rank one bility graph of the free choice net. This approach
X(0) := X(=Np) ® B, has a major drawback: the size of the matrices
Output (X (0)) is O(P|R(My)|) so one loop of the simulation

algorithm is inO(P3|R(My)|®) which may be too

Fig. 7. Perfect sampling of the stationary distribution of a hea[arge to be handled by a computer.

of pieces Another way, detailed below, is to consider only

the initial heap of pieces and at each step, check

Proof: Consider a finite sequence ... a, whether a given new piece can be stacked. The

of pieces such thal(a;) U --- U C(ay) = C overqll complexity of one loop of the simulation

and such that(a;) N Clais,) # 0 for all 1 < algorithm will be iNO(PR(Mo)]). ,

i < n—1. Such a sequence exists because of N main ingredient of this approach is the

assumptior( ). Then the sequencg(a;)® - - -® fqllowmg lemma, relatmg'the profl!e of the hee.\p.of

T(ayn) ® T(an) ® - - ® T(a1) is @ matrix of rank pieces to the corresponding marking in the original

one ([9]). Since the probability of each piece i CNets. _ _
positive and since the selection process is iid, The Lemma 12:Consider a SFCNet and the corre-

probability that the sequenca .. . ana,, . .. a1 0OC- sponding heap of pieces. After firing transitions

curs is also positive. Using Borel-Cantelli Lemmadl - - - 4n, the heap has reached the staten) =
such a sequence will occur w.p. 1 in any infinite% (0)7(a1) ® -~ ® T(qx). Then the marking in
sequence. Now, once the matrix is of rank one, arij)® SFNetMark(X.,) can be recovered from the
additional product remains of rank one. Thereford0file 7(X (1)). _

the algorithm stops w.p. 1. , at step, say As Proof: A SFCNet is covered by one-bounded
for the output, letX .. be a heap with a stationary Z-cOmPonents [6]. For eackr-component, when

profile. Themy(Xo® By) = v(Xoo © By because firing transitionsg; . .. ¢,, the latest event within
B, is of rank 1, and v(Xe ® Bp) = 7(Xs0) the P-component has moved its only token to some

becauseX.. is stationary. m Placep. Therefore, this place corresponds to the
highest value ofX'(n) among all the places in the

B. Safe free choice nets P-component. Knowing the position of the tokens
In this section we consider one-bounded (or saf#f) all the P-components covering the SFCNet

free choice nets (SFCNets) with iid stochastic firingletermines the marking. u

times with arbitrary distributions, undd@ernoulli ~ Here is the main result of this section.

routing (Tokens are routed to output transitions Theorem 13:i- Algorithm 8 terminates in finite

according to fixed positive probabilities,, is the time w.p.1.

probability to route a token in plageto transition i- Its output is sampled according to the stationary

q € p*). SFCNets can be seen as heaps of piec@istribution of the heap.

(see for example [9]). Here a piece corresponds to  Proof: Before proving termination, one must

a transition and the ressources are the places. T¢Rnvince himself that each trajectory simulated by

ressources used by transitign C(¢) are all the this algorithm is valid. This is because for any

input and output places of the transition. given initial marking M, the choice of the next
More precisely,C = P, A = Q and for any transition to fire is such that it is either invalid (in
transitiong, C(q) = *qU ¢* and which case nothing happens) or follows the good

e Bernoulli proportions.
0 iti=j.5¢C() Fori, the first step is to show convergence of the
T(g)ij =\ ¢lg) ifi€Cla),jeC(g) marking. Using Lemma 12, the marking associated
—oo  otherwise with heap X (n) is unique so that this part can
If the firing times are iid in all transitions and if be proved in the same way as Theorem 1. Next,
the net is strongly connected, then assumptilas one needs to show that the profiles also converge.



Input (P,Q,7,C) a SFCNet with firing
timesT = {7,}, Bernoulli routings{c,,},
a matrix B := Id
for all Marking M € R(M,) do
Compute a heapX,,(0) such that
Mark(Xn(0)) = M.
end for
repeat
Pick a transitiong w.p. ceqq/T
for all reachable marking/ do
If ¢ is enabled inMark(Xy (k—1))
then B :=T(q) ® B end if
k=k+1

by modifying the distribution of the firing times
according to the following transformation. The
distribution of the new firing time-; of transition

q becomes

P(ry < z) =P(ry < a|Vy € (*q)*, 7y < 7).

- lid assumptions for firing times can be replaced
by more general stationary and ergodic assump-
tions. However this introduces several technical
difficulties similar to those in [1], which are beyond
the scope of this paper
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end for
until B is of rank one and/ark(X(k))
is the same for all markings/ € R(My).

Output (X (k)), for one M € R(My). [1]

Fig. 8. PSA of the stationary profile of the heap of a SFCNet[2]

Consider a sequence of pieces that first assmlg]
coupling of the marking. Once a common marking
is reached for all heaps, one only needs to exhibite?4
firing sequence such that the corresponding pieces
form of matrix of rank one. The construction used
in Theorem 11 cannot be used directly here becaudal
a sequence ...q,q, ---¢q1 may not be enabled.
Instead, one must construct a similar sequence
by parts. starting from the common marking, al®!
blocking marking M, (for an arbitrary transition [
g) can be reached w.p.p. From/, there exists
a valid firing sequencer; involving transition [€!
q1, leading back to markingl/,. The same can
be done for all the transitions in the SFCNet.
Combining all sequences enables a firing sequendd
o1...0Q0q ...o1 Which can be fired w.p.p. This
yields a matrix with rank one.

As for ii, the proof is similar to the proof of
Theorem 7. ]

To recover a marking for the SFCNet, with a stal1]
tionary distribution, one simply needs to compute
Mark(Xa (k). [12]

Unlike for heaps of pieces, this PSA needs to
compute one trajectories per marking R{My). (13]
Therefore, it may only be used for nets of moderate
size. Note that computing the stationary distribu-
tion is already very hard with two or three nodes[,14]
so that sampling remains interesting.

Several generalizations are possible.
- If conflicts are solved using theace policy(the
transition with the smallest firing time wins the
conflict), this is also amenable to Bernoulli routings

[10]

[15]

for his precious advices.
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